
ILLINOIS JOURNAL OF MATHEMATICS
Volume 25, Number 1, Spring 1981

ORDER OF THE CANONICAL VECTOR BUNDLE
ON C.(k)/Ek
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SU-WIN YANG

Abstract

It has been proved that the order of the naturally defined vector bundle on
C,(k)/Ek, the configuration space of k distinct points in R", is helpful in finding
some new elements of maps between spheres. Now, with the help of representa-
tion ring, we give some partial results concerning the largest powers of prime
numbers dividing the orders.

Introduction

Let C.(k) be the configuration space of k distinct points in R", that is

{(X1, X2,..., Xk) Rnk{g =/: Xj, for all/4:j}.

The symmetry group ER acts on C,(k) by permuting the x.s. C,(k)/ER denotes
the orbit space. Let ,,k be the k-dimensional vector bundle

C,(k) x x gk C,(k)/Ek
(ER still acts on Rk by permuting the coordinates). Let X,,k(r) be the Thom
space of rn,k, the Whitney sum of r copies of ,,k. Snaith [14] showed that
f"S"+ is stably homotopy equivalent to k/k>0 Xn,k(r), when r > 0. Recently
the homotopy structure of the X 2,k(r) has led to many deep results on the stable
homotopy groups of spheres (Mahowald 10], R. Cohen [7], Brown and Peter-
son [4]). In particular, if S(,,R is trivial, then Xn,R(S "+" r)-- Y?kXn,k(r), and for
each pair (n, k), only a finite number of stable homotopy types occur. In this
paper we present partial results concerning the order of ,,k and make a conjec-
ture (see (1.4)) based on these results on the actual order, which, the author has
been informed, has just been proved by F. Cohen and R. Cohen.
The author wishes to express his sincere gratitude to Professor E. H. Brown

Jr. who suggested this topic and offered helpful advices. Thanks are also due to
the referee who has suggested many stylistic changes in this paper.

1. Statement of results

Let KO(X) (K(X)) denote the abelian group associated with the abelian
semi-group of isomorphism classes of real (complex) vector bundles over the
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space X under the Whitney sum operation, and ITiO(X) ((X)) the reduced
KO(X) (K(X)).

DEFINITION (Order of a vector bundle). Imbed the positive integers Z/ in
KO(X) (K(X)) by sending m- me, where e is the 1-dimensional trivial bundle
over X. Then for any bundle r/on X, the order of r/is defined as the order of
{r/- dim (r/)} in gO(X)(R(X)).

Note. If s order (r/)and s. dim (r/) > dim (X), then st/, the Whitney sum
of s copies of r/, is a trivial bundle. The bundles (n,k all satisfy this condition (by
results of F. Adams).

Let Cn(k) be the set of the ordered k-tuples of distinct points in R. Consider
the k-plane bundle

Rk--- C(k)/Zk,., C(k) x

where the symmetry group Zk acts on C,(k) and Rk both by permuting the k
factors and on C,(k) x Rk diagonally.
By results of Milgram [1 l, Theorem 1.2.2], n,k has finite order. We want to

compute the order of (,,k. When n <_ m, k _< s, ,,kcan be induced from ,, and
hence order (n,k) divides order ((,,s)-
The known results of order ((.,k) are as follows"

(i) When n 1 or k 1, (n,k has order 1.
(ii) By Cohen, Mahowald and Milgram [6], (2,k has order 2.
(iii) When k 2, C(2)/E2- RW-1 and (,2 is the Whitney sum of the

trivial line bundle and the canonical line bundle. Thus, by F. Adams result in
[1], (n, 2 has order 2(- 1), where $(n 1) is the number of elements in {1, 2,...,
n 1} which are congruent to 0, 1, 2, 4 modulo 8.

Here we prove that when n >_ 3, k >_ 3 the odd primary part of order ((n,k) is
divisible by pttn-1)/2] for all odd primes p < k. Precisely we have"

THEOREM (1.1). For an odd prime p,

order((,,,) pt(-1)/2, s,
where s is prime to p.

Also, the prime power of order ((,k) is stable in certain sense.

THEOREM (1.2). For any prime number q, and non-negative integer k, s, sat-
isfying qs <_ k < q’+ 1, the orders of(,, and (n,kare divisible by the same power of
q. In particular, when k < q (s 0), q does not divide order ((,,k).
Combining the above two theorems, we have:

COROLLARY (1.3). (i) For odd prime p and p2 > k >_ p, pith- 1)/2] is the lareest
power of p dividing order (n,k)"

(ii) For k 2, 3, 2*t"- 1 is the largest power of 2 dividing order ((,k).
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Thus, order ((.,3) is 2cktn-1)3[(n-1)/2]; moreover, by computing the Atiyah-
Hirzebruch Spectral Sequence of I0(C,,(3)/,3) we have the result, similar to
that for I720(C.(2)/E2), that {(,,3 3} generates I0(C,(3)/,3).
For the 2-primary part of order ((.,k) we have one further result: 2-primary

part of order ((4,4) is 4; thus order ((4,,) 12. And this implies

order ((3,,)= 12,

order ((3,5)= order ((,,5)= order ((3,6)= order ((,,6)= 60,

order ((3,7) order ((,,7) 420.

The results of [6] (n 2), (1.3) and (4,4 suggests the following conjecture"
Conjecture (1.4). When k > 2,

order ((,,k)= 20("-1) H pt(n- 1)/2]

p<k
odd prime

In Section 2, we utilize the relationship between the representation ring and
K-group to prove a property needed for Theorem (1.1). In Section 3, we obtain
the order of p-torsion subgroup of i(C.(p)/Z.e and prove that
{(C (R (n,p)- P} generates the p-torsion subgroup of I((C,(p)/E,). This leads
directly to the proof of (1.1). In Section 4 we prove (1.2) and the result for (,,,.

2. A lemma for Theorem (1.1)
To prove Theorem (1.1), we consider n,k as the image of the permutation

representation Pk of Ek on Rk, under the natural transformation

rl: R(ER)-- KO(C.(k)/ER), (Pk (.,k),
where Rr(Yk) is the representation ring of Ek over the real number and the
definition of r/is completely similar to that of (.,k"

Let r/1 :/(ER) RO(C.(k)/Ek) be the restriction of r/to the virtual represen-
tation ring, (write r/2: I(Ek)-g(C.(k)/Ek) for the complex case). Then
rll(Pk- k)= (.,k- k. In general, for any group G and a free G-space X, we
have the natural transformatioris

go(x/ )
By Milgram 11], when G is a finite group, Im (qx,) is contained in the torsion
subgroup of gO(X/G) (R(X/G)). Let fl, denote the projection of any torsion
abelian group to its p-torsion component, then

fl. --. -,

is well defined (for any abelian group A, ,A denotes its p-torsion part). Let
r/3 tip r/l, r/4 tip qz; also let Qa be the permutation representation of Ea
on Ca, that is, the complexification of Pa. Our object in the remainder of this
section is to prove the following proposition.
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PROI’OSlTION (2.1). For any prime p,
For this, we need two more propositions, the first one proved by J. C. Becker

and D. H. Gottlieb [3].

PROPOSITION (2.2)[3, Theorem 5.7]. Suppose G is a finite group and H is a
subgroup ofG, such that order (G)/order (n)is prime to a prime q, then, for any
free G-space X offinite dimension, r# qITi(X/G)- qI(X/H) is injective, where
r" X/H - X/G is the covering projection.

PROPOSITION (2.3). Let nt, be the subgroup of Et, 9enerated by the p-cycle (1,
2,..., p), andj" nt, Et, be the inclusion. Then j*(Qt, p) generates the image of
j,.

Proof of (2.3). Let ss be the 1-dimensional representation of nt, over C,

S C,

where Xo is a generator of zrt,. Then R(zrt,) is the free abelian group generated by
{So, s l, st,_ 1}, and So 1, the trivial one. Also, the following equalities
hold" ss st s+ t, (st) sty. If p" Et, -* U, the unitary group, is any represen-
tation, then j*(p) ,-5 ai si, for some integers a, 0, 1, p 1, that is,

p-1

j*(p)(Xo) aisi(Xo)" Cdim (p) Cdim rio),
i=o

where dim (p) ao + a +"" + at,_ 1.

LEMMA. al a2 at,-1.

Proof of lemma. For any positive integer s, 0 < s < p, x is a p-cycle and
there exists an element y in Et, such that y-ixo y x. Let Pl" Et, U be
defined as pl(x) p(y-lxy), then Pl is isomorphic to p. But

J*(Pl)(Xo p(y- lxo y)

p(x)(the composite of s copies of p(xo))

@
i=0

also the map --, isisa permation of{l, 2,..., p 1}. Thus, al as. This proves
the lemma.

By the representation theory of finite groups (for example, [8]),
j*(Qt,) 1 +

and hence j*(Qt,- p) generates



140 SU-WIN YANG

Proof of (2.1). Consider the commutative diagram

R(c(p)/y) R(c(p)/,),

where rr" C,(p)/np

generates

C,(p)/Ep is the covering projection. By (2.3),

(,( p))= *(, p))

But, by (2.2), the property that order (Ep)/order (rrp) is prime to p, implies z is
injective. Therefore, r/4(Qv p) generates

Rerk on (2.1). This is only of interest when p is odd. In this case since

BUtp) 2(BOtp)) x BO),
(2.1) implies the corresponding result of real case. The referee also points out
that (2.3) is equivalent to a well-known result proved by Atiyah in 1962 that

{*z R)- p}

generates the image of r*" (BEp) (B%), where r" Bnv BE is induced
from the inclusion n

3.

From Theory of iterated loop space, there is a map

H c,()/z
k>O,

disjoint union

inducing an injection in homology (in fact, "S" is the group completion of

H>0 C,(k)/E)[5]. In the following, we use the image of the map to describe
the homology of C,(p)/Ev.

PROPOSITION (3.1) (F. Cohen [5]). If n is odd, then

H,(C.(p)/Ev; Z;)
has additive basis

{[p], #’’[1], 0, ; 1 (- )/),
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dim ffQ’[1] 2i(p- 1)- e, and dim [p] 0. If n is even, then

n,(C(p)/r.p; Zp)
has additive basis

{[p], ffQi[1], e 0, 1; 1 < < (n- 1)/2; 2n-1([1], [1]) [p- 2]}
and dim 2n-1([1], [1]) n 1. Here [k] Ho(fnSn; Zp)is the class ofdegree k
map in fnSn, * denotes the loop product in fnSn, fl is the Bockstein operation, Qi is
the Dyer-Lashof operation and 2n-1 is the Browder operation. (See [5].)

If n < m, Let Fn, be the embedding Cn(p)/Ep Cm(p)/Z,p induced from the
standard embedding

RnR, (xl,...,xn)-(xl,...,xn, O,...,O),
then (rn,,,). sends [p] to [p], ffQi[1] to ffQi[1], and when n is even, sends
2n-1([1], [1]), [p- 2] to zero [5].

PROPOSITION (3.2). (i) lf n is odd, t*(Cn(p)/Z,; Z) has torsion elements only.
If n is even,

t*(Cn(p)/Ep; (2) - an-1 (Cn(p)/Ep; Q
_

Q.

(ii) The p-torsion part of H*(C.(p)/r,; z)is

n*(C,(p)/r.; Z)= IZ /f k 2s(p 1). 1 _<s _< [(n 1)/2]
t0 otherwise.

(iii) If n < m, F*,.: n*(C(p)/r.; Z)--, n*(C,(p)/r.; z), restricted to the
p-torsion parts, is surjective.

Proofof (3.2). By the computation of the Bockstein Spectral Sequence and
the Universal Coefficient Theorem for cohomology, we have (i)and (ii). For
(iii): when m, n odd, it follows from the facts that tl.(Cn(p)/Ep; Z) has only
torsion elements and (F,,,). is a one-to-one map in H.( Z); when n is even,
it is proved by comparing

order (pH*(Cn(p)/Ep; Z))
with

order (pH*(Cn_ ,(p)/E; Z)).

PROPOSITION (3.3). ((Cn(p)/Ep) has order ptt,- 1/2, andfor n < m, the map
(F,)*" pg(C(p)/Ep)- pg(C(p)/E) is surjective.

Proof of(3.3). First assume n and m are odd. Consider the Atiyah-
Hirzebruch Spectral Sequence of Cn(p)/Ep. Because I-)*(Cn(p)/Z,; Z) has only
torsion elements and the p-torsion parts exist only in dimensions multiples of 4,
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the p-torsion parts of E2-term all survive to E oo. Counting the number of Z’s in
Eoo, we have

order (,R(C,,(p)/E,))= pt,,-
Also, the surjectivity of (F,,,)* in pO*( Z) implies the surjectivity of p-torsion
part of E2 and Eoo terms and this leads to the surjectivity of (F.,m) *.
Now suppose n is even, and hence n + 1 and n 1 are odd. From above,

(Fn-1,n+l)# (Fn_ 1,n)#o (Fn,n+
is surjective, and hence (F,_ 1,)# is surjective. Counting also the number of
Zp’s in E2-terms of A-H S. S. of I(C(p)/Ep), we have that

order (pi(C,(p)/Z,)) ptn- 2)/2

and that (Fn_ ,,)# is bijective. This implies that (F,,+ )* is surjective, and
hence (F,m) is surjective, for any rn > n.

THEOREM (3.4)(Atiyah). The map rl," /(Ep)- pg(C,(p)/Ep) is surjective.

Proof. Atiyah [2] showed that, for any positive integer m, the map

r/’/(X)--, g(C,,(p)/X)
factors into

and there exist

s > m and $" I(C(p)/Z,)/(Z,)/(/(Z,))’’
such that the following Commutes"

By (3.3), Im (F,.,) * contains p/(C,(p)/Ep), which implies the theorem.

Proof of (1.1}. By (3.4)and (2.1), F/,(Q,-p) has order pI(,-,)/21. But
,(Qp-p) is the complexification of F/(P,-p), and the map of
complexification of vector bundles, restricted to the odd torsion part, is injec-
tive, we have (1.1).

4. Proof of (1.2) and the result of (,,,
First, we provide a general method to find the upperbounds of prime powers

of the order for vector bundles obtained from representations.
In the following, q denotes a prime number.
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Notation. For a vector bundle q of finite order, L(rl, q) denotes the largest
power of q dividing order (q).

PROPOSITION (4.1). Let G be afinite 9roup, H be its suboroup. G and H act on

finite dimensional spaces X and Y respectively. Iforder (G)/order (H) is prime to
q and there is an H-map f: X -, Y, then, for any representation p of G,

L(qx,6(p), q)< L(qr,n(P), q).

Proof of(4.1). Let n" X/H-,X/G be the covering projection of f:
X/H -, Y/H be the map induced from f, then

r,,)

By (2.2), L(qx,(p)), q)= q). But order (r/x,,(prn)) divides order
(r/r,/(pln)). This prove (4.1).
For Theorem (1.2), we prove the following"

PROPOSITION (4.2).

is prime to q, then

If kl >_ k2 >_"" >_ k,, k ’i=1 k, and

k

kl !k2!

L((.,k, q)= L((.,k,, q).

Proof of (4.2). For simplicity, we prove only the case r 2, s k 1, k 2,

k=s+t. Let

A ={1, 2, s} and H={aeEkla(A)=A}.
Then H is isomorphic to :s Xr Consider the H-space Y C,(s) x C,(t) and
the H-map f: C,(k)--, Y,

f(xl, X2,..., Xk)= ((Xl, X2,..., Xs), (X,+I,
Then, by assumption that k!/s! t!is prime to q and (4.1),

L((.,k, q)< L(r/r..(P, In). q).

But rlr,n(Pk In) (,, x (.,,, and hence it has the same order as that of (., (note
that s >_ t). Thus L((,,k, q) <_ L((,,s, q) and the equality holds.

Proof of(1.2). Consider the special case of (4.2)" r=q, k k2-
=k_ q’ and kq q’ 1. Then k q’+ 1. To check that

k

kl !k2!



144 SU-WIN YANG

is prime to q, it is enough to note that for x aqS+ b, 1 <_ x <_ qS+t 1,
1 < b _< qS, x has the same q-power as b. Thus, by (4.2),

L((.,,/ ,_ ,, q)= L((,e, q),

and this proves (1.2).
In the remaining part, our object is to find the order of (,,,.
By (1.3), the odd prime part of order (4,,) is 3. To find L(,,4, 2), let H be

the 2-Sylow subgroup of E, generated by

{(1 2), (3 4), (1 3)(2 4)};
then Ha is isomorphic to "2 Z, the wreath product of E with itlf. If E
acts freely on X and Xz, then E j E acts freely on X x (X)2. For any
space X, let F(X, k) be the subspace of X given by

{(Xl, X2,..., xk) lx, if @ j}

(when X n, r(n, k) C(k)). Then E2 acts freely on F(X, 2), and E2 E2
acts freely on F(X, 2) x (C(2)); also, when X C(2)/E, there is an H,-map

" C(4) F(C(2)/2, 2) x (C(2))2 defined by

x,)=
Furthermore, C.(2)/Z: is homeomorphic to R"+ x RP"- . An explicit homeo-
morphism is induced by

C,(2)R"x (R"-{0}) whereh(x,y)=(x+Y x-y)h"
2 2

Since Rs x RP embeds in R8, we obtain a

Zz-map" F(C4(2)/Z2, 2) F(Ra, 2)(= Ca(Z)),
and hence an H-map

g," C,(4) Cs(2) x (C,(2))2.

Let Y Cs(2 x (C4(2))2. Then Yx/H, Cs(2 x z (C4(2)/2)2 and by (4.1),

t(,,4, 2)G L(qr,,n,(P4 ,,), 2).
To determine the order of qr,n(P, [n), we prove the following proposition.

PROPOSITION (4.3). Suppose is an s-plane bundle over X. Let be the sk-
plane bundle

XkC.(k) x (()k C,(k) x

Then

1
(the least common multiple of s" order (()and order ((.,k)).order (q)=
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(Note that when X =C4(2)/E2, (=(4,2, n=8 and k=2, then
r/= r/r,,n, (P4 In
Proof of (4.3). The construction of /gives a natural transformation from

the functor KO(X) ofX to the functor KO(C,(k) x Xk) of X, which preserves
the addition (Whitney sum) structure and, when X={point}, the
transformation

KO(point)( Z)-, KO(Cn(k)/,k)
just sends r to r(n,k. Moreover, there is a commutative diagram,

KO(point) KO(X)

KO(C,(k)/Ek) KO(C,(k) x

induced from the unique map 7r" X ---, point.
Let order ((n,k), U order (() and

1
m (1.c.m. {su, t}),

s

that is, sm 1.c.m. {su, t}. Then, m{(} ms in KO(X), and

m{r/} T2({m} T2(71: # (ms)) 7r (T1(ms)) rt[ ({ms(n,k}) msk.

Thus, order (r/) divides m. Furthermore, S(n,k and ( 03 (k 1)s can be induced
from r/, and hence divides s. order (r/) and u divides order (r/). Thus sm
divides s. order (r/), and hence m divides order (r/) also. This prove (4.3).

Thus, L(r/y,,n,(P4 In,), 2) 4 >_ L((4,4, 2) >_ 4 (note that (4 1) 2), and
we have the order of (4,4-

Remark. The proof for the 2-primary part of order ((4,4) is due to the
referee of the Transactions of the American Mathematical Society.
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