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ON THE EXPONENTIAL STABILITY OF SET-VALUED
DIFFERENTIAL EQUATIONS

BY

PIETRO ZECCA

Introduction

In this paper, we consider necessary and sufficient conditions for the (local)
exponential stability of set-valued differential equations defined in R.
To this aim, we introduce the concepts of local spectrum En(F) and numeri-

cal range N,(F) for a set-valued Lipschitz-like map F defined in a neighbor-
hood of a point p Rk. We show that X,(F) c N,(F) and that the condition
N,(F) R- {x e R, x < 0} ensures the exponential stability of the set-
valued differential equation F(x). On the other hand, we show that expo-
nential stability implies Z(F) R-. Section 3 contains some applications ofour
results to the stability of nonlinear control systems.
We note that for linear maps the concept of local spectrum and numerical

range are well known [1]. For nonlinear maps such concepts were introduced
by Furi and Vignoli [6]. For set-valued maps, the definition of asymptotic
spectrum was proposed in [3]. An approach to stability problems for set-valued
functions can be found in [2] and in [4].

1. Definition and preliminary results

DEFINITION 1. We consider R with the standard norm and set-valued maps

F: U --. 2"\{} S(R),
where U is open in R. Such a map is continuous if, for every > 0, there exists
a 6 > 0 such that I[x YI[ < 6 implies h(F(x), F(y))< e, where h denotes the
Hausdorff distance on S(R).

Henceforth we shall only consider continuous set-valued maps F on R
where F(x) is a eornpaet set for every x.
For p R, let Q(R) be the set of all such continuous set-valued functions

defined in some neighborhood of p for which
(I) F(p)= {0},

Received March, 1980.
This work was written under the auspices of the National Council of Research of Italy

(C. N. R.).
(C) 1982 by the Board of Trustees of the University of Illinois

Manufactured in the United States of America

112



EXPONENTIAL STABILITY 113

(II)

FI lim sup IIF(x)ll
x-.p x-pll < +o where IIF(x)l[ sup {IlYlI, Y F(x)}.

We introduce a semi-metric in Qp(Rk) by setting

A(F, G)= lim sup h(F(x), G(x))
for F, G Q,(Rk).I1 pll

It is easy to see that A defines an equivalence relation on Qp(Rk) which induces
a metric on the corresponding quotient space.

DEFINITION 2. For F 6 Qv(Rk), the local spectrum of F at the point p is

[2 6 R: lim inf
h(F(x), 2(x p)) 01E(F)

Ep(F) may be empty.

Set

(2, F)= lim inf
h(F(x), 2(x p))

and r(F) sup {I 21, 2 Ep(F)},
the local spectrum has the following properties.

PROPOSITION 1. Let F, G Qp(Rk).
(i) If A(F, G)= 0, then Ep(F)= Zp(G).
(ii) r(F) < FI.
(iii) Zp(F)is a compact set.
(iv) Xp(F)= X(F)for all R.
(v) Xp(a(x p)+ F)= a + Zp(F).
(vi) 2 e Ep(S)implies (0, F)< I1.
Proofi (i)

Indeed,

(ii)

By symmetry, it suffices to show that if A Zp(F) then 2 .p(G).

h(F(x), F(y))0 < lim inf
h(G(x), 2(x P)) < lim sup

+ lim inf
h(F(x), 2(x p))= 0.

x-.p x Pll
For 2 p(F), we have

h(2(x p), 0) h(2(x p), F(x)) h(F(x), O)O< _< +
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Since

h(2(x p), 0) h(x p, 0)
x-pll IIx-pll

we have

-< lim inf
h((x p), F(x))

x-p x Pll
h(F(x), O)+ lim sup FI.

(iii) We prove first the continuity in each variable of the map

defined by

(F, G)= lim inf
h(F(x), G(x))

x-., I[x-pll
For F, F’, G, G’ s Q,(Rk), we have

h(F, G) < h(F’, G’) + h(G, G’) + h(F, F’),
and hence

(F, G)_< (F’, G’)+ A(G, G’)+ A(F, F’).

Interchanging the pairs (F, G) and (F’, G’), we obtain

I(f, G)- (F’, G’)I < A(G, G’)+ A(F, F’).

It is now clear that the function 2-(2, F) is continuous for every F, and
hence E,(F) is closed. By (ii), E,(F) is bounded and therefore compact.

Properties (iv), (v), (vi) follow easily from Definition 2. I

DEFINITION 3.
the point p by

For F e Q,(Rk), we define the numerical range N,(F) of F at

N,(F) ( cl (B,\{p}), B, {x e R: [Ix P[I-< r},
r>O

where

(F(x), x p)
(F(x), x p) {(y, x p), y e F(x)},

and cl A denotes the closure of the set A c Rk.
For F, G e Qp(Rk), we define the generalized numerical range of F and G at p

by

N,(F, G)= cl (B,\{p}),
r>O
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where

(F(x), G(x)) (F(x), G(x)) {(y, z), y F(x), z G(x)).O(x) IIx pll

PROPOSITION 2. Let F, G e Q,(Rk) have connected values. If k > 1 then
Np(F, G) is a non-empty, compact and connected set.

Proof. For every x B,\{p},

IIO(x)ll < I[<F(x), G(x)>ll < IIF(x)ll II(x)ll <= IIx pll z

for some constants ill, 2" From the continuity of F and G and the connec-
tedness of B,\{p} it is easy to see that cl ,(B,\{p}) is a compact connected set and
(-],>o cl (B,\{p})is compact and connected as the intersection of a nested
family of compact intervals.

COROLLARY 1.
set.

If k > 1 then Np(F) c R is a non-empty, compact, connected

Proof. It suffices to observe that x-- (x- p) lies in Q,(Rk). I

PROPOSITION 3. If F, 6 Q,(Rk) then 6 N,(F, 6) ifand only if there exist
sequences {x.}, {y.}, {z.} such that x.p, x. p, y. F(x.), z. G(x.) and

<y, z.>

Proof If e N,(F, G) then

(’] cl ff(B,\{p}).
r>0

Let {r.} = R+ {x R, x > 0} with r. 0. Since e cl q(B,.\{p}) for every n,
every interval centered at t intersects q(x) for some x B,.\{p}. Therefore we
can find a sequence e. 0, e. > 0, and points x. B,.\{p}, w. (x.), such that
[w.- 1 < e.. Since

(F(x.),
Wn II.-pll’

it follows that there exist y. F(x.) and z. G(x.) such that

(y.,z.)
w. !1. pll

The converse is obvious.
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PROPOSITION 4. Let F, G Q,(Rk). For every A E,(F) there exist
N,(F, G)and fl N,(G) such that fl2 .

Proof By definition of (2, F) there exists a sequence {x,}.r, x, 4: P,
x. --, p, such that

h(F(xn), 2(x.- p))
0.

Choose y. F(x.) and z. G(x.) arbitrarily. Then it follows from the definition
of Q,(R) and from Proposition 3, that, by possibly selecting appropriate
subsequences,

(y.,z.)

I1. pll
Thus,

(b)

x Np(F, G),

(,(x. p) y., z.>

and hence 2//- 0. I

(zn, x. p)
Np(G).

<,(x. p), z.> <y., z.>

II(x. p)- y.II II(x.)ll

h(F(x,.), 2(x.- p))

=0,

COROLLARY 2. IfF Q,(R) then , (F) N,(F).

Proof It follows from Proposition 4 if we take G(x)= x- p, since
N(x-p)=l. I

2. Main results

DEFINITION 5. Let F Qt,(Rk). We say that the constant solution y(t, p) p
of the set-valued differential equation 9 F is exponentially stable if there exist
numbers 6 > 0 and g > 0 such that any solution of F, y(0)= x, with
0 < IIx P[I < 6 satisfies the condition

(t, x) p -< x p e- ’’ for all > 0.

DEFINITION 6. We say that F’U S(Rk) has the Lipschitz selection
property if, for every Xo e U and for every Yo F(xo), there exist a neighbor-
hood W of Xo and a locally Lipschitz mapf: W Rk such thatf(xo) Yo and
f(x) e F(x) for all x W.
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We recall that the set-valued function induced by a Lipschitz control system
has the Lipschitz selection property, [5].

THEOREM 1. Let F Q(RR). Assume that F admits the Lipschitz selection
property and that the constant solution of F is exponentially stable. Then
2 < -for all 2 E,(F),/f2,(F) b.

Proof. For r < 6, consider the problem 6 F, ,(0) w 6 B,. Let ,(t, w) be a
solution of this problem, (such a solution exists for the properties of F), and let
m sup 2, 2 6 E,(F). By Proposition 3 and Corollary 2, for every r’ < r there
exist a sequence {x} B,,\{P}, x p, and a sequence {y}, y. F(x.), such that

rn li
(Yn, xn p)

Using the semigroup property, the property of Lipschitz selection for F, and
the hypothesis of exponential stability, for every x B,,\{p} we can choose
t + o and w e B, such that x (t, w), (t, w)= y and

1 2(y. x, p>
m=lim I-

_1 lim 2((t. w). (t,. w)- p)
2 IIx- pll e

1

li
d- log Ily(t,, w.)- pl[;

hence

d
2m lim log II(t., w,)- pll -.

Now, for any e > 0, there exists no such that if n > no we have

d
2(m e)< log Ilk(t,, w,)- pll 2 < 2(m + e),

and, by continuity, there exists a tr such that

d
2(m e) < log II),(t, w)- pll z _< 2(m + e) for t [tn crn, t + try]

Integrating on this interval we get

e2tm-)2n < lie(t, + a,, w,)- ell
Ily(t.- r., w.)- pll ’ < e2(m+e)2a’"

On the other hand letf: V Rk be the Lipschitz selection corresponding to wn,
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t, y., where V. is a neighborhood of w.. Let y(t, x) be the unique solution of the
differential equation

=f(x), y(tn, x)= x, where -e+tn<t<t.+e.
Choose a. > 0, 2lr. < e. Then 9(t, x) ?(t + t., x) is the solution of 5c = f(x)
with initial time 0.
Now

II(t + r, w)- Pll I1(, w)- pll
11(2r, (-r, w))- pll

-< I1(-, w)l[
-Ily(t- , w)- pile-

It follows that m- e < - for every e, and the theorem is proved.

THEOREM 2. Let F Q,(Rk) with connected values, and let Np(F)= R-.
Then the constant solution of ( F is exponentially stable.

Proof. Let > 0 and 6 > 0 be such that

(w p, F(w)) < - for all w B\{p}.sup IIw pll
If y(t, w) is a solution of F, (0)= w B\{p} then for every for which
,(t, w) B we get

1 d
2 at log II(t, w)- pll < -and so

lib(t, w)- pl[ z _< IIw pllZe-’.
Now let t sup {t > 0" (t, w) e B} and assume that t < + oo. Then

Ilk(t, w)- Pll < 6 for t [0, tl) and II(tx, w)- pll 6.

The continuity of (t, w) yields the contradiction

6 II(t, w)- P[I < IIw- pile-’’< 6.

THEOREM 3. Let F Qp(Rk) with connected values and Nn(F)c (0, + ).
Then there exists a t > 0 such that any solution V(t, w) of F, (0)= w, with
IIw pll > , satisfies the condition

II(t, w)- pl[ > 6 > Ilw pl] for every t > O.

This theorem can be proved by techniques similar to those in the proof of
Theorem 2.
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3. Applications

We now consider an application of the preceding results to certain control
problems. To this aim we state the following propositions.

PROPOSITION 5 [7]. Consider the control system 5c A(x)u where A(x) is a
linear mapfrom R" to Rkfor every x in some open set U contained in Rk, and the
map x--)A(x) is locally Lipschitz. For every compact set K c R, the map
F: U - S(RR), defined by F(x)= A(x)K, is locally Lipschitz.

If, in addition, A(p)K Ofor some p U then F satisfies both conditions (I)
and (II) in Section 2.

Example. Consider the control problem

(1) 5c Ilxllu, x(0)= 0, where x

The hypotheses of Proposition 5 are satisfied and hence we can compute the
spectrum and the numerical range of the multivalued function F(x) Ilxllnl at
the point 0: 2o F 1 and No(F)= [-1, 1]. We now perturb equation (1) by
means of a Lipschitz mapf: U Rk defined in an open neighborhood of0 Rk

and such that f(0) 0:

(2) Ilxllu + x(0)= 0, R, where x 6 Rk, u 6 B1.
The multivalued function associated with (2) is now G(x) F(x) + f(x). It is
easy to see from Proposition 1 that Eo(G)= 1 + ilk, and that No(G) is the
interval [-1 + ilk, 1 + ilk].
Thus, if flk < 1, then No(G) c R- and the solution x(t) 0 of (2) is expo-

nentially stable.

PROPOSITION 6 [7]. Consider the control system 5c =f(x, u) with f: U x
K Rk, U open in Rk, K compact set in R".
Assume thatf is continuous in u for each x U, and uniformly Lipschitz on U.

Assume further that there exists a p U such that f(p, u) 0 for every u K.
Then F(x)= {f(x, u): u K} satisfies conditions (I)and (II)of Section 2.
Finally, notice that the passage from a control system to a set-valued func-

tion leads to essentially the same statement of the problem if we consider a
variable control region. It suffices to assume that U(x) is a Lipschitz map of x
(in the Hausdorff metric) and takes compact values for every x.

REFERENCES

1. F. F. BONSALL and J. DUNCAN, Numerical tahoe, Cambridge University Press, Cambridge, 1973.
2. G. CONTI and E. DE PASCALE, The numerical tahoe in the nonlinear case, Boll. Un. Mat. Ital. Ser.

V, vol. 15-B (1978), pp. 210-216.
3. G. CONTI and P. NISTRI, A definition of asymptotic spectrum for multivalued maps in Banach

spaces, Atti Sem. Mat. Fis. Univ. Modena, vol. 26 (1977), pp. 1-14.
4. F. S. DE BLASI, Existence and stability of solutions for autonomous multivalued differential equa-

tions in Banach spaces, 1st. Mat. U. Dini, Internal Report 1974, n. 14.



120 PIETRO ZECCA

5. A. F. FILIPPOV, On certain questions in the theory of optimal control, SIAMJ. Control., vol.
(1962), pp. 76-84.

6. M. Fum and A. VIGNOLL Spectrum of nonlinear maps and bifurcations in the nondifferentiable
case, Ann. Mat. Pura Appl., vol. 113 (1977), pp. 265-285.

7. G. STEFANI and P. ZECCA, Multivalued differential equations on manifolds with applications to
control theory Illinois J. of Math., vol. 24 (1980), pp. 560-575.

UNIVERSITA DEGLI STUDI DI FIRENZE
FIRENZE, ITALY


