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ON THE EXPONENTIAL STABILITY OF SET-VALUED
DIFFERENTIAL EQUATIONS

BY
PiETRO ZECCA!

Introduction

In this paper, we consider necessary and sufficient conditions for the (local)
exponential stability of set-valued differential equations defined in R¥.

To this aim, we introduce the concepts of local spectrum X (F) and numeri-
cal range N ,(F) for a set-valued Lipschitz-like map F defined in a neighbor-
hood of a point p € R*. We show that £ (F) = N ,(F) and that the condition
N, (F)cR™ ={xeR, x <0} ensures the exponential stability of the set-
valued differential equation x € F(x). On the other hand, we show that expo-
nential stability implies Z,(F) = R™. Section 3 contains some applications of our
results to the stability of nonlinear control systems.

We note that for linear maps the concept of local spectrum and numerical
range are well known [1]. For nonlinear maps such concepts were introduced
by Furi and Vignoli [6]. For set-valued maps, the definition of asymptotic
spectrum was proposed in [3]. An approach to stability problems for set-valued
functions can be found in [2] and in [4].

1. Definition and preliminary results
DEFINITION 1. We consider R* with the standard norm and set-valued maps
F: U —2™(g) = S(RY),

where U is open in R*. Such a map is continuous if, for every ¢ > 0, there exists
a 6 > 0 such that ||x — y| < é implies h(F(x), F(y)) < ¢, where h denotes the
Hausdorff distance on S(R¥).

Henceforth we shall only consider continuous set-valued maps F on R*
where F(x) is a compact set for every x.

For p € R, let Q,(R¥) be the set of all such continuous set-valued functions
defined in some neighborhood of p for which

(1) F(p)=1{0},
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(IT)

| F| = lim sup [P
xsp % =Pl

We introduce a semi-metric in Q,(R¥) by setting

< 4 oo where ||F(x)|| =sup {|y|, y € F(x)}

A(F, G) = lim sup %ﬁ for F, G € Q,(RY).

It is easy to see that A defines an equivalence relation on Q (R*) which induces
a metric on the corresponding quotient space.

DEfINITION 2. For F € Q,(R¥), the local spectrum of F at the point p is

%,(F) = {4 € R: lim inf hER) Mx =) _ o)

x=p Ix - pl
Z,(F) may be empty.
Set
2(A, F) = lim infw
S
and r(F) = sup {| 1], 2 € Z,(F)},

the local spectrum has the following properties.

PROPOSITION 1. Let F, G € Q,(R¥).
(i) If A(F, G) =0, then Z,(F) =X ,(G).
() r(F)< |F|.
(iii) Z,(F) is a compact set.
(iv) Z,(aF)=aZ,(F)for alla eR.
(v) Z,(ux — p)+ F)=a+ Z,(F).
(vi) 4 e Z,(F)implies 2(0, F) < |4].

Proof. (i) By symmetry, it suffices to show that if A € £ (F) then A € Z (G).
Indeed,

0 < lim inf "(G0) Ax = p) h(F(x), F(y))

< lim sup
x=p ”x - p“ x—=p ”x - p”
+ tim inf MECL AP _
x-p Ix - p|

(ii) For A € Z,(F), we have

L MAlx = p) 0) _HA(x —p), F(x)) | h(F(x),0)
Ix = pl Ix - pl Ix -l
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Since
hAx—p)0) _ \, kx—p0) _
=l - = = 1k
we have
M=) ) | KF(0)
[l < tim il == T im s ey = P

(ili) We prove first the continuity in each variable of the map
: 0,(RY) x QR >R
defined by

9(F, G) = lim infi(%(fb—(—;h—x)—) .
x=p X—=p

For F, F', G, G' € Q,(R*), we have
h(F, G) < h(F', G') + h(G, G') + h(F, F'),
and hence
9(F,G) < 9(F, G')+ A(G, G') + A(F, F).
Interchanging the pairs (F, G) and (F’, G’), we obtain
|2(F, G) — §(F, G')| <A(G, G')+ A(F, F).

It is now clear that the function A+ 2(4, F) is continuous for every F, and
hence Z,(F) is closed. By (ii), Z,(F) is bounded and therefore compact.
Properties (iv), (v), (vi) follow easily from Definition 2. B

DEerFINITION 3. For F € Q,(R¥), we define the numerical range N (F) of F at
the point p by

N,(F) =,Oo c ¢(B\p}) B,={xeR* |x—p|<r],
where
_ (F(x), x = p)
o)=L R

and cl 4 denotes the closure of the set A = R¥.

For F, G € Q,(R"), we define the generalized numerical range of F and G at p
by

, (F(x), x —py={y, x—p), ye F(x)},

N,(F,G) = Oocl ¥(B\{p}),
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where

o) = STELED (0, 6661 = (0,22 v Fo 2 € 6o

PROPOSITION 2. Let F, G € Q,(R*) have connected values. If k > 1 then
N(F, G) is a non-empty, compact and connected set.

Proof. For every x € B,\{p},

o <I<FEL DL _IFIIGE _ pubal ~ pl?
WO = Thpl = g PP

for some constants f,, §,. From the continuity of F and G and the connec-
tedness of B,\{p} it is easy to see that cl y(B,\{p}) is a compact connected set and
()r>o 1 ¥(B,\{p}) is compact and connected as the intersection of a nested
family of compact intervals. B

CoROLLARY 1. Ifk > 1 then N ,(F) < R is a non-empty, compact, connected
set.

Proof. 1t suffices to observe that x— (x — p) lies in @ (R*). ®

PROPOSITION 3. If F, G € Q,(R¥) then o € N (F, G) if and only if there exist
sequences {X,}, {y,}, {2} such that x,\—p, x, # p, y, € F(x,), z, € G(x,) and

<yn 2 zn>

T .
%, = plI?

Proof. If o € N,(F, G) then
ae () cl Y(B\(p}).

r>0

Let {r,} =« R" = {x € R, x > 0} with r, — 0. Since « € cl y(B,,\{p}) for every n,

every interval centered at a intersects y(x) for some x € B, \{p}. Therefore we

can find a sequence ¢, — 0, ¢, > 0, and points x, € B, \{p}, w, € ¥(x,), such that

|w, —a| <e,. Since

CF(xa), G(xn)>
”xn 4 ”2

it follows that there exist y, € F(x,) and z, € G(x,) such that

_ s 2w
U X = pl?

n ’

The converse is obvious. B
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PROPOSITION 4. Let F, G e Q,(R*). For every Ae Z,(F) there exist
a € N,(F, G) and B € N,(G) such that BA = o.

Proof. By definition of 9(4, F) there exists a sequence {X,},cn> X F P
X, — p, such that

h(F(xn)’ ’]'(xn - p)) 0.
I, — p|
Choose y, € F(x,)and z, € G(x,) arbitrarily. Then it follows from the definition

of Q,(R*) and from Proposition 3, that, by possibly selecting appropriate
subsequences,

ﬁwew,cx <” o 2B e N,(G),
Thus,

{MXn = P) = Yn» Za) X = P) 20> Vns Za)

% =7l , [y i Py R LK
,<z D)= oz | _ A, = p) =yl G

P22 |5 I-pl  Tx—ol

_ WE(s), 2, — p)
S Tl

=0,
and hence Af —a=0. B

COROLLARY 2. IfF € Q,(R¥) then Y, (F) = N,(F).

Proof. It follows from Proposition 4 if we take G(x)=x — p, since
N(x—-p)=1 =

2. Main results

DEFINITION 5. Let F e Q,(R*). We say that the constant solution y(t, p) = p
of the set-valued differential equation y € F is exponentially stable if there exist
numbers § >0 and « >0 such that any solution of j € F, y(0) = x, with
0 < ||x — p|| < ¢ satisfies the condition

[¥(t x)—p| < |x —pe ™ forallt>0.

DEFINITION 6. We say that F: U - S(R*) has the Lipschitz selection
property if, for every x, € U and for every y, € F(x,), there exist a neighbor-
hood W of x, and a locally Lipschitz map f: W — R* such that f(x,) = y, and
f(x) e F(x) for all x e W.
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We recall that the set-valued function induced by a Lipschitz control system
has the Lipschitz selection property, [5].

THEOREM 1. Let F € Q (R*). Assume that F admits the Lipschitz selection
property and that the constant solution of 9 € F is exponentially stable. Then
A< —aforall Ae Z,(F), if Z,(F)+# ¢.

Proof. For r < §, consider the problem j € F, y(0) =w € B,. Let y(t, w)be a
solution of this problem, (such a solution exists for the properties of F), and let
m = sup A, A € Z,(F). By Proposition 3 and Corollary 2, for every ' < r there
exist a sequence {x,} = B, \{P}, x, — p, and a sequence {y,}, ¥, € F(x,), such that

Using the semigroup property, the property of Lipschitz selection for F, and
the hypothesis of exponential stability, for every x, € B,\{p} we can choose
t,— + oo and w, € B, such that x, = y(t,, w,), #(t,, w,) = y, and

: 2<yuaxn _'p>
lim ———"—>%
"xn "P"2

lim 2(7(tm Wn)’ ')’(t,,, ;vn) - P>
"xn - P"

. d 2
lim 'd_t IOg IIY(tu’ Wn) - p" ’
hence
. d 2
2m = lim r log ||7(t,, wa) — p|I.
Now, for any ¢ > 0, there exists n, such that if n > n, we have

2m — ) <5 log [1(tp w,) — pI* < 2(m + 5)

and, by continuity, there exists a o, such that
2m—¢) < dit log ||y(t, w,) — p||* < 2(m +¢) forte[t,— o, t,+ 0,

Integrating on this interval we get
e2m—e2an "y(tn + o, Wn) - P"
“'}’(t,, = Ops Wn) - p“
On the other hand let f: V, — R* be the Lipschitz selection corresponding to w,,

2

5 < e2(m+a)2a,.'
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tn, Yn, Where V, is a neighborhood of w,. Let y(t, x) be the unique solution of the
differential equation

x =f(x), y(t,, x) =x, where —g¢+t,<t<t,+e¢

Choose g, > 0, 2| g,| < & Then j(t, x) = y(t + t,, x) is the solution of x = f(x)
with initial time O.
Now

I7(tn + 04 wa) = P|| = |7(0 wa) = P|
= 720 ¥(— 0w wa)) — pll
< (=0, w,)e 2
= |[9(ts — 04, i) — plle™ 2
It follows that m — ¢ < — a for every ¢, and the theorem is proved. B

THEOREM 2. Let F € Q,(R*) with connected values, and let N ,(F) = R™.
Then the constant solution of § € F is exponentially stable.

Proof. Let a >0 and 6 > 0 be such that
<W — D, F(W)>
lw = p|?

If y(t, w) is a solution of y € F, y(0) = w € B,\{p} then for every t for which
(¢, w) € B; we get

sup < —a for all w e B,\{p}.

1d 5

57 08 vt w) —p|* < —a
and so

v, w) = plI* < |lw — p|?e 2.
Now let t; = sup {t > 0: y(¢, w) ¢ B,} and assume that t; < + co. Then

(¢, w)—p|| < forte0,t;) and |y(t;, w)—p| =0.
The continuity of y(t, w) yields the contradiction
8 = [[y(t, w)—p|l < |lw — plle*" <.
THEOREM 3. Let F e Q,(R*) with connected values and N (F) = (0, + o).

Then there exists a & > 0 such that any solution y(t, w) of 7 € F, y(0) = w, with
|w — p|| > 6, satisfies the condition

[¥(t, w) —p| >8> ||w—p| for everyt>O0.

This theorem can be proved by techniques similar to those in the proof of
Theorem 2.
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3. Applications

We now consider an application of the preceding results to certain control
problems. To this aim we state the following propositions.

PROPOSITION 5 [7].  Consider the control system x = A(x)u where A(x) is a
linear map from R" to R* for every x in some open set U contained in R, and the
map x+> A(x) is locally Lipschitz. For every compact set K — R", the map
F: U — S(R*), defined by F(x) = A(x)K, is locally Lipschitz.

If, in addition, A(p)K = 0 for some p € U then F satisfies both conditions (I)
and (I1) in Section 2.

Example. Consider the control problem
(1)  x=|x|u, x(0)=0, where xe R, ue B, ={v:|v]| <1,veR".

The hypotheses of Proposition 5 are satisfied and hence we can compute the
spectrum and the numerical range of the multivalued function F(x) = ||x| B, at
the point 0: Z,F = 1 and N((F) =[—1, 1]. We now perturb equation (1) by
means of a Lipschitz map f> U — R* defined in an open neighborhood of 0 € R*
and such that f(0) = 0:

() % = ||x|ju + Bf(x), x(0)=0, B e R, where x € R*, u € B,.

The multivalued function associated with (2) is now G(x) = F(x) + ff(x). It is
easy to see from Proposition 1 that £y(G) =1 + Bk, and that N(G) is the
interval [—1 + Bk, 1 + Bk].

Thus, if Bk < —1, then No(G) = R~ and the solution x(t) = 0 of (2) is expo-
nentially stable.

PROPOSITION 6 [7]. Consider the control system x = f(x, u) with f: U x
K - R¥, U open in R*, K compact set in R".

Assume that f is continuous in u for each x € U, and uniformly Lipschitz on U.
Assume further that there exists a p € U such that f(p, u) = 0 for every u € K.
Then F(x) = {f(x, u): u € K} satisfies conditions (I) and (II) of Section 2.

Finally, notice that the passage from a control system to a set-valued func-
tion leads to essentially the same statement of the problem if we consider a
variable control region. It suffices to assume that U(x) is a Lipschitz map of x
(in the Hausdorff metric) and takes compact values for every x.
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