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INFINITE LOOP MAPS FROM SF TO BO(R)
AT THE PRIME 2

BY

H. j. LIGAARD

I. Atiyah, Bott, and Shapiro noticed in [4] that a stable Spin-bundle admits
a canonical kO-orientation, which in turn gives rise to an H-map, g" BSpin -,

B.(SF; kO), where B(SF; kO) is the classifying space for kO-oriented stable
spherical fibrations (see [10]).

In [10] May showed that there exists a homotopy commutative diagram

SF SF/Spin BSpin BSF
(1.1) If [ II

SF BO(R) B(SF, kO BSF,

where the horizontal rows are fibration sequences of infinite loop spaces and
infinite loop maps and X is a sign reversing map. The mapfwas first defined by
Sullivan [14].
Madsen, Snaith, and Tornehave proved in [9] thatfis an infinite loop map.

Using this and other results from [9] May observed in [10] that the above
diagram is commutative in the category of infinite loop spaces and infinite loop
maps, when localized away from 2.

In this note we shall see that this is true also when we localize at 2, so that
(1.1) is globally commutative in the category of infinite loop spaces and infinite
loop maps. For definition and properties of this category see [1] or [11].
The line of proof is to completely characterize the infinite loop maps from

SF to BO(R) up to homotopy of infinite, loop maps. Especially we shall see that
a map from SF to BO(R) can be infinitely delooped in at most one way.
Compare [9, Theorem 6.3], which gives the analogous result at odd primes.

I want to thank Peter May for suggesting the problem to me and for helpful
discussions during the preparation of this note.

II. IfX is an infinite loop space we denote by X the spectrum of which it is
the zeroth space. X2 and X2 are their localization at 2; -2 and $2 are their
completions at 2. The reason we want to work with completed spaces and
spectra is that there is the following very convenient isomorphism:

(2.1)
where [Y, X] denotes the homotopy classes of spectrum maps from Y to X and
X(n) means the nth space of the spectrum X. The isomorphism is an immediate
consequence of the canonical compact topology on [Y, , 2] for any completed
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space -z and any Y, and the Milnor exact sequence

0 li.___ [Y(?I + I), ,2(t’l)] [Y, 2] [Y(n), 2()] -- 0.

Let BO x Z be the classifying space for orthogonal K-theory, KO, and let
BO[m, ] denote its (m 1) connected cover. From Bott periodicity we get the
following four connective spectra (see [10] for example): BOx Z, whose 8nth
space is BO[8n, ]; BO, whose 8nth space is BO[8n + 1, ]; BSO, whose 8nth
space is BO[8n + 2, oo]; BSpin, whose 8nth space is BO[8n + 4, ].
We shall also use the following results about Eilenberg-Maclane complexes:

(KO)~*(K(Z/2"Z, i))= 0 if/ 2 and n _> 0.
(KO) ^*(K(:2, i))= 0 if >_ 3.

Here 2 is the 2-adic integers and (KO) "" is the functor that sends a space X
to the completion at 2 of (KO)~"(X). (2.2) is a result ofAnderson and Hodgkin
[3] and has as an easy consequence (2.3) (see [9, [,emma 3.2]).

If we let Spin2 BSpin then we have"

PROPOSITION 2.4. [Spin2, BO:z] 0.

Proof [Spin2, IO] li__m [BO218n + 4, ], (BO) [8n + 2, ]] by (2.1).
So we want to show

[1B0218, + 4, ov], (BO) [8n + 2, or]] 0

or equivalently

ii__m [fSBO2[8n + 4, ], n’(BO)[8n + 2, ]] 0

but, for n > 1,

[nSBO2[Sn + 4, ], nT(BO)[Sn + 2, ]]
1)+ 4, n (ao) [lO,

(KO)t(BO)[4, ]) by (2.2)and (2.3)
(KO); *(BSp)= 0 by Atiyah-gal [5].

Remark. The same sort of arguments give [SOz, (BO)]=0, with

SO2 flBSOz. Compare [9, Proposition 3.12], which gives the analogous
result at odd primes.

There is a fibration of spectra

(2.5) BSpinP BSOz K(Z/2Z, 2).

LEMMA 2.6. p induces an isomorphism

p*" [BSO, (BSO) ] [BSpinz, (BSO)’ ].
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Proof. From (2.5) we get an exact sequence

[K(Z/2Z, 2), (BSO)’ ] -- [BSO2, (BSO)’ ]
[BSpin,_, (BSO)’ ] [K(Z/2Z, 1), (BSO)

Here

[K(Z/2Z, 2), (BSO)’] li._mm [K(Z/2Z, 8n + 2), (BO)[8n + 2, ]]- li.__m [K(Z/EZ, 8n + 2), (BO)’] 0 by (2.2).
The same argument gives [K(Z/2Z, 1), (BO) 0, but this together with the
fibration K(Z/EZ, 0) (BSO) -, (BO) gives [K(Z/EZ, 1), (BSO)] 0. So
the lemma is proved.

Let ga denote the Adams operation. As usual we then define ,]2 by the
fibration of spectrum maps:

J2 BO2 ,Ca-1, BSpin2.

If we define J2 by the fibration

(2.7) J2 BSO2 ,.3- t BSpin2

then [2 is the 1-connected cover of J2.

THEOREM 2.8. [-]2, BSO2] 2 with oenerator .
Proof Since all the homotopy groups of J2 are finite the completion

O" BSO2 -- (BSO)induces an isomorphism

O," [2, BSO2] [2, (BSO)],
so we only have to show that [12, (BSO) ] is 22 with generator .
From the fibration (2.7) and Proposition 2.4 we get an exact sequence

[BSpin2, (BSO)’ t’3- t)*, [BSO2, (BSO) ] * [J2, (BSO) 0.

Following [9] we leto denote the homotopy classes of continuous H-maps
from (BSO) to (BSO). Then there is an obvious map 0" 2/i sending
a e 2 to the Adams operation . St $-x so 0" --}/o factors over
/{+ 1}, where denotes the units in the 2-adic integers. But ,/{+ 1} is
monogenic, i.e., the powers 3 are dense in /{+ 1}. So from [9, Section 2] it
follows that the finite sums

N

ao" 1 + a//3’, a 22
i=l

are dense in [BSO2, (BSO) ] and, as ,3, 1 (,3- +... + ,3 + 1)(,3 1),
each ,3_ 1 maps to zero in [J2, (BSO)] by Lemma 2.6. This proves the
theorem. Compare [9, Proposition 6.8].
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Let BOo BO x {1} c BOx Z; then BO(R) is a spectrum ([10] or [12]). Its
1-connected and 2-connected covers are denoted BSO(R) and BSpin(R)
respectively.

According to [2] and [9] there is an equivalence of spectra

(2.9) P3:]SO2 "* lSO2(R).
As usual we also define J2(R) and its 1-connected cover, 2(R), by the fibrations

J2(R) BO2(R) BSpill2(R)
t(R) q3/1J2(R) BSO2(R) BSpin2(R).

There is a commutative diagram of spectrum maps (see [9] and [10])
BSO2 *- BSpin2

BSO2(R) q,3/x BSpin2(R).

Hence there is an equivalence of spectra

(2.10) ,oa: 3 -- 32(R).
The fibration

(2.1) nso(R) o(R)
admits a splitting u: BO2(R) --, BSO2(R) such that u h id as spectrum maps
(see [10, Lemma V 3.1]).
COROLLARY 2.12.

(i) [J2, BO2] ’2 with [lenerator
(ii) [J2(R), BSO2(R)] :x with aenerator u

(iii) [J2(R), BO2(R)] [J2(R), BSO2(R)] ( [J2(R), K(Z/2Z)] 2 * Z/2Z with

0enerators u x(R) and w

Proof (i) is immediate from the fibration sequence
g(z/zz, 0)-. :h -. * -. g(z/zz, ),

(2.2) and Theorem 2.8.
From (2.9), (2.10) and Theorem 2.8 we know [2(R), BSO2o] 22 on genera-

tor (R) and from the fibration

2(R) J2(R) -- K(Z/2Z, 1)
we get an xact sequnc

[K(z/zz, 1), nso(R)]---. [(R), nso(R)] ’-L [:1(R), nso(R)].
q* is a monomorphism since [K(Z/2Z, 1), BSOz(R)] 0 (s proof of Lemma
2.6). But q* is also a morphism of z-modules and since it sends u (R) so (R) it
is actually an isomorphism so (ii) follows.

(iii) follows from (2.11) and (ii).
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Let SF denote the 1-component of S(R). Then SF is the zeroth space of a
spectrum SF ([6] or [10]). Following [10] we have a spectrum map
2 SF2 -* J2(R) the fiber of which is denoted Coker J 2.. There is a commutative
diagram

Coker J2(R) ----> SF2 _2&.> .J2(R)

BO2(R).

COROLLARY 2.13.

(i) [SF2, nSO2(R) 2 with oenerator u e.
(ii) [SF2, BO2(R)] 2 Z/2Z with generators u e and w e.

Proofi From [8] and [13] we know [CokerJ2(R),BSO2(R)] and
[BCoker J2(R), BSO2(R)] are trivial so it is only a rewriting of Corollary 2.12 (ii)
and (iii).

COROLLARY 2.14. The reduction [SF2, BO2(R) -- [SF2, B02(R)] is a mono-
morphism; that is, a map SF2 B02(R) can be infinitely delooped in at most one
way.

Proof This follows from Corollary 2.13 since [SF2, BS02(R) is torsion-free
(see [7])and the reduction [SF2, K(Z/2Z, 1)]-, [SF2, K(Z/EZ, 1)] is an
isomorphism.

THEOREM 2.15. The diagram (1.1) is a commutative diagram of infinite loop
spaces and infinite loop maps.

Proof We only have to prove the result when we localize at 2 (see 10]). The
square to the left must commute by Corollary 2.14 since all maps are infinite
loop maps. Using standard Barratt-Puppe sequence arguments and the fact
that g is basically uniquely determined by the diagram it follows that g is an
infinite loop map and that the whole diagram is commutative in the category of
infinite loop spaces and infinite loop maps. Compare [10, Theorem V 7.9].
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