THE REFLECTED DIRICHLET SPACE'

BY
MARTIN L. SILVERSTEIN

Introduction

We consider a regular Dirichlet space (F, E') with corresponding symmetric
resolvent {G,, v > 0} and construct a second Dirichlet space (F', E") which
we call the “reflected Dirichlet space.” This Dirichlet space is interesting
for its own sake and also because it classifies symmetric resolvents {G%, u > 0}
with the property that G% f — G, f is nonnegative and u-harmonic for u > 0
and for square integrable f > 0.

In Section 1 we introduce what seems to be the appropriate notion of
“irreducibility” and we distinguish the transient and recurrent cases. In
the remainder of the paper we assume that the given Dirichlet space is tran-
sient and irreducible.

In Section 2 the completion F, of F relative to the form E alone (that is,
without a piece of the standard inner product) is shown to be a Hilbert space.
It is also pointed out that the corresponding completion in the recurrent case
cannot be a Hilbert space. This generalizes the well known result that the
classical Dirichlet space is a Hilbert space only for dimension three or more.
(See [1].)

Various results on exit distributions and time reversal are collected in
Section 3. These play an important role in the remainder of the paper. In
particular some of the results are used in Section 4 to construct an ‘‘approxi-
mate Markov process” as introduced in a slightly different context in [9] by
G. A. Hunt.

Section 5 is a streamlined version of a special case of Section 5 in [15]. The
Dirichlet space associated with the process time changed by the 1-balayage
of the given speed measure m onto a closed set M is identified and an important
estimate is established which involves N, the “universal Dirichlet norm on
M.

Sections 6 and 7 extend the techniques introduced in Section 7 of [15].
“Probabilistic interpretations” are given for various Dirichlet norms and in
particular for N*. The results of these sections are useful but dispensable
for the general theory. However they play a crucial role in the treatment of
examples. We refer to Section 9 of [15] and to [19] and [20] for specific in-
stances.

The reflected Dirichlet space (F’, E”) is introduced in Section 9. This
decomposes into the extended Dirichlet space F(, of Section 2 and a global
“universal Dirichlet space’” N. The latter is defined in Section 8 as a space of
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random variables on the appropriate sample space. It is clear that if addi-
tional hypotheses are introduced so that the ‘““Martin boundary” can be intro-
duced then N can be identified with a function space on the Martin boundary.
We refer to [19] where this is verified in a special case.

Finally the classification is obtained in Section 10. This explicitly involves
only the ““active” part N, of N which is closely related to the ‘““active boundary”
of W. Feller [4].

We do not consider here the problem of explicitly constructing the processes
which are associated with the classified Dirichlet spaces. For results in
special cases we refer to [5] and [13]. For other related work we refer to [2],
[3], [4], [8], [10] and [14]. We also refer to [19] where a more or less self con-
tained presentation is given for a special case.

As in [15] T acknowledge my debt to M. Fukushima. As a general rule we
refer to [15] for background results. However many of these results were
first established by Fukashima in [6], [7] and [8].

Added in proof. The author is now preparing a monograph in which the
main results of this paper are established in a broader context using different
techniques.

Notations

Throughout the paper X is a separable locally compact Hausdorff space, m
is a Radon measure on X and (F, E) is a regular Dirichlet space on L* (X, m).

The indicator of a set will be denoted both by 1, and by I (4). The integral
of a function £ over the set determined by a condition such as “X,is in I'”” will
be denoted both by §[X, is in I'; £] and by &I (X is in I')¢. All functions are
real valued. In particular L*(m) or L* (X, m) is the real Hilbert space of
square integrable functions on the measure space (X, m) and Com (X) is the
collection of real valued continuous functions on X with compact support.
Questions of measurability are generally taken for granted. In particular
functions are always understood to be measurable with respect to the obvious
¢ — algebra.

Notations and results in Sections 1 through 3 of [15] will be used throughout
the paper. To help orient the reader we collect some of them here. However
we will continue to refer to [15] in specific instances.

A dead point 9 is adjoined to X with the usual conventions. The standard
sample space € is the collection of maps « from the time axis [0, « ) into the
augmented phase space X u {6} which satisfy the following two conditions.

0.1.1. w(-) is right continuous and has one sided limits everywhere.
0.1.2. There exists a life time {(w) with 0 < {(w) < 4+« such that
w(t) = dif and only if ¢ > ¢ and such that X, o = 0 fort < ¢.

Trajectory variables are defined by X,;(w) = w(t) and first entrance times
are defined by

o(B) = inf {t > 0:X,is in E}
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with the understanding that o (E) = 4 « when not otherwise defined. In
addition we introduce here the last exit times

*(E) = sup {t > 0:X,is in E}
with the understanding that ¢*(E) = — o when not otherwise defined.
There is an exceptional polar set N and a family of probabilities ®, indexed by
z in X — N which form a quasi-left-continuous Markov process on X — N.
In particular ®,(¢(N) < +») = 0 for all z in X — N. The transition

operators P, and the resolvent operators G, first regarded as operators on
L*(X, m) are refined so that

$
Pf@) = 8:.(X)), Guf@) = & fo dte™ ' (X.)

forf > O on X and for xin X — N. These operators act on measures which
do not charge N according to

[ 6Py@iw) = [v@@)Pg@), [ 66 @)W = [ v@)6. ).

If » charges no polar set then »G, is absolutely continuous and therefore
0.1) Guv = (d/dm)(»G.)

is well defined almost everywhere. Indeed G, » is well defined up to quasi-
equivalence by the conventions in [15]. The phrase ‘“almost everywhere”
is understood to mean almost everywhere with respect to m. The prefix
“quasi” means that the exceptional set is polar. Often identities will be stated
as if valid everywhere when they are valid only quasi-everywhere.

Hitting operators are defined by

Hf(2) = &lo(B) < +; f(Xew)],
Hﬁf(x) =& e‘—u'(E)f(Xv(E))-
Unless otherwise specified, functions in F are understood to be represented
by their quasi-continuous refinement, which is unique up to quasi-equivalence.
Strictly speaking our definition of the sample space @ is inconsistent with

[15]. The newer version is technically more convenient and the difference
causes no difficulty in applying results from [15].

1. Preliminaries
A subset A of X is properly invariant if m(4) > 0,iff m(X — 4) > 0 and
if fort > 0, P;14 < 14 almost everywhere. It follows from symmetry that A
is properly invariant if and only if its complement A° = X — A is. Moreover
if f belongs to L*(m) then

[ m@)@)1 = Pui@) = [ m(@a)1af@) (Laf(@) — Pilaf@))
+ [ m(de) Lo f(2) {140 f(&) — Pulacf(@))
> [ m(d)1af@) (15@) — PiLuf)},
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By Theorem 4.1 in [19], if f belongs to F then modulo refinements also 14 f
belongs to F and therefore we can obtain a new Dirichlet space by restricting

everything to A. This suggests that an appropriate analogue of irreducibility
for Markov chains is

1.1. ConpitioN oF IrrepuciBiLITY. There exist no properly invariant
sets.

We assume from now on that this condition is satisfied. Our feeling is that
this restriction will be harmless in practice.

In the remainder of this section we apply the techniques associated with
the Hopf decomposition to distinguish the transient and recurrent cases.
Our source for these techniques is the book of Foguel [23].

Lemma 1.1, Let ubesn L' (m) and let

t
E = {x in X ¢ sup j; dsP,u(z) > 0}.
Then [zm(dz)u(z) > 0.

This can be proved for example by adapting Garsia’s well known argument
in the discrete time case.

Both in Lemma 1.1 and in the proof of Corollary 1.2 below the supremum
is understood to be taken only as ¢ runs over the dyadic fractions k2.

The potential operator G is defined by
1.2) <wu)=&£%ma0
when it converges.
COROLLARY 1.2. Let u, v > O almost everywhere be in L'(m). Then
[Gu < 4] = [Gv < + ] almost everywhere.
Proof. Let A = [Gu = 4+ x,Gv + <]. Then for a > 0 clearly

t
B = {x : supt>oj; dsP*(u — aw) (z) > 0}
contains A and therefore by Lemma 1.1,

mewmu)—w@»zo

and ‘a fortiori,’
aLm(dx)v(w) < /m(dw)u(x)‘

The corollary follows upon letting @ T .
For v > 0 and nontrivial in L' (m) the set [Gu = 0] is clearly invariant and
therefore must be m-null by our condition of irreducibility. Similarly
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[Gu < + o] is invariant and therefore either this set or its complement
[Gu = + ©]ism-null. By Corollary 1.2 the choice is independent of « and so
the following definition makes sense.

1.2. DerinmrioN. The Dirichlet space (F, E) is transient if Gu < +
almost everywhere and recurrent if Gu = -+ « almost everywhere for v > 0
in L' (m).

Tueorem 1.3. If the Dirichlet space (F, E) is recurrent, then for quasi-
every x,

Proof. Forh > 0,

t h
f dsPo(1 — Ppl1) = f dsP,1 — [ dsP,1
0 0 t

stays bounded as ¢ T 0 and it follows that P, 1 = 1 almost everywhere and
therefore quasi-everywhere.

In the remainder of the paper we assume that (F, E) is transient. If
> 0in L'(m) and if T = [Gu = + ] then

(P,,(O‘(I‘) < +°°) =0

forxin X — N — TI. This follows from the supermartingale property of
Gu (X,;) and since Gu is the limit of an increasing sequence of quasi-continuous
functions. But then it follows from Theorem 3.6 in [15] that every compact
subset of T is polar and therefore by the Choquet extension theorem T' itself
is1 polar. Thus Gu is defined and finite quasi-everywhere for any u in
L (m).

2. The extended Dirichlet space

In this section we give a direct construction of the extended Dirichlet space
introduced in Section 8 of [15]. This Dirichlet space is analogous to the dis-
crete time minimal Dirichlet space in [19].

LEmmaA 2.1. Let ¢ > 0 on X. If Go < M almost everywhere on the set
[e > 0] then Gp < M quasi-everywhere on X.

Proof. Tt suffices to consider Gy, ¢ with ¢ in L*(m) and with w > 0, to ap-
ply the maximum principle Theorem 1.13 in [15] and to pass to the limit in
u and o.

2.1. Notation. $ is the collection of ¢ > 0 in L'(m) such that Ge is
bounded.

LemMA 2.2. Assume that m is bounded. If ¢ is in 8, then G belongs to F
and

E(g, Ge) = fm(dx)¢(w)g(x)
for g in F.
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Proof. Clearly Ge is in L*(m) and since

1/ [ mlaa)o(a((Gela) — Plo@)} = (10) [ m(da)o@) [ do Poto)

the lemama, follows from Theorem 4.1. in [19].

Let {gs} be a sequence in F which is Cauchy relative to the Dirichlet form E.
If mis bounded, then Lemma 2.2 applies and by the contraction property of E
also {ga} is Cauchy in L'(p-m) for any ¢ in 8. This result then follows for
general m with the help of a simple special case of Proposition 5.4 in [15].
Also with the help of Lemma 2.1 it is easy to see that any finite nonnegative
function can be approximated from below by functions in 8 and in particular
there exists ¢ in § which is >0 almost everywhere. Thus there exists g de-
fined almost everywhere on X such that for a subsequence, g, — ¢ almost
everywhere. This suggests

2.2. DerFiNiTiON. ¢ belongs to the extended Dirichlet space F, if there
exists a sequence g, in F such that

2.2.1. {gs} is Cauchy relative to E and

2.2.2. ¢, — g almost-everywhere on X.

The Dirichlet form E extends to F(, by continuity and the paragraph pre-
ceding the definition shows that F, is a Hilbert space relative to E. There-
fore the arguments of Section 1 in [15] can be applied directly to the pair
(F(.;), E )'

LemmaA 2.3.  The following are equivalent for h in F .
i) P'n < h almost everywhere for t > 0.
(i) Eh, g) = 0 whenever g in F, satisfies g > 0.
@iii) uGuh < h almost everywhere for u > 0.
(iv) There exists a Radon measure v on X which charges no polar set such that

1) E(hg) = [ vl @)
for g inFy N Coom (X). Also
(22) h =Gy

in the sense of (0.1).

Proof. For the equivalence of (i) and (ii) we refer to [24, p. 72]. That
(i) implies (iii) follows from Theorem 4.1 in [19]. That (iii) implies (ii)
and that (iii) is equivalent to (2.1) follows from the proof of Proposition 1.2
in [15]. Finally (2.1) implies (2.2) by Lemma 2.2 and an obvious symmetry
argument. (Note that potentials Gy with ¢ in S are dense in F,, because of
Lemma 2.1.)

Any function h which can be represented (2.2) with » a Radon measure
charging no polar set will be called a potential. A measure » is said to have
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finite energy if there exists a potential h in F(, such that » = G». Clearly this
is so if and only if

[ vmyi@) < ctm(,

for fin F¢) N Coom (X). The collection of such » will be denoted by 9. For
v in 9N the energy of » will be denoted and defined by

E() = f ) (d2)Gy (@),

The proof of Proposition 1.4 in [15] shows that 9% is complete relative to the
energy metric E'*(u — »).

Remark. Our use of 9N here is inconsistent with [15]. In general 9N de-
fined here is a proper subset of 91 defined in [15].
For G open we define the capacity

2.3) Cap (@) = inf E(f, f)

as f runs over functions in F(, such that f > 1 almost everywhere on G, with
the understanding that Cap (G) = < « if no such G exists. For A Borel we
define

Cap(4) = inf Cap(G)
as G runs over the open supersets of A. It is obvious that
Cap(4) < Cap:(4)

where Cap; is defined in the same way as Cap except that E is replaced by E..
In particular if Capi(4) = O then also Cap(4) = 0. Conversely if
Cap (A) = 0 and if A has compact closure, then there exist relatively compact
open sets G, | and containing A such that Cap (G.) | 0 and therefore there
exist f» > 1 almost everywhere on G, and belonging to F such that
E(fa, fa) — 0. After possibly arguing as in the proof of Lemma 8.2 in [15]
and passing to a subsequence, we can assume also that E;(fa, f») — 0 and
therefore Cap:(4) = 0. Thus the notion of polar set and therefore quasi-
equivalence is the same for the Dirichlet forms E and E;. In particular it
follows from the proof of Theorem 1.1 in [15] that every f in F(, has a well
defined refinement which is specified and finite quasi-everywhere.

For A a nonpolar Borel subset of X let 91 (4 ) be the closure in 9 of mea-
sures concentrated on A. For p in 9N let #*u be the measure in 9 (A) deter-
mined by the condition that E (u« — 7*u) is minimal. This makes sense be-
cause I (4 ) is a closed convex subset of M and because of the quadratic na-
ture of the energy metric. We call =“u the balayage of u onto A. Let
F (4) be the closure in F, of the linear span of G (4). The proof of
Lemma 3.5 in [15] shows that Ga*yu is the orthogonal projection of Gu onto
Fy(A). Also the proof of Theorem 3.6 in [15] shows that H* implements
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orthogonal projection onto F, (4 ) and so in particular
H*Gup = Gn*p.

Finally consider again % a nontrivial potential in F(, and let A = [h = 0].
If A is nonpolar, then by the Choquet extension theorem it contains a non-
polar compact set and therefore by an obvious compactness argument, after
approximating from above by open sets, there exists a nontrivial measure u in
9 which is concentrated on A. But then

[ w@)P'h) = 0
for t > 0 and therefore

[ w@)are = o

which is impossible since 4 is m-null. Therefore » > 0 quasi-everywhere
and the argument at the end of Section 1 shows that also h < 4+« quasi-
everywhere.

Remark. 1If (F, E) is recurrent and if m is bounded, then by Theorem 1.3
the function 1 isin Fand E(1,1) = 0. Thus F cannot be completed relative
to E alone to get a Hilbert space. Again the restriction on m is easily re-
moved with the help of random time change.

3. Exit distributions and time reversal

3.1. Convention. Dy, k > 1 is an increasing sequence of open subsets of
X such that D; T X and such that each D has compact closure. The com-
plements X — D;, are denoted by M;. Often k& and ~k will be used in place
of D; and M;, for subscripts and superseripts.

Let

p)=0¢=+»), r@&)=0(<+w;X;,59),
ho() = @ < +o0; Xpo = )

and note the decomposition
1=p47r-+ h

Our first result is

LeMMma 3.1. There exists a unique Radon measure x charging no polar set
such that r = Gk.

Proof. For each k clearly H*r is a potential in F and therefore there
exist measure », in M such that H*r = Guw. If »” is the restriction of » to
D; and if k£ > [ then by the proof of Theorem 3.11 in [15],

E (Vl(cl) ) S E (Hol(Dx),r’ Hol(D;)r)
which is bounded independent of k. After applying the appropriate analogue
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of Proposition 1.4 in [15] and after selecting a subsequence we can assume that
» —  vaguely and that for each [ there exists a measure ' in M such that
«” dominates the restriction of « to D; and is dominated by the restriction of
x to cl(D;) and such that Gvf® — G« weakly in F,.. For f > 0 in
8 N Byn (X),

[ mar@)f@) = Limy [ m(dz)Gn(2)s()

= Limk{-/;l(D;) n(dz)Gf(x) + L_ol(m) Vk(dx)Gf(x)}

and for fixed I the first term inside the brackets converges to

[ < @)1 @)

and the second is dominated by

[ n@)@f@) = [ m(@)s@) H"Gnz)

< f m(dz)f (@) Hr ().

But it is easy to check that H™"r | 0 quasi-everywhere (and therefore almost
everywhere) as I T « and we conclude that r = Gkx. Uniqueness of « follows
directly from uniqueness of » in Lemma, 2.3 (iv).

We identify « as the “killing measure” in

TaeoreM 3.2. For f > 0 and for quasi-every ,

3.1) &lf < +o0; Xpo # 9; f(X;—0)] = G(f-x) ().
Also for u > 0,
3.1) 8o Xi—0 # 3; € 5f(Xp0)] = Gu(f-x) ().

Proof. 1t suffices to prove (3.1) since (3.1) then follows by passage to the
limit v | 0. For this purpose let R, be the usual terminal time which is in-
dependent of the trajectory variables X; and which is exponentially distributed
with density ue™ and let ¢, = min(R,, {). Since for quasi-every ,

&o[Ru < 3 f(Xry~)] = uGuf(2),
it suffices to establish
(3.2) & X0 # 95 f(Xp )]l = Gu(f-xu) (2)

where k, (dz) = k(dz) + um(dz). Indeed it suffices to consider f in Coom (X)
and to verify that for g > 0 in Coom (X),

(32) [ m@)(@)elXio = 5 f(Xe0)] = [ wld)f)Gugly).
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Let,
ha(@) = &a[Xpo = 356 7],  ru(@) = @Xp,—0 = 9]
and note that

ho = hy + 'UrGuho
and therefore
rw =1—hy
=1 — ho + uGuhy
(3.3) =71+ p+ uG.ho

= Gui{xk + ur-m} + uGup + uG, ke
= uKu.

Thus the left side of (3.2')

319

= Lim Xm0 f m(dz)g(2)&; [Xi,—0 # 9; f(Xum); k/2" < §u < (k + 1)/27]

= Lim Tt [ m(d2)g(@)e ™" Py fire = 6™ Pym ) (2)

= Lim Y5 f ku(dY) Gl — €™ Pyan}fe ™" Pyan ()
1/2n

= Lim T [ @) [ dt P AT P g(9)

and the theorem follows since
P f(Pisg(y) = & f(X,:)g (Xi—)
converges to f(y)P.g(y) ass | Ofort > 0and for quasi-every y.

Now fix D an arbitrary open subset of X and denote the complement X
by M. For zin D let

p° (@) = @ulf = +o;0(M) = +w],

r°@) = @t < +w;0(M) = +ow; Xpy #= 9],

§°(@) = Culf < +0;0(M) = +o; X = 3]

(This notation is inconsistent with Section 5 in [15].) Clearly
1=H14+r"+s"+p°

quasi-everywhere on D and s = 0 whenever D has compact closure.
»™ be the unique Radon measure on M such that

(3.4) [ o) = [ m(an @)

—-D

Let
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foro > 0onM. Forf> OonX and foru > 0let =y f be the unique func-
tion specified up to »™ equivalence on M and satisfying

(35) [ e swrew) = [ ma)s@) H o(z)

for ¢ > 0 on M. More generally if u is a Radon measure concentrated on R
and charging no polar set, let wsu be the function on M determined by

[ Hanesewrew) = [ wan)H¥e().

That is, »* (dy)wuu(y) is the u-balayage of x onto M. This makes sense
because of Theorem 3.6 (iv) in [15].

Routine computations establish the following identities for w > 0 and for
quasi-every « in D:

3.6) p° () = uGsp®(x)

(3.7) (@) = uGor® (@) + &.[X;0 # ;0(M) = + ;e ™)
3.8) sP(x) = uGn (&) + &J[X;0 = 0; 0 (M) = + ;¢ ™).
From (3.6) and the identity

3.9) o — ¥ = (v — u)rdGy

which is dual to the familiar and easily verified

(3.10) HY — HY = (v — w)Go HY

follows

(3.11) vy p” = urup®, 0<u<o.

The identities (3.7) and (3.8) lead in the same way to inequalities
(3.12) ot > urr®, 0<u<ov,

(3.13) omy's” > urs®, 0 <u<o.

Indeed (3.12) can be improved to
(B14)  omr® + m (pk) = uryr® + 7 (px), %, 0> 0.
To see this note first that
ru = Guky + Hir,
which follows from (3.3) and the familiar identity
(3.15) G = Gu + HYG..

Since
uG@s 1(z) = @[R. < min(e (M), §)]
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it follows that
@[ Xr,0 # 3] = G2 k(x) + ®.[Ry < min (o (M), §)]

+ ®o (M) < Ry; Xpp0 # 9]
and therefore

(3.16) @t < Ru;o(M) = +; X0 3] = Guk(x)
for quasi-every x in D. Then (3.7) can be written
3.7) r® = uGnr® + Gk

and therefore
urdr® + 7ok = ure (WGor® + GY &} + wak
=om (uGer® + Gon} + (u — v)m'Gok + wik
= om)r® + w'k

which proves (3.14). Also (3.16) and the proof of Theorem 3.2 suffice to
establish

TueoreMm 3.3. For f > 0 on D and for quasi-every x in D,
(3.17) 8alo (M) = +o0; Xy # 3; f(Xs0)] = G (f-¢) (2).
Also for u > 0,
(B17) &l < Rui;o(M) = +; Xeo # 3;f(Xr-0)] = Gu(f-x) (2).

Finally we establish a local time reversal result which is essential for our
construction of Hunt’s “approximate Markov process” in Section 4. For
each k let Ly be the unique measure in M such that

Hkl = GLk

The time reversal operator p; and the truncation operator i are defined on
QN [e(Dr) < 4+ ] by

(@) = w(@*Dy) —t — 0), 0<t< (D)
=9, t > o*(Dy)

nw(t) = w(t), 0<t<d*(Dy)
=9 t > o*(Di)

Note that by transience * (D) < + © [a.e. ®,) whenever o(D;) < + .
TueorEM 3.4. For & > 0on Qand fork, 1 > 1,

(3.18) [ Liawye.tom = [ Litay)e, tor.
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Proof. We begin by establishing
8altn < 0% (D1); fo(Xeswiy=0) *++ fn (Kor0p)—tam)]

= G{fa Pty -+ Py, fo- Lo} ()
for0 <t < -+ <tyforfo, -+, fa = 0on X and for quasi-every z. It

(3.19)

suffices to establish (3.19) for almost every x and therefore we can replace
(3.19) by

fm(dw)¢’ (#)8alta < 0* (D1); fo(Xorwy—0) *** fa(Xord1y—tn—)]
(3.19")

= [ L@ @IPy, -+ Py, fiGo(w)

with ¢ in 8. Also we can assume that fo, - , fu are in F N Coom (X). The
left side of (3.19")

= Lim X5 [ m(d@)e(@)Pus fu -+ Pu foll = Py) H1(a)

1/p ©
= Lim [ Li(dy) fo ds Py fo -+ fo Simo Pup-o(y).

Clearly p [i/” dsP, converges strongly to the identity as an operator on F,
and with the help of the spectral theorem it is easy to check (after first con-
sidering m bounded) that

(1/p) 2%~ Pupe — Go

inF,asp T « and (3.19') is proved. In (3.18) it suffices to consider
£ = fo(Xo) - fn(Xs,)

and then (3.18) follows from

[ L@zt g o o
= [ Lu(@)edtn < o*(D1); fo(Xeron-o) +* FoKrioptpes)]
= [ Li@)GU Py -+ S Lal ()

= f Li(dz)fo(2)Pey f1 « ++ Prpetyy fo H™*1(2).

Remark. The proof of Theorem 4.2 in [15] is incorrect and indeed the last
lines on page 32 do not make sense. However a correct proof can easily be
supplied using the techniques of this section. ‘
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4, An approximate Markov process
For each k let @ be the subcollection of @ satisfying

4.1. w(0) = dor w(0) is in the closure cl (Dy).

There is a unique trajectory « in @ such that w () = dfor 0 < ¢ < + .
We refer to this trajectory as the dead trajectory and denote it by 5. We
consider @, with the Skorohod metric as defined for a special case and for
compact time intervals in [12, Chap VII]. A simple extension of the results
in [12] shows that relative to the Skorohod topology Q% is a separable metric
space and an absolute Borel set. That is, @ is a Borel subset of one (and

therefore any) of its completions. The mapping Ji from Q1 to @ is defined
by

Jrw(t) d for all ¢ if o(Di) = 4+

we@®i) +t) if oDp) < 4.

Clearly each J; is Borel measurable and surjective. The inverse limit of the
Q. is the collection Q% of sequences {wi}s—1 With each w; in @ and such that
Jr wer1 = wi for all k. The extended sample space is the reduced inverse limit
Q, = Q% — {8} where 5 is the dead sequence in % whose components are the
dead trajectories 6. We denote by J,» the natural projection of Q. onto 2.
It follows from [12, Chap. V] that Q. is a separable metric space and an abso-
lute Borel set in the product Skorohod topology and that the projections Jo,.
are Borel measurable. The point of this is

THEOREM 4.1. There exists a unique countably additive measure ® on the
extended sample space Q. such that

@1) 8o Jus = [ Lu(da)et

for each k and for £ > 0 on Q. and vanishing on .
Proof. We note first that for ¢ > 0 on X,

[ Liat@eda(De) < + @; o(Xeon)) = [ Li(d)8, o(Xon)

= [ Ludo)e. o(X0)

= f Li(dz)e(x)

where we have used Theorem 3.4 twice, and from this it follows that

[ Leatan)ggogi = [ Luams.s.

This is the consistency condition which is necessary for the existence of a
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finitely additive measure satisfying (4.1). To establish countable additivity
it suffices to show that if A is a Borel subset of @, — {8;} and if the inverse
images Jwy (Ax) in Q, decrease with k and if

6% () = [ Leldr)6u(4) = a > 0
for all k, then
(4.2) Mims Jwi (%)  is nonempty.

According to [12 Theorem 3.2, p. 139] there exists a sequence of compact
metric spaces Q¢ and for each k a sur]ectlve contmuous map Jr ¢ Qe —
and an 1n]ect1ve Borel map &y Q — QF such that Jy ®ppy = B Ji. The
mverse hmlt Qw of the Qr is a compact metric space and the projections
J 0% — QF are continuous. Let ®®* be the unique Borel measure on
QF such that ¢®*(B*) = ¢® @;'B*) for B* a Borel subset of ;. By Kura-
towski’s theorem [12, Theorem 3.9, p. 21] the images Ay = ®(AF) are Borel
subsets of OF and of course ®®*(4x) = ®* (4:). Choose compact subsets
Bj of Af such that
EP* (BY) > P*(AF) — a2

and define

C:¥ =BinJi7(BY), Ciw=Biunli (). k22

Each CF is compact in Q¢ and the inverse 1mages Jox =k L(CF) are compact and
decreasing in the inverse limit Q% Clearly (J1)™(AY) contains A3 and so

@(2)* (C:‘) 2 0(2)*(-3;‘) _ (P(l)*(A;k _ ;lt)

a a
> —_— e —
*=3 732

and similarly for k¥ > 2,
G,(k-i-l)* (C":‘_H) Z @(k-}«l)* (Bl’:+1) _ (p(k)* (A:t _ C;::)
>a—a/2 — @2+ - +a/2").

Thus Cp is nonempty for each k and therefore Ni-" J wi (CY) is nonempty.

Now (4.2) follows and the theorem is proved.

Remark. Theorem 4.1 is an adaption of Hunt’s construction of “approxi-
mate Markov chains” as outlined in [9]. This was first done in continuous
time by M. Weil in [25).

As in [15] we introduce trajectory variables parametrized by an artificial
two sided time side for w = {wi} in Qe. Let ko be the first integer & such that
wr, # 6 and for t > 0 define

X (w) = wry (t).

For ¢ < 0 there is at most one integer k: > ko such that
O'(Dkoy Wk, ) = I tl) O'(Dkof wr-1) < l tl'
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Define
Xi(w) = wi, (0(Di,) + t)

if k, exists and otherwise define X,(w) = 4. The coordinates X; are Borel
measurable on 2, and in addition « in Q. is determined by its coordinates
X.(w). However the X; do not in general form a Markov process relative to
the measure ®. TFirst hitting times o (4 ), last exit times ¢*(4), the death
time ¢ and the birth time ¢* are defined in the usual manner. The time re-
versal operator p is defined so that

Xi(pw) = Xo*pg—t—0

with ko as above. Clearly p is bijective and p = p~* is Borel measurable. Our
general result on time reversal is

TaEOREM 4.2. For ¢ > 0on Q,
4.3) 8&op = E&¢.
Proof. 1t suffices to consider
£ = [ Xewp 1 ( Xowp+tr) *** Ja Kooy + ta)

with0 < ; < -+ < t, and with f; > 0 and in Ceom (X). Then for & suffi-
ciently large,

8£°p = 8£ o pg © Jeo,k = ka(dx)8¢£°Pk
which by Theorem 3.4
= ka(dy)SuE oty = 8forp ooy = 8.

From the very definition of &,

$
(44) e [ dte(X0) = [ m(@ne(@)

for¢ > O on X. This will play an important role in later sections.

Finally we return to the capacity Cap introduced in Section 2. An ele-
mentary compactness argument shows that a Borel subset E of X has finite
capacity if and only if

H®1 = GLs
with Lg a measure in M and then
@5) Cap (B) = [ La(da).
For each k,

[ @) (o(B) < + ) = [ Lu(@)6La(z) = [ La(de)GLu(2)
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and after passing to the limit & T <,
4.6) Cap (E) = ®(0(E) < +=).
This also will play an important role in later sections.

5. A time changed process

We consider again a general open set D with notations as in Section 3. For
0 < u < v we define the symmetric kernel Uy, (y, 2) by

61) @-— u)fpm(dx)Hi’(x, dy)H' (x, dz) = Us,(y, 2)»™ (dy)v™ (d2)

and also we define the bilinear forms

62) Uk e) = [ @) [/ @)U% G, e wle@)

63)  Uldo,o) = [ v @) [ @)U @, Dle@) — o))"

This notation is more or less consistent with Section 5 in [19] but not with
Section 5 in [15). It is easy to check that

(5.4) Usa(1,0") = 3U%, (o, @) + Utialo, @)
when the left side converges and that

(0 — u)r'Hio = (v — u)rHio

5.5
(65) (v — u)dm/dv™e +f U (¢, 2)o (2)v™ (d2)

foro > Oon M. Also
(5'6) fd‘.w = Uff,v + U:,‘w
for 0 < u < v < w and then the estimate

(57) Ve, o) < UKL ) < [ 4 @)d @)
guarantees that
(5.8) Usiu (0, ) = 0

asu | Oforein L*(»™).

Lemma 5.1. For w > 0 the operator HY is bounded from L*(»™) to L*(m)
and the operator ¥ is bounded from L*(m) to L (™).

Proof. It suffices to consider Hy, u > 0 because of (3.5) and it suffices to
consider # = 1 because of (3.10). But then the lemma follows since

[ ) (HE @)} < [ man)EE G @) = [ o).
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We consider now the time changed process
X :’ = Xp wM;t)
as defined in Section 5 of [15]. Our attention will focus on the corresponding
resolvent operators

R¥o(y) = & [ dto(X)

]

(5.9)

& [ AG ) exp (—ad (¥ D}e(X)
and the modified resolvent operators
(5.10) Riunee(y) = & fo AG™; dt)e™ exp {—ad (»; D}e(X.).

It is shown in Lemma 5.1 of [15] that {Ras, @ > 0} and {R{%., a > O} are

symmetric submarkovian resolvents on L? (M, »™). We proceed to identify

the Dirichlet spaces which correspond in the sense of Proposition 1.1 in [15].

We refer to Section 6 in [19] where this is done in the context of Markov chains.
The first step is

Lemma 5.2. (i) F s contained in L* (™).
(i) Let HY be the restriction of F to M and for u > 0 and ¢ in HY define
(5.11) Qi (0, ) = Eu(HY ¢, HY ¢).

Then (H™, Q™) is the Dirichlet space on L (v™) which corresponds to the modi-
fied resolvent {R{%ys, a > 0}.

We begin with (ii). This is a special case of Lemma 5.2 in [15] but we
repeat the proof here with appropriate simplifications.
For u > 0let Ry be defined by (5.10) with @ = 0. By Theorem 3.3 in [15]

(5.12) Rihv = G.@-»™).
Since
R¥y1 = Guv™ = Gumi'1 = Guiri 1 + (u — 1)xy GT 1}
= HyY G{l + (u — 1)G7 1}

is bounded, the operator R{%, is bounded on L” (»*) and therefore by sym-
metry, on L*(»™). Thus R{, is exactly the inverse to the generator By,
for the modified resolvent (see Section 1 in [15]) and ¢ in L? (»*) belongs to
the domain of B, if and only if ¢ = G, (¥-»™) with ¢ in L*(»™). In this
case since for ¢ > 0,

[ @eane) < +w
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and since Hy projects F onto F, (M) (see Theorem 3.6 (i) in [15]), the func-
tion ¢ belongs to H* and

Q) = [ @ ©).

Clearly such ¢ are dense in the Dirichlet space which corresponds to the
Ri.. and (i) will follow if we show that such ¢ are dense in H¥. But as
v 1 o clearly vHy G, Hi¥ ¢ — ¢ in F and by the resolvent identity we can
assume that ¢ = HY G, gwithgin L’ (m). Buttheno = G, 7% g = Rl%, 7o g
and we are done because of Lemma 5.1. Finally (i) follows because R{%,
is bounded on L? (»™) and therefore Q¢4 dominates a multiple of the standard
inner product on L*(»").

Among other things the time changed Dirichlet space itself is identified in

THEOREM 5.3. (i) Let F(s) be the closure in ¥, of F°. Then the operator
H™ implements orthogonal projection of F, onto the E-orthogonal complement of
D
(o)

(i) Let H be the restriction of F ) to M and for ¢ in H, define
(5.13) Q" (e, ) = E(H"p, H")).

Then (HY, Q™) 4s the Dirichlet space on L*(»™) which corresponds to the time
changed resolvent {Ra‘, a > O}. Moreover this is a regular Dirichlet space and
(HE), Q™) is the extended Dirichlet space as defined in Section 2.

(i) Foru > 0 and for ¢ in HY,

(514) QU6 0) = @ (0 0) + Uil o) +u [ m@)é @)

Proof. H™ can be identified as an orthogonal projector either by directly
adapting the proof of Theorem 3.6 (i) in [15] or by passing to the limit w | 0
as in the proof of Lemma 8.3 in [15] and then (5.14) follows by direct computa-
tion. To identity (HY, @) as the time changed Dirichlet space we must
proceed indirectly since the operator R is in general not bounded on L*(»").
Again the needed argument is a special case of one given in Section 5 of [15]
and is repeated here with appropriate simplifications.

It follows in particular from (5.14) that for0 < u < 1,

(615) Qo) = Qo) + Uil o) + 1 —w) [ m@)d @)
and therefore for @ > 0 and for ¢, ¢ in L* (™),

f M (dy)¢(y)Riwae(y)
- f 7 (dy) o (1) R™ v (y)

(5.16) = Qe(Rhaes Riwat)
= Qlwe(Riae, Rlwe¥) + Uur(Rthae, Rlua¥)

+ (1 = ) [ m(dy) R @) Ry @).
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Thus by (5.5),
Riwe = Rtha + (1 — w)R&e mi" Hi Riue
and after passing to the limit v | 0,
(5.17) Ry’ = Rtha + Rlami' HYR.'.
If o = RY¥ ¢ withy > 0in L’ (»™) then also

¢ = Rthd¥ + =i’ Hg}
and since

[ @) + i E @) < +

it follows from Lemma 5.2 that ¢ belongs to H* and that

Qo) = [ @IewH@).

It follows that the time changed Dirichlet space is contained in H* and that
the Dirichlet form is Q. But since R{f)s < Ra' it follows either by Proposi-
tion 1.1 in [15] or by Theorem 4.1 in [19] that the time changed Dirichlet space
is precisely HY. Finally, it is routine to check that (HY, Q) is a regular
Dirichlet space and that (H{), Q%) is the extended Dirichlet space as defined
in Section 2.

Remark. Potential theory for (HY, Q™) as developed in Section 2 and in
Section 1 of [15] is entirely consistent with the potential theory for (F, E).
In particular the definitions of capacity and of quasi-equivalence on M are
identical

Note that for v > 0 and f > 0 on X,
Guf = Gof + Hi Guf = Gof + Hi Gurd f
and therefore
(5.18) G. = Gv + H¥ Rt =

This is a special case of (5.21) in [15].
It follows from (3.13) that

(5.19) % s°(y) = Lim,tevm s°(y)
and from (5.6) that for v > 0,
(5.20) Usw(y, 2) = Lim,je U (y, 2)

are well defined [a.e. »™] and [a.e. »* X »"] respectively.

b6.1. DEriNiTioN. The universal Dirichlet form on M is given by
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N (e, ¢) = $Uswle, ©)
+ [ @) @) + @) + miein @)

+ =¥ s (@)l ).

The extended universal Dirichlet space on M is the collection N¢§; of functions ¢
specified up to »" equivalence on M such that N* (o, ¢) < 4. The uni-
versal Dirichlet space on M is the intersection N = N, n L* (»™).

The above definition is consistent which Definition 6.4 in [15]. We prove
TaEOREM 5.4. H{s is contained in N ity and

Q" (e, ¢) — N"(p, ¢)
is contractive on H{;,.

The meaning of Theorem 5.4 is this. If ¢ belongs to H{s, and if ¥ is a nor-
malized contraction of ¢ then

‘ QM(‘P’ ‘P) - NM(ﬂo; ﬂo) > QM(‘P7 'I’) - NM(\b) ‘p)-
In particular we can take ¢ = 0 and therefore
Q" (e, ¢) = N¥ (g, o).

Theorem 5.4 is a special case of Theorem 5.8 in [15]. Because of its im-
portance we repeat the proof here with appropriate simplifications, at the
same time providing details which were taken for granted in [15].

It suffices to consider ¢ in H* bounded and we assume this throughout the
argument. For 0 < u < v,

Bu(lv — ulG, Hi, HYp)
= Eu(lv — wH)'G,Hi, Hip)
= Qtw(lv — ulRG, 7'Hi'e, @)
= Qto([v — ulRG 7' Hi'o, ¢)

— (0 = w* [ ()= HERE =¥ HEo(y)e(y)

= 0= [ M@~ @~ OrHRE)HE o @)e(y)

and therefore
le) (¢: ¢)

= Limya (0 = w) [ @)1 = (0 = )X BYRE ) w¥HE o 0)e(y).
Let Ny, (dy, dz) be the unique symmetric measure on M X M such that
ff Mun(dy, d2)o(y)e(2) = (v — u)2fvM(dy)m'i'Hfng)Wﬁ'Hf‘p(y)‘P(y)-
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Then also
Q&)(‘P: ¢)
= Lim, 1w [f W(dy){l — (v — w)RG *d H¥1(y)} (v — w)rlHY S (y)

108G 0 + 4 [ [t o) - o0 ]
and therefore if ¥ is a normalized contraction of ¢,
Qlo (0, @) + 3Usnle, 0) — QUw(¥, ¥) — YUL(, ¥)

(521) > Liminfuje [ P (dy) {1 — (0 — WRE T H¥1(y))
‘(v — wTMHY (& — V') ().
Ry 7o'l =G, 1 <1 [ae »Y

and therefore (5.21) is valid with the right side replaced by

But

Lim inf, 1« f v (dy)m vl — (v — w)HY¥1}

- (1) (v — wWRG T HY (" — ¥ ().
On the one hand

@ —wRGT HIQ —¥)@y) = @0 —w)GHI @ — ) @)

converges [a.e. v*] to ¢’ (y) — ¢’ (y) asv T o« through a subsequence and on
the other hand

vl — (@ — u)Ho 1}

i {op® + vr® 4 vs® + vHY1 — (v — u)H™1
+ (@ — u)uGs HY1)

= om{p” + r° + s} + uri H"1

=a{p’ + "+ 1o} — 7 1pk

+ vy’ 8° + uny H*1
and it follows that

Qlu (@, 0) + 3Utule, ) — Usiu(l, ")
— [ it @ + 1 + Lo @) + EL @)

dominates the corresponding expression with ¢ replaced by . The theorem
follows upon letting « T o since

Qo (0, ¢) + 3Unle, 0) — Usu (1, &)

= Q" (¢, 0) — 3Ud\ule, ©) + $Utiulo, 0).
Remark. The proof of Theorem 6.2 in [19] would establish the cruder
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result

(522) Qgt) (‘P} ﬂo) - %U:l.v«o; ¢> > le) (‘p’ ‘,’) - %Uff.v(‘/’, \0)'

This has a simple heuristic interpretation which we repeat here. The process
corresponding to Qs is in part obtained from the process corresponding to
Q4 by replacing “jumps at the rate Us, (-, 2)»™ (d2)” by “killing at the
rate (v — u)my Hu 1,”. Therefore Q{y, must already contain “jumping at
the rate Un, (-, 2)»™ (d2)”. Thatis, (5.22) must be valid.

Added in proof. In fact our proof of Theorem 5.4 is not valid unless we
first establish the cruder estimate (5.22).

6. Associated functionals

For ¢ a constant time on @ or Q,, the past F, is the o-algebra generated by the
trajectory variables X,, s < t. For 7 a variable time on @ or @, the past &,
is the o-algebra of Borel subsets 4 of Q such that

An[r <] isin &,

for all constant times ¢. This terminology is consistent with standard usage.

Meyer’s decomposition theory for supermartingales and for square integra-
ble martingales plays an important role in this and the next section. We cite
[21] as a general reference.

6.1. DeriNITION. An additive functional on the extended sample space
Q. is a real valued function (¢, ) defined and jointly measurable for ¢ real
and for w in Q. and satisfying the following conditions

6.1.1. «(t, +) is ¥, measurable,

6.1.2. a(f,w) = a({*, w) = 0fort < ¢*

6.1.3. a(f, w) = a(f, w) fort > ¢,

6.14. a(t+ hw) — a(t,w) = a(t’ + h o) — a(t, o),

whenever Xy.(w) = Xpyo(o') for 0 < s < h.

6.2. DEeriNITION. An additive functional on the standard sample space
is a real valued function a(¢, ») defined and jointly measurable for ¢ > 0 and
for w in @ and satisfying the following conditions

6.2.1. «a(t, -) is ¥, measurable,

6.2.2. a(t,w) = a({, w) fort > ¢,

623. a(t+ hw) —a(t,w) =a( + h o) — a(t, o),
whenever X;,.(w) = Xpyo(w') for0 < s < h.

Properties 6.1.4 and 6.2.3 guarantee that an additive functional is always
perfect in the sense of [24]. In the constructions given below this property

can always be obtained by first selecting a sequence of approximating func-
tionals for which the appropriate limits exist almost everywhere and then
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defining the limiting functional by an explicit limiting procedure involving
this sequence which makes sense for all sample paths. We take this for
granted throughout the section.

For ¢ > 0 on X define

t

i) = [ o(X.) ds

on the extended sample space @, with the understanding that A(¢;¢t) = 0
for ¢t < ¢*. It is easy to check that

61) 8A(e; 1) = [ mda)e(a)

1
(62) S8{A (0, D1 = [ m(do)e(2)Go().
For u in 9% the functions uG, Gu — Gu in F(, and also increase to Gu quasi-
everywhere asu T «. For typographical convenience put

ou = UGy u.
Then for 0 < u < v,

1614 (00; ©) — Alu, D)
= [ m@)en(a) — pul2)}{Gou(z) — Goulz))
= E(quu — Gou, Go, — Gou)

which - 0asu,v T . Thusasu T o,
A(n, ) = Lim A(pu; §)

exists in the L* sense relative to ® and therefore relative to ¢ = f Ly(dx)P,.
For ¢ > 0 clearly

eP(Aeuw; £) | 5) = Aleu; 1) + Gou(X0).
By the maximal inequality for martingales
sup | 8P (A(es; £) | 5) — 8P (A(eu; ) [F) | =0
in probability as 4, v T « and by (4.6),
sup | Geo(X:) — Gou(X:) [—0

in probability relative to & and therefore relative to 8 asu, v T ». (The
above suprema are taken for £ > 0 and rational.) Thus after passing to the
limit k¥ T o and taking into account Meyer’s uniqueness results for the decom-
position of supermartingales, we deduce

TuroreM 6.1. For p in 9 there is a nonnegative additive functional A (u; t)
on Q. which is unique up to ® equivalence and satisfies the following conditions.
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(1) Except for a @ null set of sample paths, A(u; +) i8 continuous and non-
decreasing.
(ii) For each k and fort > 0,

E(A(k; §) | Foopy+t, 0(Di) < + )

6.3

(63) = A(w; o(Di) +t) + Gu(Xony + 1)
The identities

(6.1 eA(u; §) = [ w(da)

(6.2") 16{A(u; )} = E(n)

can be established either by applying (6.3) or by passing to the limit in (6.1)
and (6.2). Also the proof of Theorem 3.3 in [15] is easily adapted to establish

(64) Atpwit) = [ AGw; deo(X.)

for almost every sample path whenever u and ¢-p both belong to 9. This
leads to a property of universality for the measure @.

THEOREM 6.2. Let £ > 0 on Q and let u be tn M. Then
¢
(6.5) [ nias)e. = & L Al do)g 0.

Of course the shift 6, is interpreted as a mapping from Q,, to @ and is defined
by
0: w(s) = w(t + 8).

For the proof it suffices to observe that if ¢(x) = &, £ then the right side of
(6.5)

IS
=& [ A e(X) = 84(e w9 = [ wdoe().
For f = Gy with ¢ in § define
t
(66) Mf(t) = FX) + [ dsp(X,).
It is easy to check that

4
u5s) = [ dse(X)

and therefore

(6.7) E(f,f) = 36 Mf(5)).

Passing to the limit in f and arguing as for Theorem 6.1, we prove
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TuroreM 6.3. For f in F(, there is an additive functional Mf(t) on Q.
which 18 unique up to @ equivalence and sztisfies the following conditions.

(i) Ezxcept for a ® null set of sample paths, Mf(t) — f(X:) 18 continuous.

(ii) Conditioned on the set [o(Di) < -], the process Mf(e(Dy) + t) 18 a
martingale relative to the a-algebras Focpy)+1.

(iil) MF is given by (6.6) whenever f = Go with ¢ in S and (6.7) is valid for
all F(,).

It is easy to see that
(6.8) Mf(t) = f(Xs) + A(n; t)

whenever f = Gu with p in M.

It will also be convenient to define the processes 4 (u, t) and Mf(t) directly
on the standard sample space @. Our main tool for doing this is the “prop-
erty of universality” (6.5). To see how this works fix f in F(, and choose f,
such that each f, = Ge, with ¢, the difference of two functions in 8, such that
fo — finF, and such that except for a @ null subset of Q. the functionals
Mf,.(t) converge uniformly in ¢t as n T . If £ is the indicator of the set
where Mf, does not converge uniformly, then by (6.5),

[ wane.e =0
for all p in 9N and it follows that for quasi-every z in X also

Mfa(t) = fu(X)) + [ en(X.) ds

converges uniformly except for a @, null subset of Q. Another application of
(6.5) shows that for quasi-every = the limiting process MJf(t) is a square
integrable martingale. This plus a similar argument for the functionals
A (u; t) suffices to establish the following two theorems.

TaEOREM 6.4. For f in F(, there is an additive functional Mf(t) defined on
the standard sample space Q and satisfying the following conditions.
(1) If f = Gp with ¢ the difference of two functions in 8, then

Mf(t) = f(X.) + fo " o(X.) ds.

(ii) For general f in F,y there exists a sequence f, as in (i) such that f, — f
in Fy and such that for quasi-every « in X,
Mfa(t) — Mf(t)

uniformly intasn T oo except for a @, null set.
(iii) For quasi-every x the process Mf(t) is a square integrable martingale



336 MARTIN L. SILVERSTEIN

relative to @, and the difference Mf(t) — f(X:) is continuous in t except for a
®; null set; also Mf(0) = f(X,).

Moreover if M'f(t) is another additive functional satisfying (i) and (ii), then
for quasi-every x the functionals Mf(t) and M'f(t) are ®, equivalent.

THEOREM 6.5. For v in M there is a nonnegative additive functional A(v; t)
defined on the standard sample space @ and satisfying the following conditions.

(i) For quasi-every x the functional is nondecreasing and continuous in t
except for a ®; null set; also A(u, 0) = 0.

(i) For quasi-every x and for t > 0,

8a(A(p, §) | F) = Gu(Xo) + A(n; 0).

Moreover if A'(u; t) is another additive functional satisfying (i) and (ii)
then for quasi-every x the functionals A(u; t) and A’(u; t) are ®, equivalent.

By considering first f in F g n Ceom(X) and passing to the limit as above, we
prove also

TueoreM 6.6. Let f be in F,. For quasi-every x and except for a ®, null
subset of @ the functional f(X.) s right continuous with one sided limits every-
where and with discontinuities only at the discontinuities of the trajectory X.;
also f(X;) = 0ast T . The same is true except for a ® null subset of Qe
and in addition f(X;) > 0ast | — .

Remark. Some of the results established above are paralleled by results
established in Sections 3 and 7 of [15]. The main difference is that here we
make systematic use of the measure @ and the identity (6.5).

For f in F,, the process Mf(t) is a square integrable martingale adapted to
the pasts . relative to the measures ®, for quasi-every . For such z let
(Mf)(t) be the unique nondecreasing continuous process adapted to the &,
such that (Mf)(0) = 0 and such that { Mf(¢)}* — (Mf)(¢) is a martingale.
Also let M., f(2) be the continuous part of Mf(¢) and let (M. f)(t) be the unique
nondecreasing continuous process adapted to the &, such that

IMof(1)}* — (M.f)(t)

is a martingale. Transferring structure to Q. in the obvious way we gee that
also (Mf)(t) and (M. f)(t) are well defined on @, up to a @ null set by the
conventions

MHE* = 0) = MHE") =0,  (MHEY) = I(Xpr # 3)f(Xy).

Both (M) and (M. f) will be used below. The process (Mf) is convenient
for calculations but (M. f) is often better for stating results since its incre-
ments are invariant under time reversal.

We remark that the preceding can be refined to define (Mf), M, f and (M. f)
as additive functions.
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7. Formulae for Dirichlet norms

For D an open subset of X and for f defined on X we introduce the special
notation

2o Af = 2 {f(X0) — f(X )}

where ¢ runs over all times such that either X; or X, belongs to D. We also

introduce entrance and return times for excursions into D as in Section 7 of
[15]. The random set

{t > o(M):X,;and X, are in D}

is a finite or countable union of disjoint intervals I = (e, 7). We index the
intervals I; = (e(), r(¢)) so that the entrance times e(7) and the return times
r(4) are Borel measurable. In general this indexing does not respect the
“natural ordering” and neither the e(¢) nor the r(¢) are stopping times.
(See however Section 1 and 9 in [19] and Sections 3 and 5 in [20] where the
natural ordering is respected and where the entrance and return times are
stopping times.) We also introduce for 7 a random time the special notation

fa(X:) = I(r < Of(X5).
Our first result is

TaEorREM 7.1. Let D be an open subset of X, le¢ M = X — D and let f
be in the extended Dirichlet space F,. Then

¢
i [ MD(@1(X) + 36 Lo = B - HY,1 - H*)

(7.1) + 3820 (fo(Xowy) — f(Xar-0)}’
+ 38I(G™ < o(M) < O (Xoan)}™

Theorem 7.1 parallels Theorem 7.3 in [15]. However our notations are not
entirely consistent with [15] and care must be taken in making direct compari-
sions. Also the proof given in [15] is incorrect, the main problem being that
the approximating times are poorly chosen.

For a correct proof of Theorem 7.1 we consider first the standard sample Q

and fix an open subset D’ having compact closure in D. Approximating en-
trance and return times are defined by

&(1) =inf{t > o(M) : X,isin D'}

p(1) = inf{t > e(1) : X:or X, is in M}
£(2) = inf {t > p(1) : X,isin D"}

ete.

with the usual understanding that these times are 4+« when not otherwise
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defined. We begin with the special case f = Gy with ¢ in § and compute
o(M)
e[ QI = 1800600) - MiO)Y
(M) 2
= 38, {f(Xc(M)) — f(Xo) + j; dt ¢(Xc)}

o(M) o(M)
e fo dtgo(X,)f‘ ds o(X.)
+ 38/ (Xoan) — F(Xo)}?
o(M)
+ &Ko) = HXD) [ dt o(Xo).

(7.2)
o(M)
—6 [ @e(X)E(X)
+ 38 I (Xoan) — 38, £1(X0)
— & (X)) {f(Xoan) — f(Xo)}
o(M)
+ 8 f(Xotay) fo dt o(X,)
— &, f(Xo) fo N o(X)
and since o
& 1(Xo) {f(X.un) g+ [ «;(Xg)} —0
we get
o(M)
s [ D@ + 38 £1(X)
(7.3) =6 [ @ (X)X + 16 ' (Ko)

o(M)
+ & f(Xoan) f dt o(X,).

Next a computation exactly analagous to (7.2) establishes for each ¢,

p(3) i o (i)
b [ Qi@ =& [t o(X)Ge(X)

e(s

(74) + 384f(Xom) — F( X))
p (%)
+ &{fa(Xow) — fXew)} v/;(i) dt o(X.).

To transform this we agsume the intervals (e;, r;) labeled so that

e; = sup {t < &;: X,or X, is in M}
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whenever &; < -«. Then for such ¢ clearly
Eaf(Xew) — f(Xoiy—0)} {fa(Xr(i)) - f(Xew) + j;::) dt ¢(X,)} =0
and so the same algebraic manipulations as above lead to
o [ QU@ + 1 li(Xeo) — [Ko )’

o (8)
(75) =&, fm) dt o(X)G°0(X) + 38:{fa(Xriiy) — f(Xeoy—0)}?

r(s)
+ & {faXr) — fXewy—0)} j;m dt o(Xo).

Next we sum (7.5) over ¢, combine with (7.3) and pass to the limit D’ 7 D
to establish

4
6. [ MN@O1(X) + 365X + 38 T (i Xw) = F(Xuco-o)?

$
= & fo dto(X)G0(X1) + 38 F(Xocan)
(7.6) + 38 2 {fu(Xriy—0)}’
o(M)
+ & f(Kea) [ dto(X)

r(s)
+ & Zi{fa(Xr(i)) _f(Xa(i)—o)} j;(i) dtqo(X;).

The difficulty in the last passage to the limit is controlling the terms

18 (f(Xew) — f(Xew-o)}™
But this is easily done with the help of the maximal inequality for martingales.

Integrating (7.6) with respect to Li(dx) and then passing to the limit &k T «
establishes

e
e [ QIN@LX) + 36, 16" > — 0,8 = o(D) (A}
+ 382 /(X)) — f( X))
¢
=& [ dto(X)G"(X)
".

(7.7) + 3820 {fua(Xoi) — F(Xow—0)}?
+ 381" < o(M) < 4+ ) {f(Xo)}’

(M)
+ 8f(Xo) j;. die(X+)
r(4)
+ 6T (Xow) = H XKoo} [ dto(X).

e(1,
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The theorem follows after passage to the limit in f since
()

o[M)
&f (etary) j;. dto(X:) + & 2 {f(Xewy) — Floiy—0)} o dte(X+)

changes sign under time reversal and therefore must vanish, since the left side
of (7.7) equals

1 [f 1 2
58 [ MA@ + 3B T o

and since
¢
8 [ de(X)@0(X) = [ m(an)e(@)6%e(w) = B(f — H*,f - HYY).

TuaeorEM 7.2. Let D be an open subset of Xand let M = X — D.
(i) If ¢ belongs to the extended universal Dirichlet space N (), then

(78) N¥e,0) = 382 i {ea(Xrw) — o(Xoi0)}?
’ + 36I(5* < o(M) < + =) {p(Xem)}.

Moreover ¢ specified up to v™ equivalence on M belongs to N5, if and only if the
right side of (7.8) converges.

(ii) If ¢ belongs to Ntsy then HYo(x) and therefore Huyo(x) for u > 0 con-
verges for quasti-every  in D.

(iii)  If f belongs to the extended Dirichlet space F ) then

E(f — HYf,f — H"f) + N*(4, /)
=1l f LML) 1(X) + Le Sy aft
2 Jpw 2

Theorem 7.2 parallels Theorem 7.4 and Theorem 8.6 in [15]. However
Theorem 7.2 is a cleaner result and its proof is simpler since we avoid the
auxiliary times R,.

We begin by considering ¢ specified on M up to » equivalence and we
compute

Ut'fu(‘P, ‘P)

4
8 [, ano(x [uB(X,, ) [ BUX,, ) 1e) - o(a))"
(7.9)

o (M)
sl(c(M) < ¢) fr dtquf(Xudy){q’(y) - o(Xoan)}?

r(4)
+ e Ti 20D < ) [ e [WBE X, ) (o) — oK)V
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which after application of time reversal
=82 j:(i) dtf uHY (X, dy) {e(y) — ¢(Xew-o)}’

8 T 106 < (oK) — p(ZKuo)f* [ dba™ 0

=82 I(r(3) < ) {e(Xow) — o(Xo0)}’{1 — e rO7ON,
Thus after passage to the limit w T o,

(7.10)  Uble, 0y = 82.:I(r(3) < §) {e(Xuy — o(Xeir—0)}*-
Similarly

[ H@npture® + 1 + )W)
= fm(dx) 1 — H"1(z)}uH ¥ ()

(7.11) sf {1 — H"1(X )} uHYA(X,)

o (M)

8I(a(M) < %) f dtfl — HY1(X )} (Xoan)ue 701

(%)
+ 825 I(r(3) < %) f dt{l — H™1(X,)} " (X o )ue " r®4

which after application of time reversal

r(4)
= 8Zi¢2(Xe(i)—0) o) dt{l - HM].(X )} —ult=e@d]

= eI(t* < *(M) < )" (Xosar—0) f diue— 101

= 8I(* < *(M) < £)¢"(Xona—a) {1 — 67000,
After passage to the limit u T o,

aazy | @EG” + 7 + @) + W)
= 8I({* < *(M) < ) (Xor(ay—0)
and after application of time reversal
a2y | @G+ 1+ @) + @) W)
= 8I(t* < o(M) < §)o"(Xoa).

Now (7.8) follows upon combining (7.10), (7.12) and (7.12’) and multiply-
ing through by 3. This proves (i) and (iii) follows directly with the help of
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Theorem 7.1. Finally (ii) follows upon combining (7.8) with the principle
of universality (6.5).

8. The universal Dirichlet space
We recall that by Convention 3.1,
(8.1) H™* = H"*,
where M; = X — Dy,

8.1. DgeriniTiON. A function h on X, specified and finite up to quasi-
equivalence is u-harmonic, u > 0 if for each k,

H>*h = h quasi-everywhere on Dj.
In practice we omit the prefix u- for u = 0.

8.2. DEFINITION. A terminal variable is a Borel function h* defined on

Q n [X;_o = 8] and such that for quasi-every x the function h* is @, integrable
and for all k,

(8.2) R = h¥ o O,cap
except for a @, null set.

Of course for  a random time 6, is the usual shift transformation defined
on [r < 4+ =] by
Xt(ot w) = Xr(w)+t(‘*’)'

It is easy to see that if ¥ is a terminal variable then on @, n [X;—_, = 9],
(8.3) L

is independent of k except for a @ null set. To simplify the notation we con-
tinue to use h¥ for the random variable defined on Q. by (8.3). Since for
quasi-every z every Borel function on [X;—o = 6] agrees up to a @, null set
with a function measurable with respect to the o-algebra generated by the
F, (), Toutine arguments establish

Lemma 8.1.  If h* is a terminal variable, then
(84) hz) = & h¥

is harmonic. Conversely h harmonic can be represented by (8.4) with r¥ a
terminal variable if and only if for quasi-every = the random variables { h(X,(a))}
are uniformly integrable with respect to ®.. In this case

(8.4") h* = Lim h(Xo(un)
both almost everywhere and in L* relative to ®..

8.3. Terminology. A harmonic function h will be called resolutive if it
satisfies the condition of Lemma 8.1. In this case the corresponding terminal
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variable will always be denoted by &* and we will write
(8.5) h = HW*

8.4. DgzriniTioN. The universal Dirichlet form N is defined on terminal
variables k¥ by
N(W*, 1¥) = 3B (¥ — h¥-g)’

The universal Dirichlet space is the collection N of terminal variables h¥ such
that

N(W* W¥) < +w.

For h harmonic let M. h(t), (M. h)(t) and (Mh)(t) be defined, when they
make sense, as in Section 6 for f in F,,. Notice in particular that on Q.,

(8.6) (MhY(E*) = I(Xpo 5% 0)R(Xpe).

TueoreEM 8.2. Let h¥ be a terminal variable and let h = Hh*. Then h*
belongs to the universal Dirichlet space N if and only if

(8.7) §Mh)(§) < + =

and in this case
N(R¥*, B¥) = 38(MR)($).
Proof. For each k

& {{Mh)(§) — (Mh)(e(Dr))} = &{h¥ — M(Xowp)}’

(8.8)
= & {M(Xoeop—0) — ¥ o p}™.

Ask T oo clearly
M Xorwp-0) = I(X; # 8)M(Xi—0) + h* [a.e. P

and Fatou’s lemma plus the maximal inequality for square integrable martin-
gales guarantees that

& {M(Xovp—0) — h* o p}? = E{h* 4+ I(X; = 8)h(Xs—0) — h* o p}*.

Also
8 {{MhY(§) — (MR)(a(Di))} — & {({MR)(§) — (Mh)(£*)}

and the theorem follows with the help of (8.6) and time reversal since
8 {h* + I(X;_o # 9)M(X;_0) — h¥o g}’
= &{h* — W¥o o' I(X;o = Xpo = ) + & (W*I(X;e = 0)
+ 8 {h(X¢0) — 1¥ o pT(X;—o # 9)
= (M — W¥ o " I(Xpa = Xpo = 0) + 2 [ w(dn)eo (WH)?
— 8I(Xpe # )W (Xpe).

For h harmonic and resolutive and for 7 a random time we introduce the
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special notation
h(X,) = I(r < HX,) + I(r < ¢, Xpo = 3)RF.

The techniques of Section 7 are easily adapted to prove

Turorem 8.3. (i) If D is an arbitrary open set and if h is harmonic and
resolutive then
1, [¢ 1 2
58 ). M.h)(an)15(X) + 58 doh

= 382 {h(Xoisy) — M Xor0)}®
+ 315" < o(M) <§) (M Xoany) — I(Xpe = 9)h¥ o )

(ii) If D 1is an open set with compact closure and if h is an arbitrary har-

monic function, then

.;- g [ LR 1(X)) + % & o K = N¥(h, h).
r‘

After taking D = D, in Theorem 8.3-(ii) and applying Theorem 8.2 we get

CoROLLARY 8.4. If h is harmonic then N~*(h, h) increases with k. Also
h = HR* with h* in the universal Dirichlet space if and only if

supy N~*(h, h) < + o«
and in this case

N~*h, k) T N(h¥, h¥)
ask T .

9. The reflected Dirichlet space

9.1. DerinimioN. A function f belongs to the reflected Dirichlet space
F" if it can be represented by

(9. f=HW +g

with A¥ in the universal Dirichlet space N and with g in the extended Dirichlet
space F,.

From the identification of the operators H~* as orthogonal projections on
F(, it follows that F), contains no harmonic functions and in particular the
representation (9.1) is unique for finF". For any such f we write

f* = n¥,  Hf = Hh*.

This double use of the operator H will cause no confusion in practice.
For f in F" the processes Mf(t), M. f(t), (Mf)(t) and (M, f)(t) are defined
in the obvious way on € and then on Q. with the convention

(M) = I(Xye # 9)f(Xy).
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9.2. DgeriniTioN. The reflected Dirichlet form E" is defined on F™ by
E'(f,f) = 36MH()
TueoreM 9.1. If f belongs to " then
E'(f,f) = B(f — H*,{ — Hf*) + N(*, ™).

In particular the extended Dirichlet space F ¢y and the tmage HN of the universal
Dirichlet space are mutually orthogonal relative to E.

Proof. Tt suffices to consider f = Hh* 4 Go with o in8. Then
¢ 2
BN — MNED) = {0+ [ o) ~ fm))

and after passing to the limit k¥ T « as in the proof of Theorem 8.2
s{(MF)(5) — MFY(™))

{1 + [ do(X) = Wop = 1K # (X))

¢ 2
(02) = 8 =Kl + E{ . dw(Xt)} + 8I(Xpe 5 ) (Xps)
— 280 — W o) [ o)

3
— 28 {h”‘ + L . dtgo(Xt)} I(Xp 5% 0)f(Xye).

The theorem follows since

BB — Mo a = NOW, W),
1 /[ ’
Lo{[ ae(xo} =BG, a0,

$
s{h’“ + ﬁ dw(x,)} I(Xp # O)f(Xp) = 81(Xpe % 0)f(X),
and since
£
& {(r* — h¥ o p} ‘/;*dtﬂo(Xz)

changes sign under time reversal and therefore is zero.

In preparation for our classification results we turn our attention now to
the appropriate “active” Dirichlet spaces.

First let 3 be the c-algebra of subsets T of @ n [{ < -+ ] whose indicators
1r are terminal variables. It is easy to check that there is a unique measure
v on 3 determined by

(9.3) »(T) = fm(alac)f;,n eFlp.
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We refer to L*(»), the real Hilbert space of 3 measurable square integrable
functions, as the terminal Hilbert space. For u > 0 and & in L*(») let

(9.4) H,®(z) = & ¢,

Clearly H; is bounded from L*(») to L*(m) and from the easily verified iden-
tity

(9.5) H,—H,= (v — u)G,Hu, u,v>0,

it follows that also for u > 0 the operator H, is bounded from L*(») to L*(m).
Let =, be the corresponding adjoint operators from L*(m) to L*(») defined by

(96) [ Mm@ @ Hup(@) = [ Hda)raf@)eo(w).

Note that (9.5) is also valid for 4 = 0 but is valid for v = 0 only for functions
concentrated on @ n [ < o],

9.3. DeriniTioN. The active universal Dirichlet space N, is the subcollec-
tion of h* in N such that:

9.3.1. For quasi-every  the function h* = 0 on [{ = + ] except for a
®, null set.
9.3.2. h¥isin L’(»).

94. DerinitioN. The active reflected Dirichlet space Fy is the subcollec-
tion of f in F” such that f* belongs to the active universal Dirichlet space N,.

Lemma 9.2. If & belongs to L*(v) then
(i) H.® isin L*(m) for u > 0,
(ii) [ m(de)H®(z)H,®(x) < +» foru > 0,
(iii) H,® — H,® belongs to F for u, v > 0 and to F, for u, v > 0.

Proof. (i) follows from the trivial estimate
[ m(am) (2@} < [ v(do) (@(0))?

and the identity (9.5). Conclusion (ii) follows with the help of (9.5) since
for ® > 0, clearly

[ m(dm)HO (@) By -2(2) < [ m(de)H (@) (a)

= [ v(do) ((w))?

and then (iii) follows since H,® — H,® = (v — )G, H, ®.
LemMma 9.3. The pair (N, N) 18 a Dirichlet space on L*(»).
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Proof. Ttis clear thatif ® belongs to N, and if ¥ = T® with T a normalized
contraction, then also ¥ belongs to N, and N(¥, ¥) < N(®, ®). Therefore
it suffices to show that if {®,} is a sequence in N, which is Cauchy relative to
both the Dirichlet form N and the standard inner product on L*(»), then there
exists & in N, such that

(0.7) [ #(0) (@) — @)} >0
(9.7) N@® — $,,® — ®,) —0.

To show this first choose ® in L*(») such that (9.7) is true. After selecting
a subsequence we can assume that H; ®, — H;® except for an m null set and
by the estimate

[ @) (HeG) - Bew@) < [y Bie - 2.)')

= fy(dw){q’(w) - ‘I’n('p)}g

we can assume that for every k also H; ¢, — Hy¢ except for a »~* null set.
By Lemma 9.2(iii), (H — H,)®, — (H — H,)® in F(, and therefore we can
assume that (H — H,)®, — (H — H,)® quasi-everywhere and finally that
H®, — H® except for a set which is m null and also »™* null for all k. Now
(9.7") follows from Fatou’s lemma because of Corollary 8.4.

Imitating the local theory in Section 5 we define for 0 < # < v the sym-
metric measure

Ul duf) = (0 = w) [ m(do)Ho(s, do) H.(s, daf)
on{nff < +o]} X {2n[¢ < + =]} and the bilinear forms

Uer(®,®) = [[ Usalde, d')2()% ()

Uasl®, @) = [[ Usldo, des) (2(0) — 2())?

for terminal variables ® concentrated on @ n [ < + ] and note the relations
Us,o(1, ‘I’z) = %Uu.v@’: ®) + U,,,.(*I’, ®)
Uuw(dw, do’) = Uy o(dw, do') + Usw(dw, do’), 0 < u <v < w.

It follows from the last relation that the above makes sense for v = 4.
We emphasize that also for v = 0 the measure UL .(dw, dw’) is concentrated
on

{@nf < +wl} X {@nf < 4]

Next we imitate some of the local theory in Section 3. For 4 > 0 and for
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quasi-every x
p(z) = uGup(x), (&) = UG, r(x) + &[Xro # 9; €]
and with the help of

(9.5") T — 1= (v — u)m Gy

which is dual to (9.5) follows

(9.8) VT, P = UTy D, O0<u<uv,

(9.9) VT, T > UT T, 0<u<uo

As in Section 3 the latter can be refined to

(9.9") VT + Ty K = UTe T + Ty K, O<u<vw

with 7, « defined as a measure on the terminal o-algebra 3 by
my k(T) = f k(dz)8, € “1r.
TueoreM 9.4. If ® belongs to the active universal Dirichlet space N, then

N(@,@) = ; Use@, ) + [ #(da) {mp(0) + mr()}8'()
(9.10)
+ [ me(da)@ o).
Conversely if ® is a terminal variable supported by Q@ n [{ < 4 ] such that the
right side of (9.10) converges, then ® belongs to N,.

This theorem is a global version of Theorem 7.2 and is important for the
classification theory of Section 10. To prove it we consider a terminal vari-
able ® concentrated on @n [ < 4+ «] and argue as in Section 7. For u > 0,

UO_u(@, Q)

Sj: dtquu(X:,dw)

[ HE dDIGW) < + ©) (@) — @)}

¢
e [ dt [uHAX:, da)I(E < + )la(a) - &)
which after application of time reversal

¢
- s[ dtqu,.(X,,dw)I(r* > — ®){®(w) — @op}?
r*

$
sI(t* > — »){® — ®op)’ fr' dt ue™ ¢

8I(—w < <f <+ ®){@— Bopl*{l — ¢
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and after passing to the limit w T o,

(911) Upw(®,®) =8l(—0 < ¢ <*< +») (@ — dop)’.
Similarly

[ (@) tumalp + 1) (@)}8%(w) = & [ {1 — ho(X,) JuH, (X.)

(9.12)

3 f dt {1 — ho(X.)}ue ¢ 8"
I3

which after application of time reversal
—¢ f dt {1 — ho(X0)} ue™ " (B o g)?

=8I(* > —w)I(f = += or Xpo9){®op)’{l — ¢
and after passage to the limit 4 T o,

o1 | 7@ m®E + D@18 + [ ne@)@e)

=8I(t* > — o)I(f = + ® or X;o 5 8){®op)>

The theorem follows with the help of time reversal after combining 3 of (9.11)
with (9.13).

10. Classification
We begin by considering a pair (H*, Q*) where

10.1.1. (H*, Q*) is a Dirichlet space on L*(»),
10.1.2. H*is a subset of the active universal Dirichlet space N,
10.1.3. Q* — N is contractive on H*.

One example is (H*, Q*) = (N4, N). For u > 0 and for & in H* define

Q(n(2,2) = Q*(2,2) + Usu(d, @)
and note that

Qtw(2, @) = Q*(2,8) — N(2,®) + $Uou(®, ®) + Usu(®,®)

+ f »(do) {umy p(w) + umy 1)} & (w)

+ f 7 1(d0)8(0) 4 3V u(®, B)
(10.1) = Q*(2, @) — N(® @) + 3Vuul® @ + Uu(l, &)
+ f p(de)uma(l — ho) ()3 ()

+f7ru k(dw)®(w).
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Since
Uoa(L, @) + [ #(do)m(l = ) (@)e*w) = [ o(de)a(w)
and since
Uoa < max(1, (1/4)Usu
the form Q% dominates the standard inner product on L*(») and so there is a
unique bounded operator R, mapping L*(») into H* and satisfying
(102) QB ¥, @) = [ n(de)¥(w)2(a)

for ¥ in L*(v) and for@in H*. We define G on L*(m) by
(10.3) + = Gy + Hy Ry mu.
and note that for f in L*(m) the image G, f is in F} and
Gif = Guf + H.{GLf)%.
The arguments of Section 5 in [15] suffice to establish the identity

(104) Rw = R + (v — u)Rw 7u Hy R
which leads in turn to the resolvent identity
(10.5) Gu =Gy + (v — w)GUGr.

The proof that the G% are submarkovian is identical with the proof of the
corresponding result in Section 6 of [15]. Thus the G%, u > 0, form a sym-
metric submarkovian resolvent on L*(m). We denote the associated Dirichlet
space by (F*, E*). The argument at the end of Section 6 in [15] shows that
for f in L*(m) and for w > 0 the functions G, f and H, {G. f} ¥ both belong
to F* and

EXGYf, GL) = Eu(Guf, Guf) + Qty((GLf} ¥, (GE 1Y)

and it follows that F* contains F, that E* restricted to F is E, that for u > 0
the operator H, projects F* onto the E orthogonal complement of F which is
precisely H, H* and that

E*(Hu 9, Hug) = Q,(.u)(g*, g#)°
for g in F*. This proves the direct part of the following theorem.

TueoreM 10.1. Let (H*, Q%) be a pair satisfying 10.1.1 through 10.1.3.
Then there is a unique symmetric submarkovian resolvent Gy, u > 0 on L*(m)
determined by (10.2) and (10.3). The associated Dirichlet space (F*, E*)
satisfies the following conditions.

(i) F* contains F and the restriction of E* toF i3 E.
(ii) For u > 0 the operator H, projects F* onto the E orthogonal comple-
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ment of F. The range of H,F* is precisely H, H* and

E*(H.®, Hu®) = Ql(2, %)
for & in H*,
Conversely if G, u > 0, is a symmertic submarkovian resolvent on L*(m) such
that G*f — G, f is nonnegative and u-harmonic for w > 0 and for f > 04n L*(m),
then there is a unique pasr (H*, Q*) such that (10.2) and (10.3) are satisfied.

Before proving the converse, we apply the direct part of Theorem 10.1 to
the special case (H*, Q*) = (N., N). For k¥ in N, and for0 < u < v

EL(H WY, HobY) = v f m(de)H, W¥(z) Ha B (z)

+v [ m(da)H, W¥(2) {H, W¥(z) — HoW¥(z))
+ E'(HW¥, HW*) + E"(H, h* — HRh¥, H, b¥* — HR¥)

=9 f m(dz)H, W*(z)H. h¥(z)

— [ m(de)Ho W () (Ha W) — Ho ()}
+ N(r*, 1¥)
+v f m(dz)Ho W (z) {HW¥(z) — H, h¥(z)}

and after passage to the limit » | 0,
(10.6) Ev(H, k¥, H, 1*) = N (¥, b¥).
Also for ¢ in L*(m)

EL(H W¥, Gog) = B'(H, W¥, Go o) + v f m(de)Ho W (2) G, o(z)
= E'(H, b* — HW¥), Gy o) + v f m(de)Hy B¥(2)G, o(z)

= —E'(G{HW — H,W¥,Gy0) + v [ m(@)H, 1¥(z)Gre(x)
and therefore

(10.7) E:(H» h#, Go ¢) = 0.
The identities (10.6) and (10.7) together identify the pair
(Fe n L*(m), E")

as the appropriate pair (F*, E*) in Theorem 10.1 and we conclude in particular
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that (F; n L*(m), E") is a Dirichlet space relative to L*(m). From this it
follows with the help of an elementary random time change that if f belongs
to the reflected Dirichlet space F” and if T is a normalized contraction, then
also Tf belongs to F" and E"(Tf, Tf) < E'(f,f). It seems to us that a direct
proof of this using only the techniques of Sections 8 and 9 would be of con-
siderable interest.

Added in proof. This and more is done in the monograph now in prepara-
tion which is mentioned at the end of the introduction.

We turn now to the converse of Theorem 10.1. Let G%, u > 0 be a sub-
markovian symmetric resolvent on L*(m) such that G% f — G, f is nonnega-
tive and w-harmonic for v > 0 and for f > 0in L*(m). Let (F*, E*) be the
associated Dirichlet space. It follows either from Proposition 1.1 in [15] or
from Theorem 4.1 in [19] that F* contains F and that the restruction of E* to
F is dominated by E. Fix D open with compact closure and note that

(10.8) Gv = G» + HYG.
We show that for g > 0 in L*(m),
(10.9) VG, HY¥Ge g 1 HY¥Gu g

quasi-everywhere asv T «. First
VG HYGY g = vGoy, HUGY g + vHiv, i HUGY g
= HiGug — Hiss G g + vHis Gury HiGu g
< HYGLg — Hin(Gy — vGu, Gi g
< HYGug
and then the relation
VG HEGE g = w0 {(v/w) + [L — (v/w)WGir HYGY g
shows that
(10.9") VG HY Gh g < w@ayw HYGu g < H¥GY g
for 0 < v < w. Convergence qua,s1-everywhere in (10.9) follows on D since

it is true with G, replaced by Go., and follows on X upon considering open
D’ containing D and noting that

HY¥Ghg — HY'Gog = Go'g — G%g
belongs to F. For f, g > 0in L’(m).

» f m(de) {HEGE go) — oGt . HYGE g(2)} G2 (=)
= f m(dz) (HYG* g(z) — oGt HYGY g()} G2 f(2)

— & m(do) H¥s Gy HEGY ()62 f(2).
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The first term on the right

» f m(dz)GL HY,, G* g(2)f(z)
= vf m(dz)Got, HiGu g()f(x)

— [ m(d)HYG g(2)f()
D
asv T . The second term on the right equals
— [ m(aw)G2e, HY G HEGE o(2)f(2)

which with the help of (10.9) approaches

_ fD m(dz) HYGY g(2)f ()

asv | o and we conclude that
(10.10) EuW(HYGY g, Gof) = 0.

It follows that E* agrees with E on F” and that HY implements E% orthogonal
projection onto the complement of F” at least when applied to the image
G% L*(m). From the estimate

[#@wrw < [ m@f@ + 171 [ mam |

it follows that every bounded f in F* has a refinement in L*(»™) defined by
considering the limits uG% f and then general f in F* has a refinement specified
up to »™ equivalence defined by truncation and passage to the limit. Let
H*¥ be the set of ¢ in L*(»™) such that Hiye belongs to F* for one and there-
fore all v > 0 and for ¢ in H*" let

Qi (¢, ¢) = Eu(Hio, Hip).

From the existence of the above refinements it follows easily that the pairs
(H*™, QtY) are Dirichlet spaces relative to L*(»*). For each u denote the
corresponding resolvent by {R{ajs,a > 0}. For g > 0in L*(m) and for ¢ in
H* M ,

[ @ gwretw) = [ m(ang() B o)

= Q’(*u) (G: 9, Hftl (o)'

(10.11)

which is enough to guarantee that
(10.12) Ry 4G = Gug.
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To justify (10.12) we argue indirectly. First

Qhan(G% g, H¥o) = [ v(ay) (x¥9(y) + G 9(0)} o(v)

and therefore
Gig = RS {r¥g + Gug).

But R, ©¥g is the minimal nonnegative solution of

¥ = RS {rig + ¥}
and we conclude that

RiX x¥ g < Ghg.

After considering the special case 0 < g < 1 we conclude that R is bounded
on L?(»™) and therefore by symmetry on L*(»™) and (10.12) follows easily.
Also Q¥ dominates a multiple of the standard inner product on L*(»*) and
therefore every function in F* has a refinement in L*(»™). Indeed the rele-
vant constant is 1 for v = 1 and therefore

(1013) [*answ < B @0

for any f in F* which is 1-harmonic. The proof of Theorem 5.4 can be applied
with notational changes only to show that H*¥ is contained in N* and that
N — Q*" is contractive on H**. From this and (10.13) the converse to
Theorem 10.1 follows after passage to the limit in M.

We remark that a local version of Theorem 10.1 can be proved by modifying
the arguments of this section in an obvious way. The active universal Dirich-
let space (N,, N) must be replaced by the local universal Dirichlet space
(N¥, N™) for M = X — D with D a general open subset of X. Indeed the
converse is actually proved above in the case when D has finite measure.
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