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Introduction

We consider a regular Dirichlet space (F, E) with corresponding symmetric
resolvent {G, u > 0} and construct a second Dirichlet space (Yr, Er) which
we call the "reflected Dirichlet space." This Dirichlet space is interesting
for its own sake and also because it classifies symmetric resolvents {G*, u > 0}
with the property that G* $ Gf is nonnegative and u-harmonic for u > 0
and for square integrable f >_ 0.

In Section 1 we introduce what seems to be the appropriate notion of
"irreducibility" and we distinguish the transient and recurrent cases. In
the remainder of the paper we assume that the given Dirichlet space is tran-
sient and irreducible.

In Section 2 the completion F() of F relative to the form E alone (that is,
without a piece of the standard inner product) is shown to be a Hilbert space.
It is also pointed out that the corresponding completion in the recurrent case
cannot be a Hilbert space. This generalizes the well known result that the
classical Dirichlet space is a Hilbert space only for dimension three or more.
(See [1]. )
Various results on exit distributions and time reversal are collected in

Section 3. These play an important role in the remainder of the paper. In
particular some of the results are used in Section 4 to construct an "approxi-
mate Markov process" as introduced in a slightly different context in [9] by
G. i. Hunt.

Section 5 is a streamlined version of a special case of Section 5 in [15]. The
Dirichlet space associated with the process time changed by the 1-balayage
of the given speed measure m onto a closed set M is identified and an important
estimate is established which involves NM the "universal Dirichlet norm on

Sections 6 and 7 extend the techniques introduced in. Section 7 of [15].
"Probabilistic interpretations" are given for various Dirichlet norms and in
particular for NM. The results of these sections are useful but dispensable
for the general theory. However they play a crucial role in the treatment of
examples. We refer to Section 9 of [15] and to [19] and [20] for specific in-
stances.
The reflected Dirichlet space (F, E) is introduced in Section 9. This

decomposes into the extended Dirichlet space F(,) of Section 2 and a global
"universal Dirichlet space" N. The latter is defined in Section 8 as a space of

Received July 18, 1972; Received in revised form July 23, 1973.
This research was supported in part by a National Science Foundation grant.

310



THE REFLECTED DIRICHLET SPACE 311

random variables on the appropriate sample space. It is clear that if addi-
tional hypotheses are introduced so that the "Martin boundary" can be intro-
duced then N can be identified with a function space on the Martin boundary.
We refer to [19] where this is verified in. a special case.

Finally the classification is obtained in Section 10. This explicitly involves
only the "active’"part Na ofN which is closely related to the "active boundary"
of W. Feller [4].
We do not consider here the problem of explicitly constructing the processes

which are associated with the classified Dirichlet spaces. For results in
special cases we refer to [5] and [13]. For other related work we refer to [2],
[3], [4], [8], [10] and [14]. We also refer to [19] where a more or less self con-
tained presentation is given for a special case.
As in [15] I acknowledge my debt to M. Fukushima. As a general rule we

refer to [15] for background results. However many of these results were
first established by Fukashima in [6], [7] and [8].
Added in proof. The author is now preparing a monograph in which the

main results of this paper are established in a broader context using different
techniques.

Notations

Throughout the paper X is a separable locally compact Hausdorff space, m
is a Radon measure on X and (Y, E) is a regular Dirichlet space on L (X, m ).
The indicator of a set will be denoted both by la and by I (A). The integral

of a function over the set determined by a condition such as "X is in F" will
be denoted both by [X, is in F; ] and by I(X is in I’). All functions are
real valued. In particular L (m) or L (X, m) is the real Hilbert space of
square integrable functions on the measure space (X, m) and Coom (X) is the
collection of real valued continuous functions on X with compact support.
Questions of measurability are generally taken for granted. In particular
functions are always understood to be measurable with respect to the obvious
a algebra.

Notations and results in Sections I through 3 of [15] will be used throughout
the paper. To help orient the reader we collect some of them here. However
we will continue to refer to [15] in specific instances.
A dead point 0 is adjoined to X with the usual conventions. The standard

sample space is the collection of maps from the time axis [0, into the
augmented phase space X u {0} which satisfy the following two conditions.

0.1.1. (.) is right continuous and has one sided limits everywhere.
0.1.2. There exists a life time " (o) with 0

_
i" (o) _< -t- such that

(t) 0 if and only if >_ and such that X,-o 0 for < .
Trajectory variables are defined by Xt () (t) and first entrance times

are defined by
a (E) inf

_
0"X is in E/
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with the understanding that (E) + oo when not otherwise defined. In
addition we introduce here the last exit times,

(E) sup {t > 0" X_0 is in E}
with the understanding that a* (E) -oo when not otherwise defined.
There is an exceptional polar set N and a family of probabilities ( indexed by
x in X N which form a quasi-left-continuous Markov process on X N.
In particular ( ((N) < + oo ) 0 for all x in X N. The transition
operators P and the resolvent operators G, first regarded as operators on
L (X, m) are refined so that

Pt [(x) ,f(X,), G,f(x) ,x dte-"’f(Xt)

for f _> 0 on X and for x in X N.
do not charge N according to

These operators act on measures which

f (vG,)(dy)f(y) f v(dx)G,f(x).

If v charges no polar set then vG is absolutely continuous and therefore

(0.1) G, (d/dm (G,)
is well defined almost everywhere. Indeed G is well defined up to quasi-
equivalence by the conventions in [15]. The phrase "almost everywhere"
is understood to mean almost everywhere with respect to m. The prefix
"quasi" means that the exceptional set is polar. Often identities will be stated
as if valid everywhere when they are valid only quasi-everywhere.

Hitting operators are defined by

HEr(x) 8[ (E) < + oo f(X())],
H f(x) g e.-*(E)f(X()).

Unless otherwise specified, functions in F are understood to be represented
by their quasi-continuous refinement, which is unique up to quasi-equivalence.

Strictly speaking our definition of the sample space f is inconsistent with
[15]. The newer version is technically more convenient and the difference
causes no difficulty in applying results from [15].

1. Preliminaries
A subset A of X is properly invariant if m (A) > 0, if m (X A > 0 and

if for > 0, PI < 1 almost everywhere. It follows from symmetry that A
is properly invariant if and only if its complement A X A is. Moreover
if f belongs to L(m) then

f m(dx)f(x){f- P,f(x)} f m(dx)ltf(x){lf(x)

/ f m(dx)laof(x){laof(x) P,lf(x)}

> f m(dx)laf(x){laf(x) P, laf(x)}.
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By Theorem 4.1 in [19], if f belongs to F then modulo refinements also lf
belongs to Y and therefore we can obtain a new Dirichlet space by restricting
everything to A. This suggests that an appropriate analogue of irreducibility
for Markov chains is

1.1. CONDITION OF IRREDUCIBILITY. There exist no properly invariant
sets.

We assune from now on that this condition i8 satisfied. Our feeling is that
this restriction will be harmless in practice.
In the remainder of this section we apply the techniques associated with

the Hopf decomposition to distinguish the transient and recurrent cases.
Our source for these techniques is the book of Foguel [23].

LEMMA 1.1. Let u be in L (m and let

E x in X sup dsP, u(x) >

Then fB (dx)u (x ) >_ O.

This can be proved for example by adapting Garsia’s well known argument
in the discrete time case.
Both in Lemma 1.1 and in the proof of Corollary 1.2 below the supremum

is understood to be taken only as runs over the dyadic fractions k2-n.

The potential operator G is defined by

Gu (x x dtu (X, )(1.2)

when it converges.

COROLLARY 1.2. Let u, v > 0 almost everywhere be in L ( ). Then

[Gu < [Gv < almost everywhere.

Proof. LetA [Gu + Gv + <]. Then fora> 0clearly

B x’supt>0 dsP’(u-av)(x) >

contains A and therefore by Lemma 1.1,

and ’afortiori,’
fRm (dx) {u(x) av(x)} >_ 0

a f m(dx)v(x)<_ /m(dx)u(x).
The corollary follows upon letting a T .
For u >_ 0 and nontrivial in L (m) the set [Gu 0] is clearly invariant and

therefore must be m-null by our condition of irreducibility. Similarly
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[Gu < + ] is invariant and therefore either this set or its complement
[Gu + is m-null. By Corollary 1.2 the choice is independent of u and so
the following definition makes sense.

1.2. DEFINITION. The Dirichlet space (F, E) is ransien if Gu < -almost everywhere and recurren$ if Gu - almost everywhere for u > 0
in L (m).
THEOREM 1.3. If the Dirichle$ space (, E) is recurrent, then for quasi-

every x,
(p[ -oo] I.

Proof. For h > 0,

dsPo(1 Ph 1) dsP, 1 dsP, 1

stays bounded as " 0 and it follows that Ph 1 1 almost everywhere and
therefore quasi-everywhere.

In the remainder of the paper we assume that (F, E) is transient. If
u

_
0 in 51 (m) and if F [Gu -[- oo then

e,((r) < + ) 0

for x in X N r. This follows from the supermartingale property of
Gu (Xt) and since Gu is the limit of an increasing sequence of quasi-continuous
functions. But then it follows from Theorem 3.6 in [15] that every compact
subset of r is polar and therefore by the Choquet extension theorem r itself
is polar. Thus Gu is defined and finite quasi-everywhere for any u in
Ll(m).

2. The extended Oirichlet space
In this sectio we give a direct construction of the extended Dirichlet space

introduced in Section 8 of [15]. This Dirichlet space is analogous to the dis-
crete time minimal Dirichlet space in [19].

LEMMA 2.1. Let

_
0 on X. If G

_
M almost everywhere on the set

[ > 0] then G

_
M quasi-everywhere on X.

Proof. It suffices to consider G with in L (m) and with u > 0, to ap-
ply the maximum principle Theorem 1.13 in [15] and to pass to the limit in
u and .

2.1. Notation. $ is the collection of q

_
0 in Ll(m) such that G is

bounded.

LEMMX 2.2. Assume that m is bounded. If q is in $, then G belongs to F
and

for g inF.

E (g, G) f m (dx)q (x)g (x)
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Proof. Clearly G is in L (m) and since

(l/t) f m(dx)g(x({G(x)- P’Oq(x)} (l/t)fm(dx)a(x)fo’ds Po(x)

the lemma follows from Theorem 4.1. ia [19].
Let {g.} be a sequence in Y which is Cauchy relative to the Dirichlet form E.

If m is bounded, then Lemma 2.2 applies and by the eontractioa property of E
also {g.} is Cauchy in L (.m) for any in $. This result then follows for
general m with the help of a simple special case of Proposition 5.4 in [15].
Also with the help of Lemma 2.1 it is easy to see that any finite nonnegative
function can be approximated from below by functions in $ and in particular
there exists in $ which is >0 almost everywhere. Thus there exists g de-
fined almost everywhere on X such that for a subsequence, g. --, g almost
everywhere. This suggests

2.2. DEFTO. g belongs to the extended Dirichlet space Y() if there
exists a sequence g. in Y such that

2.2.1. {g.} is Cauchy relative to E and
2.2.2. g --+ g almost-everywhere on X.

The Dirichlet form E extends to F() by continuity and the paragraph pre-
ceding the definition shows that Y(,) is a Hilbert space relative to E. There-
fore the arguments of Section 1 in [15] can be applied directly to the pair

E).

LEMM_ 2.3.
(i)

(2.1)

The following are equivalent for h in F(e).
Pth <_ h almost everywhere for > O.
E (h, g) >_ 0 whenever g in (,) satisfies g >_ O.
ugh, h <_ h almost everywhere for u > O.
There exists a Radon measure , on X which charges no polar set such that

E(h, g) f (dx)g(x)

for g in Y(,) Cm (X). Also

(2.2) h

in the sense o$ (0.1).

Proof. For the equivalence of (i) and (ii) we refer to [24, p. 72]. That
(i) implies (iii) follows from Theorem 4.1 in [19]. That (iii) implies (ii)
and that (iii) is equivalent to (2.1) follows from the proof of Proposition 1.2
in [15]. Finally (2.1) implies (2.2) by Lemma 2.2 and an obvious symmetry
argument. (Note that potentials G with in S are dense in Y(e) because of
Lemma 2.1. )
Any function h which can be represented (2.2) with v a Radon measure

charging no polar set will be called a potential. A measure v is said to have
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finite energy if there exists a potential h in Y() such that h G. Clearly this
is so if and only if

f <_ c {E (f,

for f in F(.> f Uoo (X). The coIIe,ion of such v will be denoted by . For
v in 9Z the energy of will be denoted and defined by

E() f (dx)G(x).

The proof of Proposition 1.4 in [15] shows that is complete relative to the
energy metric E (u ).

Remark. Our use of 9 here is inconsistent with [15]. In general 9 de-
fined here is a proper subset of 9 defined in [15].
For G open we define the capacity

(2.3) Cap (G) inf E (f, f)

as if runs over functions in F() such that f >_ 1 almost everywhere on G, with
the understanding that Cap (G) -t- if no such G exists. For A Borel we
define

Cap (A) inf Cap (G)

as G runs over the open supersets of A. It is obvious that

Cap (A)

_
Cap (A)

where Cap is defined in the same way as Cap except that E is replaced by E.
In particular if Cap(A) 0 then also Cap(A) 0. Conversely if
Cap (A) 0 and if A has compact closure, then there exist relatively compact
open sets G. and containing A such that Cap (G.) 0 and therefore there
exist f. >_ 1 almost everywhere on G. and belonging to F such that
E (f., f.) --, 0. After possibly arguing as in the proof of Lemma 8.2 ia [15]
and passing to a subsequence, we can assume also that E (f,, f,,) --, 0 and
therefore Cap (A) 0. Thus the notion of polar set and therefore quasi-
equivalence is the same for the Dirichlet forms E and E. In particular it
follows from the proof of Theorem 1.1 in [15] that every f in F(,) has a well
defined refinement which is specified and finite quasi-everywhere.
For A a nonpolar Borel subset of X let (A) be the closure in of mea-

sures concentrated on A. For in i let r be the measure in (A)deter-
Amined by the condition that E( ) is minimal. This makes sense be-

cause 9 (A) is a closed convex subset of 9 and because of the quadratic na-
ture of the energy metric. We call the balayage of onto A. Let
F() (A) be the closure in F(.) of the linear span of Ggr (A). The proof of
Lemma 3.5 in [15] shows that G is the orthogonal projection of G onto
F() (A). Also the proof of Theorem 3.6 in [15] shows that Ha implements
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orthogonal projection onto Y()(A ) and so in particular

H’Gg

Finally consider again h a nontrivial potential in F() and let A [h 0].
If A is nonpolar, then by the Choquet extension theorem it contains a non-
polar compact set and therefore by an obvious compactness argument, after
approximating from above by open sets, there exists a nontrivial measure in
i) which is concentrated on A. But then

for > 0 and therefore
f (dx)Ph (x 0

(dx)Gl, 0

which is impossible since A is m-null. Therefore h > 0 quasi-everywhere
and the argument at the end of Section 1 shows that also h < -{- quasi-
everywhere.

Remark. If (F, E) is recurrent and if m is bounded, then by Theorem 1.3
the function 1 is in and E (1, 1 ) 0. Thus F cannot be completed relative
to E alone to get a Hilbert space. Again the restriction on m is easily re-
moved with the help of random time change.

3. Exit distributions and time reversal
3.1. Convention. D, ] >_ 1 is an increasing sequence of open subsets of

X such that D $ X and such that each D has compact closure. The com-
plements X D are denoted by M. Often k and -k will be used in place
of D and M for subscripts and superscripts.

Let
p(x) 5)( -), r(x) 5)x( < -; Xr-o 0),

ho(x) ( < -t- ;Xr-0 0)

and note the decomposition
1 =p-r-ho.

Our first result is

LEMMA 3.1. There exists a unique Radon measure charging no polar set
such that r GK.

Proof. For each k clearly Hr is a potential in F(’) and therefore there
exist measure in M such that Hr G,. If v() is the restriction of to
D and if k >_ then by the proof of Theorem 3.11 in [15],

E ((z)) <_ E (Hl()’)r, HlW)r)
which is bounded independent of k. After applying the appropriate analogue
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of Proposition 1.4 in [15] and after selecting a subsequence we can assume that
--, K vaguely and that for each there exists a measure K(z) in M such that

() dominates the restriction of to D and is dominated by the restriction of
to cl (D) and such that G() --, () weakly in Yo). For f

_
0 in

f m(dx)r(x).f(x) Lim f m(dx)Gv,(x)f(x)

--Lim, (f,(,,) v,(dx)Gf(x)-I-fx_,,(,,)
and for fixed the first term inside the brackets converges to

and the second is dominated by

f r’v(dx)O.f(x) -- f m(dx)f(x)H~Zr(x)

But it is easy to check that H~Zr $ 0 quasi-everywhere (and therefore almost
everywhere) as $ oo and we conclude that r Gg. Uniqueness of g follows
directly from uniqueness of in Lemma 2.3 (iv).
We identify g the "ling meure" in

oR 3.2. For f 0 a for quasi-ery x,

(3.1) ,[ < + Xr # 0;/(Xr)] Gff.) (z).

Also for u > 0,

(3.1)’ a,[Xr # 0; d"/(X)l G, ff.)(x).

Proof. It suffices to prove (3.1)’ since (3.1) then follows by paage to the
lit u 0. For ts purpose let R, be the usual ternal time wMch is in-
dependent of the trajectory variables X, and wch is exponentially stfibuted
th densityu and let n(R,, ). Since for quasi-every ,
it suffices to establish

(3.2) s [xr. o; f G. (f. (x)
where (dx) (dx) W um (dx). Indeed i suffices to consider f inC(X)
and to verify that for g 0 inC(X),
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Let
h,, (x) 8[Xr-o O; e-"r],

and note that

and therefore
ho h, + uG, ho

r= 1 h,

1-ho+uG,ho

(3.3) r + p + uG
G,, { + ur.m} + uG,, p + uG,, he

e K.

Thus the left side of (3.2’)

Lim% f m(dx)g(x)S [Xt, O; f(Xm); k/2" < , (k T 1)/2"]

Lim -o (dy)G{1 rxalJe m g(Y)

and the theorem follows since

p.](P._, g(y)

converges tof(y)Pt g (y) as s 0 for > 0 and for quasi-every y.

Now fix D an arbitrary open subset of X and denote the complement X D
byM. ForxinDlet

p’(x) .[r +.;(/)= +],

r" (z) [ < + ;. (M) + Xr # 01,
Ds (x) [ < + ;.(M) + ;Xr 01.

(Ts notation is inconsistent th Section 5 in [15].) Clearly

1 HMI+ro+s+pv
qui-everywhere on D and sv 0 whenever D has compact closure. Let
M

v be the uque Radon measure on M such that
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Mfor >_ 0 on M. For f >_ 0 on X and for u >_ 0 let r, f be the unique func-
tion specified up to M equivalence on M and satisfying

(3.5) f ,(dy).f(y)q(y) f m(dx)f(x)H (x)

for 0 on M. More generally if is a Radon measure concentrated on R
and charging no polar set, let be the function on M deterned by

H(x).(dy) (y)(y) (dx)

That is, M (dy)(y) is the u-balayage of onto M. This makes sense
because of Theorem 3.6(iv) in [15].

Routine computations establish the follong identities for u > 0 and for
qui-every x in D"

(3.6) p" (x uG p" (x )

(3.7) r’(x) uG r’(x) T [X_o O; a(M) +;]
(3.s) s’() uG ’(x) + s[X o; (M) + :l.
From (3.6) and the identity

M M M D(3.9) r, (v-u)mG

wch dual to the familiar and easily verified

(3.10) H g (v u)Gg
follows

(3.11) M
mP uv, p 0 <U<V.

The identities (3.7) and (3.8) lead in the same way to inequalities

(3.12) wr uwur 0 u v,

(3.13) "vm s 0 < u < v.

Indeed (3.12) can be improved to

(3.14) " (1 .) " ), u, v > 0.v,r + . =u,r +m(1."

To see this note first that

Hr
wch follows from (3.3) and the faiar identity

(3.15) + HG.
Since

uG () [ n((M
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it follows that

[x_0 # al G’. (x) + [R _< rain ( (M), )1

and therefore

(3.16) @[ < R; z(M) + X # 0] V g(x)

for quasi-every x in D. Then (3.7) can be written

(3.7’) r uG r + V
and therefore

MD M M DD DvG r G }

M D M

which proves (3.14). Also (3.16) and the proof of Theorem 3.2 suffice to
establish

EOaEM 3.3. For f 0 on D and for quasi-every x in D,

(3.17) s[(/)= + ;x: o;f(x:)l G’(.)(x).
Also for u > O,

(3.17’) a[ < R; a(M) + X_0 0; f(X)] G (f.) (x).

Fally we establish a local time reversal result wch is essential for our
construction of Hunt’s "appromate Markov process" in Section 4. For
each k let L be the unique measure in M such that

HI GL.
The time reversal operator p and the truncation operator r are defined on
2 f’l [o- (D,) < -t- o by

p, o(t) o(o-* (D,) 0), 0 _< < o-* (D,)
O, >_ *(D)

r,o(t) oo(t), 0 <_ < (r*(D,)
0 >_ * (D)

Note that by transience a* (D) < -b [a.e. (] whenever a (D) < -b .
TEORE 3.4. For >_ 0 on and for k, >_ 1,
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Proof. We begin by establishing

8[t, < * (D);.fo(X.w)-o) f,,
(3.19)

G {f P,._,._, P,, fo.L} (x)

for0 < tl < < tforf0, ".’,f >_ 0onXandforquasi-every x. It
suffices to establish (3.19) for almost every x and therefore we can replace
(3.19) by

(3.19’)

f L(dy)fo(y)Pa P,-,_, AGq(y)

with 9 in $. Also we can assume that f0, f are in Y [’l Cm (X).
left side of (3.19’)

Limo f A P1/,)H’l(x)

The

Lim L(dy) ds P, fo A %o P/,’,p(y).
,0

Clearly p o/ dsP, converges strongly to the identity as an operator on Y(.)
and with the help of the spectral theorem it is easy to check (after first con-
sidering m bounded) that

(l/p) oP/ G
in F(e) as p T and (3.19’) is proved. In (3.18) it suffices to consider

A(Xo)...

and then (3.18) follows from

f L(dx),[t, < a*(D);fo(X,(,)_o)

f L(dx)G{f. P,_,_, f0.Ll(x)

f L(dx)fo(x)Pa fl P,.-._, f Hl(x).

Remark. The proof of Theorem 4.2 in [15] is incorrect and indeed the last
lines on page 32 do not make sense. However a correct proof can easily be
supplied using the techniques of this section.
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4. An approximate Markov process
For each/ let t be the subcollection of t satisfying

4.1. (0) 0 or (0) is in the closure cl (D).

There is a unique trajectory in t such that (t) 0 for 0 < < +
We refer to this trajectory as the dead trajectory and denote it by . We
consider with the Skorohod metric as defined for a special case and for
compact time intervals in [12, Chap VII]. A simple extension of the results
in [12] shows that relative to the Skorohod topology is a separable metric
space and an absolute Borel set. That is, is a Borel subset of one (and
therefore any) of its completions. The mapping J from t+ to is defined
by

J(t) 0forallt if (D) +
t((R) -4- t) if (D) < A-.

Clearly each J is Borel measurable and surjective. The inverse limit of the
is the collection t of sequences {} with each in t and such that

J+ for all k. The extended sampl space is the reduced inverse limit
t t {} where is the dead sequence in t whose components are the
dead trajectories . We denote by J, the natural projection of onto .
It follows from [12, Chap. V] that t is a separable metric space and an abso-
lute Borel set in the product Skorohod topology and that the projections
are Borel measurable. The point of this is

THEOREM 4.1. There exists a unique countably additive measure ) on the
extended sample space such that

(4.1) 8 o J, f i (da)8

for each k and for > 0 on and vanishin9 on .
Proof. We note first that for > 0 on X,

f L,(dz)8, ,p(Xo)

f L(dx),p(x)

where we have used Theorem 3.4 twice, and from this it follows that

This is the consistency condition which is necessary for the existence of a
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finitely additive measure satisfying (4.1). To establish countable additivity
it suffices to show that if A is a Borel subset of f {} and if the inverse

J, (A) in f decrease with k and ifimages

for all k, then

(4.2)

(P() (A) f L (dx)6’ (A) > a > 0

["lk.-1
-1J, (A) is nonempty.

According to [12, Theorem 3.2, p. 139] there exists a sequence of compact
metric spaces 2 and for each k a surjective continuous map J*
and an injective Borel map Ck" fk -- f* such that J*+ J. The
inverse lit of the is a compact metric space and the projections
* are continuous. Let @()* be the uque Borel measure on
such that ()* (B*) () ([B*) for B* a Borel subset of. By Kura-

towski’s theorem [12, Theorem 3.9, p. 21] the images A (A) are Borel
subsets of and of course ()* (A) ()(A). Choose compact subsets
B of A such that

@()* (B) ()* (A) a2-and define
J*- (B), * *c B. C+ B+ (C). > 2.

Each C* is compact in f and the inverse images J*,71 (C) are compact and
decreasing in the inverse limit 12". Clearly (j)-i (A) contains A* and so

(P()* (C*) >_ (P()* (B (p(x), (A B )

a a
4 2’

and similarly for k >_ 2,

(+)* (C*+) >_ (+’* *(n+l) (A* C
>_ a a/2+1 (a/2 -I- -I- a/2).

Thus C* is nonempty for each k and therefore A- J*,71 (C) is nonempty.
Now (4.2) follows and the theorem is proved.

Remark. Theorem 4.1 is an adaption of Hunt’s construction of "approxi-
mate Markov chains" as outlined in [9]. This was first done in continuous
time by M. Weil in [25].
As in [15] we introduce traiectory variables parametrized by an artificial

two sided time side for o {} in ft. Let ko be the first integer k such that
/t and for >_ 0 define

x (,.,,) ,,,,o (t).

For < 0 there is at most one integer kt > ]Co such that

a (Dk0, o,) >_ It I, o- (D,o, o,,_1) < I.
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Define
X,() , (a(D0) q-t)

if k exists and otherwise define X() O. The coordinates X are Borel
measurable on f= and in addition in f= is determined by its coordinates
X, (). However the X do not in general form a Markov process relative to
the measure . First tting times a(A), last exit times a* (A), the death
time d the birth time * are defined in the usual manner. The time re-
vernal operator p is defined so that

X, () X*
--1with k0 as bove. Clearly p is bijeetive nd p p is Borel measurable. Our

general result on time reversal is

TaoaM 4.2. For > 0 on ,
(4.3) 8 o p 8.

Proof. It suffices to consider

th0 < t < < tndwithf 0ndinCo(X). Then forksuffi-
eiently large,

gop gopoJ, JL(dx)gop
which by Theorem 3.4

fL(dy)8or oroJ=, .
From the very definition of ,

(4.4) dtq(X,) m(dx)o(x)

for >_ 0 on X. This will play an important role in later sections.
Finally we return to the capacity Cap introduced in Section 2. An ele-

mentary compactness argument shows that a Borel subset E of X has finite
capacity if and only if

HI GL

with L a measure in M and then

(4.5) Cap (E /L(dx).
For each k,
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and after passing to the limit k T o,

(4.6) Cap (E) ((a(E) < -l-o ).

This also will play an important role in later sections.

5. A time changed process
We consider again a general open set D with notations as in Section 3. For

0

_
u < v we define the symmetric kernel U,, (y, z) by

(5. ) u) fo (dx)H (x, dy)U (x, dz) Vl,,,. (y, z )vl (dy) v
l (dz)

and also we define the bilinear forms

U*/.,. (y, z )q (y) (z)

(5.3) U,

This notation is more or ,less consistent with Section 5 in [19] but not with
Section 5 in [15]. It is easy to check that

(5.4)

when the left side converges and that

V
M M M Mu )r,, H,, ,p

(5.5 )
(v u)dm/dv% +/ U,,,, (., z)q (z) (dz)

Also
M M MUu,w

for 0 _< u < v < w and then the estimate

guarante that

U0. (5.8)
as u $ 0 for in L ().
LEMMA 5.1. For u > 0 the operator H is bed from L () L (m

Ma the operator is bedfrom L (m to L (M).
Proof. It suffices to consider H, u > 0 because of (3.5) and it suffices to

consider u 1 because of (3.10). But then the lemma follows since
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We consider now the time changed process

as defined in Section 5 of [15]. Our attention will focus on the corresponding
resolvent operators

(5.9)
8 f A(,M; dr) exp {--aA(,M; t)}(X,)

and the modified resolvent operators

(5.10) M f0R(,)a (y) 8 A (M; dt)e-’t exp -aA (; t)l(Xt).

It is shown in Lemma 5.1 of [15] that {R, a > 0} and {R()a, a > 0} are
symmetric submarkovian resolvents on L (M, r). We proceed to identify
the Dirichlet spaces which correspond in the sense of Proposition 1.1 in [15].
We refer to Section 6 in [19] where this is done in the context of Markov chains.
The first step is

LEMMA 5.2. (i) F is contained in L (M).
(ii) Let HM be the restriction of F to M and for u > 0 and q in H define

(5.11) Q) (, ) E,(HM q, HM ).

Then (HM, Q) is the Dirichlet space on L (vM) which corresponds to the modi-
{R(), a > 0}.fled resolvent M

We begin with (ii). This is a special case of Lemma 5.2 in [15] but we
repeat the proof here with appropriate simplifications.
For u > 0 let R=) be defined by (5.10) with a 0. By Theorem 3.3 in [15]

(5.12) Ru) G(. M).
Since

M MRu) l = G. vM G.=I G.{. 1 q- (u- 1)r. GI}
HM G{I q- (u- 1)G 11

is bounded, the operator R) is bounded on L (M) and therefore by sym-
metry, on L (M). Thus R) is exactly the inverse to the generator B)
for the modified resolvent (see Section 1 in [15]) and q in L (M) belongs to
the domain of B) if and only if G (h’ M) with in L (M). In this
case since for >_ 0,

M (dy )q (y )b (y ) < "
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and since HM projects F onto F(M) (see Theorem 3.6 (i) in [15] ), the func-
tion belongs to H and

Q,) (q, q) f M (dy) (y)b (y).

Clearly such are dense in the Dirichlet space which corresponds to the
R) and (ii) will follow if we show that such are dense in H. But as
v ’ clearly vH GH q in and by the resolvent identity we can

M Massume that H G g with g in L (m). But then G v, g R) g
and we are done because of Lemma 5.1 Finally (i) follows because RCu)

is bounded on L (M) and thereforeQ dominates a multiple of the standard
inner product on L ().
Among other things the time changed Dirichlet space itself is identified in

THEOREM 5.3. (i) Le Y be he closure in of Y). Then the operator
HM implements orthogonal projection of Fc onto the E-orthogonal complemen of
D’e).

(ii) Le HCM, be the restriction ofYc o M and for in Hc define
(5.13) QM (q, q ) E (HM, HM).
Then (HM, QM) is $he Dirichle space on L(M) which corresponds o he $ime

changed resolven {RM, a > 0}. Moreover his is a regular Dirichlet space and
(H>, QM ) is $he exended Dirichle space as defined in Section 2.

(iii) For u > 0 and for q in HM,
(5.4) Q.>(, ) Q(, ) + V,.(, ) + u f. m (dy) (y ).

Proof. H can be identified as an orthogonal projector either by directly
adapting the proof of Theorem 3.6 (i) in [15] or by passing to the limit u $ 0
as in the proof of Lemma 8.3 in [15] and then (5.14) follows by direct computa-
tion. To identity (H, Q) as the time changed Dirichlet space we must
proceed indirectly since the operator RM is in general not bounded on L ().
Again the needed argument is a special case of one given in Section 5 of [15]
and is repeated here with appropriate simplifications.

It follows in particular from (5.14) that for 0 < u < 1,

(5.15) Q) (q, q QS) (, " UM f,., (, ) -{- (1 u) m (dy)q (y)

and therefore for a > 0 and for , in L (M),

f "(dy)(y)R.)o(y)

f ’M(dy)(Y)R()(y)

(5.16)
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Thus by (5.5),
MR() R) -- (1 u)R) H R

and after passing to the limit u J, 0,

(5.17) R R(1)a - R(1)a H R.
If R with >_ 0 in L () then also

R{b -t- r H}
and since

f M(dy)q(y){b(y) + rHMq(y)} < +

it follows from Lemma 5.2 that belongs to H and that

Q (, f ,M (dy )q (y )b (y ).

It follows that the time changed Dirichlet space is contained in H and that
the Dirichlet form is QM. But since R() _< R it follows either by Proposi-
tion 1.1 in [15] or by Theorem 4.1 in [19] that the time changed Dirichlet space
is precisely HN. Finally, it is routine to check that (H, Q) is a regular
Dirichlet space and that (H(), Q) is the extended Dirichlet space as defined
in Section 2.

Remark. Potential theory for (H, Q) as developed in Section 2 and in
Section 1 of [15] is entirely consistent with the potential theory for (F, E).
In particular the definitions of capacity and of quasi-equivalence on M are
identical

Note that for u >_ 0 and f >_ 0 on X,

and therefore

MGf Gf + HM Gf Gf + HM G f

(5.18) G G - HMR M

This is a special case of (5:21) in [15].
It follows from (3.13) that

M D M 8D(5.19) v. s (y) Limv vm (y)

and from (5.6) that for u >_ 0,

U,,(y, z) Limv U,(y, z)(5.20)

are well defined [a.e. ] and [a.e. X M] respectively.

5.1. DEFINITION. The universal Dirichlet form on M is given by
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NM(,) 1/2 V0,(, )

MrD M. ,M (dy){rpD (y) + , (y) + , 1 (y)

+ v s(y)} (y).

The ezteed universal Dirichlet spe on M is the collectionN of functions
specified up to M eqvalence on M such that NM (, ) < . The u-
versal Diricet space on M is the intersection NM N L ().
The above deflation is consistent wch Definition 6.4 in [15]. We prove

EOREM 5.4. H() is contained inN a
(, ) (, )

is contrtive on H.
The meang of Theorem 5.4 is this. If belongs toH and if is a nor-

malized contraction of then

Q (, ) N (, ) QM @, ) N (, ).

In particular we can take 0 and therefore

(, ) N(, ).

Theorem 5.4 is a special case of Theorem 5.8 h [15]. Because of its im-
portance we repeat the proof here th appropriate simplifications, at the
same time providing details wch were taken for granted in [15].

It suffices to consider in H bounded and we assume ts throughout the
argument. For 0 < u < v,

E([v ulGH,H)
E([ u]HVH, H)
Q. (Iv u]R .H,, )
Q([v u] * *m H, )

u) f *(dy) "-(v H(y)(y)

( u) f (dy)(1 (v u) M,,M ), H(y)(y)

and therefore

.(, )
M M M M). HLim, (v- u) M(dy)(1 (v- u),HR (y)(y)

Let k., (dy, dz) be the unique symmetric measure on M X M such that
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Then also

Q)(, )

-Lim., If.’(dy){l (v u>R) " " ,H, (y)

1U..<. } + l ff X.,(dy, dz) {(y) (z)}

and therefore if is a normalized contraction of ,
Q,)(, ) + tV,..(, ) Q,)(, ) tv,(, )

(5.21) > Lira inf, f (dy) {1 (v u)Rg) w, g. l(y)

,,-)
But

R() 1 vG, [a.e. l
and therefore (5.21) is valid th the right side replaced by

Lim inf

(u)(, u))g( )(u).
On the one hand

(v u)R) H( &) (y) (v u)GH( ) (y)

eonverg [a.e. ] to (y) (y) v T through a subsequence and on
the other hand

{vl (v u)H 1} v{vp W vr + vs + vHM1 (v u)HI

+ ( u)uG H}
Mv{PEWr+s} Wu HM1
Mv{p + rD + I } I

M+ V s + u. HMI
and i% foows that

do.aCes the correspong expression th replaced by . The theorem
follows upon lettg u since

M M

Rark. The proof of Theorem 6.2 in [19] would tabfish the cruder
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result

(5.22)

This has a simple heuristic interpretation which we repeat here. The process
corresponding to Q) is in part obtained from the process corresponding to
Q) by replacing "jumps at the rate u,,M,( ., z)M (dz)" by "killing at the
rate (v u)rHM 1". Therefore Q) must already contain "jumping at
the rate U,,M, (’, Z),M (dz)". That is, (5.22) must be valid.

Added in proof. In fact our proof of Theorem 5.4 is not valid unless we
first establish the cruder estimate (5.22).

6. Associated functionals
For a constant time on t2 or t2 the past fit is the a-algebra generated by the

trajectory variables Xs, s <_ t. For r a variable time on t2 or t2 the past
is the a-algebra of Borel subsets A of t2 such that

A n[r <t] is in fi;t

for all constant times t. This terminology is consistent with standard usage.
Meyer’s decomposition theory for supermartingales and for square integra-

ble martingales plays an important role in this and the next section. We cite
[21] as a general reference.

6.1. DEFINITION. An additive functional on the extended sample space
t2 is a real valued function a(t, 0) defined and jointly measurable for real
and for 0 in t2 and satisfying the following conditions

6.1.1.
6.1.2.
6.1.3.
6.1.4.

a(t, ) is fit measurable,
a(t, ) a(l’*, ) 0 fort < i’*,
a(t, ) a(, ) fort >
a(t -4- h, ) a(t, ) a(t’ "4- h, ’) a(t’, ’),

whenever Xt+() Xt,+(’) for 0 < s _< h.

6.2. DEFINITION. An additive functional on the standard sample space
is a real valued function a(t, w) defined and jointly measurable for

_
0 and

for w in t2 and satisfying the following conditions

6.2.1.
6.2.0..
6.2.3.

a( t, is 9:t measurable,
a(t, ) a(, ) fort > ’,
a(t + h, ) a(t, ) a(t’ "4- h, ’) a(t’, ’),

whenever Xt+() Xt,+(0’) for 0 _< s g h.

Properties 6.1.4 and 6.2.3 guarantee that an additive functional is always
perfect in the sense of [24]. In the constructions given below this property
can always be obtained by first selecting a sequence of approximating func-
tionals for which the appropriate limits exist almost everywhere and then



THE REFLECTED DIRICHLET SPACE 333

defining the limiting functional by an explicit limiting procedure involving
this sequence which makes sense for all sample paths. We take this for
granted throughout the section.

For >_ 0 on X define

A(q; t) .q(Xs) ds

on the extended sample space 2 with the understanding that A(; $) 0
for < *. It is easy to check that

(6.1) A(; ) f m(dx),(x)

f(6.2) 8{A(, r) m(dx),(x)G,(x).

For in the functions uG, G# G in Fee) and also increase to G quasi-
everywhere as u $ . For typographical convenience put

, uGu I.
Then for0<u <v,

1/28{A(9,; ) A(gu,

f m(dx){,(x) (x)}{G,(x)

which0asu, v . Thusasu ,
A(, ) LimA(; )

exists in the L sense relative to @ and therefore relative to () f L(dx)P.
For 0 clearly

8(*)(A(9; t) IV,) A(9; t) + G,(X,).

By the maximal inequality for martingales

in probabifity as u, v and by (4.6),

sup 0

in probabifity relative to and therefore relative to 8(*) as u, v . (The
above suprema are taken for 0 and rational.) Thus after passing to the
limit k . and taMng into account Meyer’s uniqueness results for the decom-
position of supermartgales, we deduce

TEOE 6.1. For in there is a nonmgative additive functional A(; t)
on which is unique up to equivalence and satisfies the folting conditions.
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(i) Except for a 6’ null set o] sample paths, A (#; ) is continuous and non.
decreasing.

(ii) For each k and for >_ O,

(6.3)
(A(; t) $.,+,, a(D,) < + )

A(; a(D,) + t) + Gt(X.,., + t).
The identities

(6.1’) A(; ) J (dx)

(6.2’) 1/28{A(; )}
can be established either by applying (6.3) or by passing to the limit in (6.1)
and (6.2). Also the proof of Theorem 3.3 in [15] is easily adapted to establish

(6.4) A(9.,; t) A(t; ds)(X.)

for almost every sample path whenever and .u both belong to 91Z. This
leads to a property of universality for the measure

THEOR,M 6.2. Let >_ 0 on f and let be in . Then

(6.5) t,(dx), g A(; dt)

Of course the shift 0 is interpreted as a mapping from f to f and is defined
by

0,(s) (t + s).

For the proof it suffices to observe that if 9(x) g. thentho fight side of
(6.5)

a A(., a),(X.) A(,.., -) .(),().

For f G with in 8 define

(6.6) Mr(t) f(X,) + dsq,(X,).

It is easy to check that

and therefore

Mf() ds(X.)

(6.7) (f, f) 1/2alMf(-)}.
Passing to the limit in f and arguing as for Theorem 6.1, we prove
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THEOREM 6.3. For f in (,) there is an additive functional Mr(t) on
which is unique up to 5 equivalence and sztisfies the following conditions.

(i) Except for a null set of sample paths, Mr(t) f(X) is continuous.
(ii) Conditioned on the set [(D) < + o ], the process Mf(a(D) + t) is a

martingale relative to the a-algebras ff()+.
(fii) Mf is given by (6.6) whenever f G with in S and (6.7) is valid for

all

It is easy to see that

(6.s) Mr(t) f(X,) + A(; t)

whenever f Gu with in M.
It will also be convenient to define the processes A (, t) and MS(t) directly

on the standard sample space 2. Our main tool for doing this is the "prop-
erty of universality" (6.5). To see how this works fix $ in F(,) and choose ].
such that eachf G with 9 the difference of two functions in $, such that
f. --. $ in F(,)and such that except for a ( null subset of 2 the functionals
Mf,,(t) converge uniformly in as n ’ . If is the indicator of the set
where Mf, does not converge uniformly, then by (6.5),

f #(dz)s o

for all g in and it follows that for quasi-every x in X also

Mf.(t) f,,(X,) + 9,,(X,) ds

converges uniformly except for a ( null subset of . Another application of
(6.5) shows that for quasi-every x the limiting process Mr(t) is a square
integrable martingale. This plus a similar argument for the functionals
A (; t) suffices to establish the following two theorems.

THEOREM 6.4. For f in Y(,) there is an additive functional Mr(t) defined on
the standard sample space and satisfying the following conditions.

(i) Iff C with q the difference of two functions in $, then

I(z,) +
(ii) For general f in F(.) there exists a sequence f. as in (i) such that f,, -- fin Y(,) and such that for quasi-every x in X,

if,,(t) if(t)

uniformly in as n except for a ) null set.
(iii) For quasi-every x the process Mr(t) is a square integrable martingale



330 MARTIN Lo SILVERSTEIN

relative to and the difference Mr(t) f(Xt) is continuous in t except for a
6) null set; also Mr(O) f Xo
Moreover if M’f(t) is another additive functional satisfying (i) and (ii), then

for quasi-every x the functionals Mr(t) and Mf(t) are 6)equivalent.
THEOIEM 6.5. For in M there is a nonnegative additive functional A (; t)

defined on the standard sample space and satisiying the following conditions.
(i) For quasi-every x the functional is nondecreasing and continuous in

except for a 6) null set; also A (, O) O.
(ii) For quasi-every x and for >_ O,

8.(A(t, i’) ff,) Gu(X,) + A(u; t).

Moreover if A’(u; t) is another additive functional satisfyin9 (i) and (ii)
then for quasi-every x the functionals A(; t) and A’(u; t) are 6) equivalent.

By considering firs $ in F(.) n Co=(X) and passing to the fimit as above, we
prove also

THEOREM 6.6, Let f 5e in F(e). For quasi-every x and except for a 5) nu
subset of the functional f(X) is right continuous with one sided limits every-
where and with discontinuities only at the discontinuities of the trajectory X,;
also f(Xt) --> 0 as oo. The same is true except for a 6 null subset of f,o
and in addition f X) --> 0 as $ -.

Remark. Some of the results established above are paralleled by results
established in Sections 3 and 7 of [15]. The main difference is that here we
make systematic use of the measure (P and the identity (6.5).
For f in F(e) the process Mr(t) is a square integrable martingale adapted to

the pasts fit relative to the measures (P for quasi-every x. For such x let
(Mf)(t) be the unique nondecreasing continuous process adapted to the fit
such that (M])(O) 0 and such that IMf(t)} (Mf)(t) is a martingale.
Also let Mef(t) be the continuous part of Mr(t) and let (M f)(t) be the unique
nondecreasing continuous process adapted to the ff such that

{Mf(t)}- (Mo$)(t)

is a martingale. Transferring structure to = in the obvious way we see tha
also (Mr) (t) and (M f) (t) are well defined on 2. up to a (P null se by the
conventions

(Mf)(* O) (Mcf)(*) O, (Mf)(*) I(Xr, O)f’(Xr,).
Both (Mf) and (Me f) will be used below. The process (Mr) is convenient

for calculations but (M, f) is often better for stating results since its incre-
ments are invariant under time reversal.
We remark that the preceding can be refined to define (Mr), Me f and (M, f)

as additive functions.



THE REFLECTED DIRICHLET SPACE 337

7. Formulae for Dirichlet norms

For D an open subset of X and for f defined on X we introduce the special
notation

Z:o f(x,_0)

where runs over all times such that either X, or X_0 belongs to D. We also
introduce entrance and return times for excursions into D as in Section 7 of
[15]. The random set

{t > a(M):X and X_0 are in D}

is a finite or countable union of disjoint intervals I (e, r). We index the
intervals I (e(i), r(i) ) so that the entrance times e(i) and the return times
r(i) are Borel measurable. In general this indexing does not respect the
"natural ordering" and neither the e(i) nor the r(i) are stopping times.
(See however Section 1 and 9 in [19] and Sections 3 and 5 in [20] where the
natural ordering is respected and where the entrance and return times are
stopping times.) We also introduce for r a random time the special notation

Our first result is

THEOREM 7.1.

A(x ) <

Let D be an open subset of X, let M X D and let f
be in the extended Dirichlet space F(e). Then

1/28 (Mof)(dt)l)(X,) + 1/28 Df E(f HMf, f- HMf)

(7.1) + 1/2, {f=(X(,)) f(Xe(i)_o)}

+ 1/28I(i’* < a(M) < r){f(X,())}.
Theorem 7.1 parallels Theorem 7.3 in [15]. However our notations are not

entirely consistent with [15] and care must be taken in making direct compari-
sions. Also the proof given in [15] is incorrect, the main problem being that
the approximating times are poorly chosen.
For a correct proof of Theorem 7.1 we consider first the standard sample f

and fix an open subset D having compact closure in D. Approximating en-
trance and return times are defined by

e(1) inf {t > a(M) X is in

p(1) inf {t > e(1) X, or X,_o is in M}

c(2) inf {t > p(1) X, is in D’}

etc.

with the usual understanding that these times are + when not otherwise
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defined. Ve begin with he special casef G with in $ and compute

(7.2)

and since

we get

1/28, (Mf)(d) q-. }8, f(Xo)
(M)

(7.3) 8, dt tfl(X,)Gl)qg(X,) "Jr- 8$ f2(XaM))

+ g, f(XaM)) dt (X,).

Next a computation exactly analagous to (7.2) establishes for each i,

}G (Mf)(dt) G dt
() ()

(7.) + ]sif(x,(,)) f(x.(,))}

()

To transform this we assume the intervals (e, r) labded so that

dt o(X,).

sup {t < ei X or X,_o is in M}
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whenever e < +. Then for such i clearly

G{f(X,(o) f(X,(,)_o)} f(X,(,)) f(X,(,)) + dt (X,) 0

and so the same algebraic manipulations as above lead to

f(’> (Mf)(dg) + {8={f(X,(o) f(X.(o_o)}

(7.5)

+ 8={f(X,(,)) f(X.(o-0)
,(,>

dt 9(X,).

Next we sum (7.5) over i, combine th (7.3) nd pssto the lit D’ T D
to establish

(7.6) +
+ Gf(X.()) d(X,)

()

The difficulty in the lst pssgo to the limit is controlling the ter

But this is eily done th the help of the mml inequality for mrtingales.
Inteting (7.6) th respect to L(dx) nd then pssing to the lit k
establishes

18 (Mf)(dt)I(X,) + {8 I(r* > -, r* a(D)) {f(Xr.)}’

(7.7)
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The theorem follows after passage to the limit in f since

gf(,M>) o.f’tM> dtg(X,) + g ’, {/(X,o) f(,o_o)}
o,

dt,(X,)

changes sign under time reversal nd therefore must wnish, since the left side
of (7.7) equals

1 fr 1

and since

fa dtg(X,)GDq(X,) m(ax)9(x)ODq(x) E(f HMf, f Hf).

THEOREM 7.2. Let D be an open subse$ of X and le$ M X D.
(i) Ifq belongs to the extended universal Dirichlet space N), then

N(q,, ,) 1/2, {,,,(X,(,)) (X,(o_o)}
(7.8)

+ 1/2gI(g’* < a(M) < +) {,(X.())} .
Moreover specified up to v

M equivalence on M belongs to N (M.) if and only if the
right side of (7.8) converges.

(ii) If belongs to N(M.) then HMg(x) and therefore MH,q(x) for u > 0 con-
verges for quasi-every x in D.

(iii) Iff belongs to the extended Dirichlet space (,) then

E(f Hf, f HMf) + gM(f, f)

21 g (Mf)(dt)l)(X,) + - g .,, Af.
Theorem 7.2 parallels Theorem 7.4 and Theorem 8.6 in [15]. However

Theorem 7.2 is a cleaner result and its proof is simpler since we avoid the
auxiliary times R.
We begin by considering specified on M up to v

M equivalence and we
compute

f fg dtl,(X,) uriC(X,, dy) H(X,, dz){q(y) (z)}2

(7.9)
< dt uriC(X,,

+ g , I(r(i) < ) f(o dt uHM(X,dy){9(y) 9(X(o)}
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which after application of time reversal

q- g , I(r(i) < ){(X(,)) (X,(,))} f(’) dt ue-(’)-

8 I(r(i) < ){(X,()) (X,))}{1
TMs after passage to the lit u { ,
(7.10) I(r(i) < ) {(X(,) (X(,)_0)}

Silarly

rD

f
(7.11) a ,dt{1 HI(X)} MuH, (X)

I(a(M) < )J, dr{1 HMI(X)}(X,())u"[’(M)-
r(i)

T 8 I(r(i) < )
o,()

dr{1 HI(Xt)}(X())ue-()-t

wch after application of time reversal
r(i)

dr{1 HMI(X)}u(-’()

I(* < *(M) < )(X,())

SI(* < *(M) < )(X,,()-0){1
After passage to the lit u ,

f,M A- "4- K1D)(y) A-rS)(Y)}q(Y)
(7.12) (dY){r(P)

and after application of time reversal

(7.12’) f ’M(dy){r(p) A- "4" Klv)(y) -t- VS)(Y)}q(Y)rD

81(* < (M) < ’)=(X()).

Now (7.8) follows upon combining (7.10), (7.12) and (7.12’) and multiply-
ing through by 1/2. This proves (i) and (iii) follows directly with the help of
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Theorem 7.1. Finally (ii) follows upon combining (7.8) with the principle
of universality (6.5).

8. The universal Dirichlet space
We recall that by Convention 3.1,

(8.1) H~ H.
where M X D.

8.1. DEFINITION. A function h on X, specified and finite up to quasi-
equivalence is u-harmonic, u >_ 0 if for each k,

Hh h quasi-everywhere on D.
In practice we omit the prefix u- for u 0.

8.2. DEFINITION. A $erminal variable is a Borel function h$ defined on
2 n [Xr_0 0] and such that for quasi-every x the function h is ( integrable
and for all k,

(8.2) h

except for a (P, null set.

Of course for r a random time O, is the usual shift transformation defined
on [r < q-oo] by

x,(0, ) x,()+,().

It is easy to see that if ha is a terminal variable then on 2 n [Xr_0 0],

(8.3) h

is independent of k except for a ( null set. To simplify the notation we con-
tinue to use h for the random variable defined on 2 by (8.3). Since for
quasi-every x every Borel function on [X_o 0] agrees up to a ( null set
with a function measurable with respect to the a-algebra generated by the

ff(), routine arguments establish

LEMMA 8.1. I/h is a terminal variable, then

(8.4) h(x) h

is harmonic. Conversely h harmonic can be represented by (8.4) with h a

terminal variable if and only iffor quasi-every x the random variables
are uniformly integrable with respect o . In this case

(8.4’) h$ Lim h(X(M))

both alnost everywhere and in L relative o .
$.3. Terminology. A harmonic function h will be called resolutive if it

satisfies the condition of Lemma 8.1. In this case the corresponding terminal
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(s.5)

84 DEFINITION.
variables ha by

variable will always be denoted by h and we will write

h Hha

The universal Dirichlet form N is defined on terminal

N(ha,h) 1/2E{ha- ha.p}
The universal Dirichlet space is the collection N of terminal variables ha such
that

N(h,h) < +.
For h harmonic let M h(t), (M h)(t) and (Mh)(t) be defined, when they

make sense, as in Section 6 for f in F(,). Notice in particular that on

(8.6) (ih)(*) I(Xr, O)h(Xr,).
THEOREM 8.2. Let ha be a terminal variable and let h Hha.

belongs to the universal Dirichlet space N if and only if
(s.7)

and in this case

Then ha

N(ha, ha) 1/28(Mh)().
Proof. For each k

8 {(Mh)(i’) (Mh)(a(D))} 8 {ha h(X(D))}
(8.8)

s h(X.(,)_0) h o o}’.
As k T oo clearly

h(X.(.)_0) --. I(Xr r O)h(Xr_o) -4- ha [a.e. P]

and Fatou’s lemma plus the maximal inequality for square integrable martin-
gales guarantees that

8 {h(X,(,)_0) ha o p} E {ha + I(X O)h(X_o) ha o

Also
8 {(Mh)(i’) (Mh)(a(D))} --. 8 {(Mh)() (Mh)(’*)}

and the theorem follows with the help of (8.6) and time reversal since

s {h + (X_o o)h(X_o) ho }
{ha ha o p}2I(Xr_o Xr, O) + {ha}I(Xr, O)

+ {h(Xr_0) ha o p}I(Xr_o O)

{ha hao p}I(Xr_o Xr, O) + 2 f (dx)Sx {ha}
I(X, O)h(X,).

For h harmonic and resolutive and for r a random time we introduce the
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special notation

h,(X,) I(r < )h(X,) + I(r <_ , X_o O)h.
The techniques of Section 7 are easily adapted to prove

THEORE 8.3. (i) If D is an arbitrary open set and if h is harmonic and
resolutive then

1
h(Mh)(dt)l(Z) +2

{h,(X,(,)) h(X.(,)_o)}

W SI(* < a(i) < ) {h(X(M)) I(Xr. O)h o p}

(ii) If D is an open set with cpact closure and if h is an arbitrary r-
monic function, then

1
h

Alger aking D D in heorem 8.a-(ii) and applying heorem 8.2 we geg

h Hh with h in the un#ersal Dirichlet space if and only i]

sup N-(h, h) < +
and in this case

N-(h, h) Y(h, h)

9. The reflected Dirichlet space

9.1. DEFINITION. A function f belongs to the reflected Dirichlet space

’ if it can be represented by

(9.1) f Sh - g

with ha in the universal Dirichlet space N and with g in the extended Dirichlet
space Y().
From the identification of the operators H~ as orthogonal projections on

F(,) it follows that F(,) contains no harmonic functions and in particular the
representation (9.1) is unique for f in F. For any such f we write

fa ha; Hf Hha.
This double use of the operator H will cause no confusion in practice.

For f in 1 the processes Mr(t), Mf(t), (Mf)(t) and (M.f)(t) are defined
in the obvious way on 2 and then on2 with the convention

<Mf>(t*) I(Xr. # O)f(Xr.).
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9.2. DEFINITION. The reflected Dirichlet form E is defined on Y by

E’(f, f)

THEORE 9.1. If f belongs to F then

.’(1, :) (: Hf, : H:) + Nff, /).
In particular the extended Dirichlet space F(,) and the image of the universal
Dirichlet space are mutlly orthogol relative to E,

Proof. It suffices to consider f Hha + Gth in $. Then

8{(Mf)(r) (Mf)(a(D))} a h + d@(X,) -f(X,(n))

and after passing to the lit k as in the proof of Theorem 8.2

{(M:)() (/f)(*)}

h# + , dt(X,) h#o- I(X, O):(X,)

(9.2) g{h h#’} + ate(X,) + sZ(X, / O)f(Xr,)

2a{h* h# o o} dte(X,)

2g (h + : dry(X,))I(Xr,O)f(Xr,).
The theorem follows since

]ih ha o } N(ha, h),

2

and since

81h h o p} ,d(X’)
changes si under time reversal and therefore is ero.

In preparation for our classification results we turn our attention now to
the appropriate "active" Dirichlet spaces.

First let 5 be the a-algebra of subsets F of n [ < +] whose indicators
lr are ternal variables. It is easy to check that there is a uque measure
v on 5 deterned by

(9.3) v(F) J m(dx)G rlr.
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We refer to L3(v), the real Hilbert space of 5 measurable square integrable
functions, as the ternna//Sert space. For u >_ 0 and in L3(v) let

(9.4) H(x) er.
Clearly H is bounded from L() to L(n) and from the easily verified iden-
tity

(9.5) H,, H, (v u)G,H,, u,v > O,

it follows that also for u > 0 the operator H is bounded from L() to L(n).
Let v be the corresponding adjoint operators from L(m) to L() defined by

(9.6) f m(dx)S(x)H,,q() f
Note that (9.5) is also valid for u 0 but is valid for v 0 only for functions
concentrated on n [ < + ].

9o3o DEFINITION. The active universal Dirichlet space N is the subcollec-
tion of h$ in N such that"

9.3.1. For quasi-every x the function h$ 0 on [ +] except for a
( null set.
9..2. h$ is in L3().

9.4. DEFINITION. The active reflected Dirichlet space Y is the subcollec-
tion of f in F such that f$ belongs to the active universal Dirichlet space N,.

LEMM 9.2. If belongs to L3(,) then
(i) H is in L3(m) for u > O,
(ii) f (dx)g(x)H,V(x) .< - for u > 0,
(iii) H,, H, belongs to Y for u, v > 0 and to Y(o) for u, v >_ 0.

Proof. (i) follows from the trivial estimate

f m(dx){H(x)}3

_
f r(&0){()}3

and the identity (9.5).
for >_ 0, clearly

Conclusion (ii) follows with the help of (9.5) since

f m(dx)H(x)H.(x) <_ f
f

and then (iii) follows since H, H, (v u)G, H, .
LEMM. 9.3. The pair (N, N) is a Dirichlet space on L3( ).
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Proof. It is clear that if belongs to N. and if T with T a normalized
contraction, then also I, belongs to N. and 2V(, ) _< iV(, ). Therefore
it suffices to show that if {.] is a sequence in N which is Cauchy relative to
both the Dirichlet form N and the standard inner product on L(), then there
exists in N. such that

(9.7) / (d){() -()] 0

(.7’) ( ,, ) --, o.
To show this first choose in L(v) such that (9.7) is Srue. After selecting
a subsequence we can assume that H --* Ht except for an m null set and
by the estimate

f -()l() .()1 <_ f -(),

we can sume that for every k also H H except for a null set.
By Lemma 9.2(ifi), (H H). (H H) in Y(,) and therefore we can
assume that (H H), (H H) quasi-everywhere and finally that
H H except for a set wch is m null and also * nl for all k. Now
(9.7’) follows from Fatou’s lemma because of Corollary 8.4.
Itating the local theo in Section 5 we define for 0 u < v the sym-

metric measure

on {U n [ < T ]] X {fl n [ < T ]] and the bfiinear for

,.(, ) f .,.(d, &’)()’()

for terminal variables concentrated on fin [ < + and note the rdations

It follows from the last relation that the above makes sere for v +.
We emphasize that also for u 0 the measure U,..(d, ’) is concentrated
on

Next we itate some of the local theory in Section 3. For u > 0 and for



348 MARTIN L. SILYERSTEIN

quasi-every x

p(x) uG,, p(x), r(x) uG,, r(x) -+- g[Xr-0 0; rl
and th the help of

(9.5’) (v u) G
wch is dual to (9.5) follows

(9.8) wp up, 0 < u<v,

(9.9) w, r ur, 0 < u < v.

As in Section 3 the latter can be refined to

(9.9’) wrT, urW, 0 <u<v
th v defined as a measure on the ternM a-Mgebra 5 by

(r) f (dx)s Crlr.

THORE 9.4. If belongs $o he ac$ive universal Dirichle space N Shen

1N(, ) U0.
(9.o)

Conversely if is a Serinal ratable supported by n [ < +] such tt the
right se of (9.10) converges, Shen belongs $o N=.

This theorem is a globM version of Theorem 7.2 and is important for the
classification theory of Section 10. To prove it we consider a ternal vari-
able concentrated onn [ < + = and argue as in Section 7. For u > 0,

wch after application of time reversal

I(- < r* < < + ){-vo}’{
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and after passing to the limit u

(9.11) Uo,.o(,,) I(- < " < ’* < -0o) {-Cop}.
Similarly

(.)
S ,dr {1 h0(X,)}

which after application of time reversal

, dt 11 h0(X,)} ue

I(* > -)I(
and after passage to the limit u

(9.13)
=SI(*>- )(= + or X_00)[o}.

The theorem follows with the help of time reversal after combining 1/2 of (9.11)
with (9.13).

10. Classification
We begin by considering a pair (H*, Q*) where

10.1.1. (H*, Q*) is a Dirichlet space on L(v),
10.1.2. H* is a subset of the active universal Dirichlet space Na,
10.1.3. Q* N is contractive on H*.
One example is (H*, Q*) (Na, N). For u > 0 and for in H* define

Q)(, ) Q*(, ) + u0,(, )
and note that

Q.)(, ) Q*(,) (,) + 1/2v0,(,) + Vo,(,)

+ f
(10.1) Q*(, ) Y(,

-+- f
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Since

and since
Uo,x

_
max(l, (1/u)Uo,,,

the form Q* dominates the standard inner product on L(v) and so there is a
unique bounded operator R() mapping L2(v) into H* and satisfying

(10.2) Q,,)(R(,,) , ) / (do)()()
for$inL2() andforinH*. WedefineG*onL’(m) by

(10.3) G* G + H R()

and note that for f in L (m) the image G. f is in F and

G:y + H.
The arguments of Section 5 ia [15] su$ce to estabsh the identity

(10.4) R() R(.) + (v- u)R(.)
wch leads in turn to the rolvent identity

(10.5) G G + (v- u)G G.
The proof that the G are submarkoan is identical th the proof of the
corresponding result in Section 6 of [15]. Thus the G, u > 0, fo a
metric submarkoan resolvent on L(m). We denote the associated
space by (F*, E*). The argument at the end of Section 6 in [15] shows that
for f in L() and for u > 0 the functions Gf and H{G,} $ both belong
to F* and

E,(G,f, G,f) E(G,I, Gf) W Q,)( {Gf} $ {Gf} $)

and it follows that* contai Y, that E* restfict to is E, that for u > 0
the operator H projects Y* onto the E orthogonal complement of F wch is
precisely HH* and that

a, g. a)

for g in F*. This proves the direct pa of the foong theorem.

TEoa 10.1. Leg (*, Q*) be a pair satisfyi 10.1.1 through 10.1.3.
Tn there is a undue symmetric suarkn resolvent G, u > 0 on L(m)
&in by (10.2) and (10.3). The assoct Dirichlet space (Y*, E*)
tisfies She folling conditions.

i) * contains Y and the restriction of E* to Y is E.
(ii) For u > 0 the operator H projects Y* onto the E orthogol ple-
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ment of F. The range of H,* is precisely H, H* and

for in H*.
Conversely i$ G*, u > O, is a symmetric submarkovian resolvent on L(m) such

that G*f G, ] is nonnegative and u-harmonic for u > 0 and]or] >_ 0 in L(m
then there is a unique pair (H*, Q*) such that (10.2) and (10.3) are satisfied.

Before proving the converse, we apply the direct part of Theorem 10.1 to
the special case (H*, Q*) (N, N). For h inN and for 0 < u < v

E(H, h, H, h$) v f m(dx)H, h(x)H,

W v f m(dx)S, h$(x) {H, h$(x) H, h(x)}

"+- E"(Hha, Hha) -t- E"(H, h Hh, H, h Hha)

v f m(dx)H, h(x)H, h(x)

v f m(dx)Ho,h(x){H,, h(x) Ho ha(x)}- N(h$, h)

"t- v f m(dx)Ho h(x) {Hh$(x) H, h(x)}

and after passage to the limit u 0,

(10.6) E;(Ho h, H, h) N(,)(h, h).
Also for in L (m)

E,(H, ha, G,,) E(H, ha, G,) -I- v f m(dx)H,h(x)G,q(x)

E’(H, h Hh$), G,,) "t" v f m(dx)H, ha(x)G,(x)

-E(G {Hha Hoha}, G,,) -t- v f n(dx)Hoha(x)G,q(x)

and therefore

(10.7) E(H,, h, G, ) O.

The identities (10.6) and (10.7) together identify the pair

(y:. E

as the appropriate pair (F*, E*) in Theorem 10.1 and we conclude in particular
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that (Y n L2(m), Er) is a Dirichlet space relative to L*(m). From this it
follows with the help of an elementary random time change that if if belongs
to the reflected Dirichlet space F’ and if T is a normalized contraction, then
also Tf belongs to Y and E(Tf, Tf) < E*(f, $). It seems to us that a direct
proof of this using only the techniques of Sections 8 and 9 would be of con-
siderable interest.

Added in proof. This and more is done in the monograph now in prepara-
tion which is mentioned at the end of the introduction.

We turn now to the converse of Theorem 10.1. Let. G*, u > 0 be a sub-
markovian symmetric resolvent on L2(m) such that G* f Gf is nonnega-
tire and u-harmonic for u > 0 and for ] > 0 in L(m). Let (F*, E*) be the
associated Dirichlet space. It follows either from Proposition 1.1 in [15] or
from Theorem 4.1 in [19] that F* contains Y and that the restruction of E* to
F is dominated by E. Fix D open with compact closure and note that

(10.8) G* G -t- gG.
We show that for g

_
0 in L(m),

H,, G,, g gvG,,+.(10.9) * * *

quasi-everywhere as v o. First

vG* t H,, G,, g+9 H,, G. g vG,,+, -4- vH,,+. G,,+ H,,G g
M $ M $ M $ M $H,, G,, g H.,,+ G,, g "4- vH+, G,,+, H,, G,, g

< H,, G,, g H,,+,, {G,, vG,,+, G*} g

<H,,G,,g
and then the relation

H,. G,, {(v/w [1 ]vG.+} gvG,,+ g wG,,+,, + (v/w)
shows that

H,G,g g(10.9’) vG,+, H G, g < wG+ < HG
for 0 v w. Convergence quasi-everywhere in (10.9) follows on D since
it is true with G+, replaced by G+, and follows on X upon considering open
D containing D and noting that

H G,, g ,, g G g

belongs to F. For f, g > 0 in L(m).

H,, G,, gx) vG,,+, H,, G,, g(x) G,, x)v n(dx){ * * *

H,,G,,HV g(x) g(x)} f(x)v m(dx)! M * * *

Vfjm(dx) t M *H,,+, G,,+, S,, G,, g(x)G,, f(x).
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The first term on the right

vf m(dx)G H,,+G,,g(x)f(x) *

f H,G,g(x)f(dx)G.+, x)V ?’t’l( D M *

as T .
H,, G. g(x)f(x)m(dx) M

The second term on the right equals- H.G. gH,,vG,,+,, (x)f(x)dx)G,+, *

which with the help of (10.9) approaches

--f S,G,g(x)f(x)m(dx) M *

as v T and we conclude that

* M * D(10.10) E,,(H, G, g, G. f) O.

It follows that E* agrees with/’ on F" and thatH implements E* orthogonal
projection onto the complement of F" at least when applied to the image
G*, L(m) From the estimate

it follows that every bounded f in F* has a refinement in L*(M) defined by
considering the limits uG* f and then general f in F* has a refinement specified
up to M equivalence defined by truncation and passage to the limit. Let
H*M be the set of in L*(M) such that M F*H, belongs to for one and there-
fore all u > 0 and for q in H* let

H)Q()(, ) E(H,

From the existence of the above refinements it follows easily that the pairs
(H,M Q.M()) are Dirichlet spaces relative to L(). For each u denote the
corresponding resolvent by R(),, a > 0}. For g _> 0 in L(m) and for in

, (dy)’, g(y)(y) m(dx)g(x)HM ,(y)

which is enough to guarantee that
M *(10.12) R,,) r,, G G, g.
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To justify (10.12) we argue indirectly. First

f "Q,,)(G* g, H,q) ,M(dy Mr,,g(y) - G, g(y)} (y)

and therefore
tM M $

But Re v g is the minimal nonnegaive solution of

end we conclude that

After congdering the special case 0 N g N 1 we conclude thatR is bounded
Lon () and gherefore by symmegry on() aM (10.1) follows easily.

Also ( donaes a multiple of ghe sgandard inner produeg on L() and
gherefore every funegion in * has a refinemeng in L(). Indeed ghe tale-
rang eonsgang is 1 for I and herefore

(10.13) f ,M(dy)f(y) <_ E (f, f)

for any f in F* which is 1-harmonic. The proof of Theorem 5.4 can be applied
with notational changes only to show that I-I* is contained in N and that
NM Q,M is contractive on H*M. From this and (10.13) the converse to
Theorem 10.1 follows after passage to the limit in M.
We remark that a local version of Theorem 10.1 can be proved by modifying

the arguments of this section in an obvious way. The active universal Dirich-
let space (N,, N) must be replaced by the local universal Dirichlet space
(NM, N) for M X D with D a general open subset of X. Indeed the
converse is actually proved above in the case when D has finite measure.
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