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EQUIVARIANT ISOTOPIES AND SUBMERSIONS

BY

R. LASHOF

Introduction

Lees’ topological immersion theory [1] has been generalized in two ways.
In [2] an equivariant immersion theory was developed, and in [3] Gauld
developed a submersion theory. These theories have been important in
smoothing theory, and for similar reasons it is desirable to have an equiva-
riant submersion theory for the topological category. (A smooth equivariant
submersion theory, in fact a smooth equivariant Gromov theory has already
been given by Bierstone [4].)

By now the form of such arguements is routine. The key result needed is
an equivariant lifting theorem for submersions (Theorem A below). As in [2],
we would like to use Siebenmann’s deformation of stratified spaces theorem
[5] to derive this. In fact, Siebenmann shows that his theorem gives a (non-
equivariant) lifting theorem for submersions; and indeed, the same argument
would generalize to equivariant submersions with trivial G action on the
target space. The problem is that one needs a G isotopy extension theorem in
which the parameter space has a non-trivial G action. As is often the case in
equivariant theories, this problem is solved by reducing it to the case that the
parameter space has a single orbit type. (See the proof of the Fibrewise G
deformation theorem in Section 3.) Finally, in trying to follow Gauld’s proof
of the lifting theorem, it is necessary to understand intersections of equiva-
riant tubes and products (3.1 and Corollary 3, Section 3).

DEFINITION. A G-manifold M" is a second countable Hausdorff G-space M
such that for each x € M there is an n-dimensional G, orthogonal represent-
ation space V, and a G, homeomorphism h, of V, onto a neighborhood of x
with h,(0) = x, G, the isotropy subgroup of x. We call h, a G, chart. Because
G is finite, this is equivalent to Bredon’s notion [6] of a locally smooth
G-manifold.

DerINITION. Let N and Q be G manifolds. A G map N> Q is a G
submersion if for each x € N we can find a G, chart h,: V,— N and a G,
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12 R. LASHOF

chart k,: W,— Q, y = f(x), such that the following diagram commutes:

Vi —i— N

lf

W, —%—¢

where 7, is a surjective G,-linear map.

Remark. If N is a G-manifold with boundary, an equivariant map
f: N— Q is an equivariant submersion if we can extend f to an equivariant
submersion f: N— Q, where N is the union of N with an open collar on the
boundary.

THEOREM A. Let f: I* x N— I* x Q, f(t, x) = (t, f(x)) be a G submersion.
Let B <= N be a compact set. There is an ¢ > 0, an ambient G isotopy H, of N,
IItl < &, and a neighborhood U of B, such that f, = fo, H, on U.

Those familiar with the G-isotopy extension theorem with non-equivariant
parameter space (Section 2) may go directly to Section 3.

1. Siebenmann’s Theorem

DEFINITION. A stratified set is a metrizable space X equipped with a fil-
tration

X:D'-':)X("):JX(”_”D'~~X(_1)=¢

by closed sets called skeleta, such that for each n > 0, the components of
X® — X®=1 are open in X® — X"~V X is called a TOP stratified set if
X® — X®=1 is an n-manifold without boundary—called the n-stratum of X.

If X is a compact stratified set, the open cone ¢cX on X has a natural
stratification (cX)® = ¢(X® ™ Y), n > 1, (cX)® = cone point.

A stratified set X is locally cone-like if for each point x € X, say
x € X™ — XY there exists an open neighborhood U of x in X® — X~ 1),
a compact stratified set L of finite dimension, called the link of x in X, and
an isomorphism of U x c¢L onto an open neighborhood of x in X. A locally
cone-like TOP stratified set is called a CS set.

LeMMA 1.1. Let M be a G manifold. Then M/G is a CS set with the com-
ponents of the manifolds M y,/G as components of the strata. (M y, is the set of
points of orbit type (H).)
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Proof. If x € M and say G, = H, let h,: V,— M be a chart about x. Then
h; ‘(M) = VE Let W, be the perpendicular space to V¥ in V,. Then the
class x, of x in M{,/G has a neighborhood isomorphic to V¥ x c(S(W,)/H),
where S(W,) is the unit sphere.

Let A = A’ be closed sets of a CS set X such that A’ is a neighborhood of
A. Let Bc X be compact, and let U < X be an open neighborhood of
A v B.

SIEBENMANN’S DEFORMATION THEOREM. If h: U— X is an open embedding
equal to the identity inclusion i: U— X on A' n U and h is sufficiently near to
i (C-0O topology), then there is an isotopy h,, 0 <t <1, of h through open
embeddings h,: U— X such that hy =i on A U B and h,=h on A and outside
some compact set K in U (independent of t and h). Further the isotopy h, is a
continuous function of h for h near i. Also h, =i when h = i.

Remark. 1t follows that h(U) = h(U), all ¢.

DEerFINITION. A substratified set Y of a stratified set X consists of a closed
subspace Y equipped with the filtration Y™ = X™ ~ Y, such that for each n,
Y™ — y®~1 is open (as well as closed) in X® — X~ 1,

Example. A skeleton X™ is a substratified set in X.

Addendum [5]. Let & be a family of substratified sets in X. Then if the
embeddings h: U— X respect the subspaces Y € & (i.e, (U n Y) = Y), then
the h, can be required to respect the Y € &.

LEmMMA 1.2. Let X be a CS set and let U < X be open. Let h,, 0 <t <1,
ho = 1, be an ambient isotopy of U which respects skeleta and is the identity
outside a compact set K. Then h, preserves strata; i.e.,

h,(U("’ — U(n—l)) =Uym _ yh-1n,

Proof. K n U is a finite set. Since h: K n UY—- K n U? is an
embedding, h, is a homeomorphism on K n U® and hence h(U®) = U,

Now assume h(U® — U*~V) = U® — y*~D for all k < n. Since h(U™) =
U™ and h, is an embedding, h (U™ — U® V) c U™ — U"~ Y If C is a com-
ponent of U™ — U™~V h(C) = C since hyo(C) = C. Since (C v U" V) n K is
compact, h(C) is closed in C. By invariance of domain, h(C) is open in C.
Hence h(C) = C, and it follows that

h,(U(”) _ U(n—l)) =[Umw_ yr-b,

CoOROLLARY 1. Under the assumptions of the theorem, if the embeddings
h: U— X respect strata then the h, can be required to respect strata.
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Proof. Apply the addendum with & the collection of skeleta of X. Then
apply the lemma to h™'h,: U— U.

COROLLARY 2. If X = M/G and the embeddings h: U— X respect orbit
types we can require the h, to respect orbit types.

COROLLARY 3. Under the assumptions of the theorem, for each embedding h
sufficiently close to i there is a homeomorphism H of X, depending continuously
on h, such that

(@ H=honAvu B,
(b) H is the identity outside h(K), K a compact set in U,
(c) H is the identity if h = i.

Further, if h respects strata we may require H to respect strata.

Proof. Let h, be as in the theorem; then hh{!: h(U)— h(U) is the identity
outside h(K) and satisfies hh;! = h on A U B. Let H be the extension hhj?!
to X by the identity outside h(U).

Remark. Let K’ be a compact neighborhood of K. If h is sufficiently close
to i we can assume h(K) c K'. Thus we can assume

(b") H is the identity outside a compact set in U.

COROLLARY 4. Let I =[—1,1] and let I* be the k-cube. Let h,: U— X,
t € I*, be an isotopy through open embeddings with h, the inclusion and h, the
inclusion on A’ n U. Then for some ¢ > 0, there is an ambient isotopy H, of X,
IIt] < e, such that

(@ H,=h,on AU B,

(b) H, is the identity outside h(K), K a compact set in U,
(c) H, is the identity,

(d) H, is strata preserving if h, respects strata.

Corollary 4 implies (see [5]):

IsotoPy EXTENSION THEOREM. Let h,: U— X, t € I¥, be an isotopy through
open embeddings, h, the inclusion on A’ n U. Then there exists an ambient
isotopy H, of X, t € I*, such that

(@ H,=h,on AU B,

(b) H, is the identity outside h(K), K a compact set in U,
(c) H, is the identity if h =i,

(d) H, is strata preserving if h, respects strata.

LocAL CONTRACTIBILITY THEOREM. Let X be a CS set and Cc Bc X
compact subsets, B a neighborhood of C. Let H#  AX) (resp. # z{X)) be the
group of homeomorphisms of X fixed on X — C (resp. X — B) with the C-O
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topology. Then #c(X) is locally contractible in # g(X). The same result holds
for the group of strata preserving homeomorphisms.

Proof. In the deformation theorem, let A’ = X — Int (C), A = X — Int (B)
and U = X.

Remark. If X is compact, then #(X) is locally contractible. (Take
C=B=X)

2. Palais’ theorem and the G-deformation theorem

Let X and Y be G spaces, X, and Y, their orbit spaces. The following
results may be found in Bredon [6]:

LeMMA 2.1. Let f: X — Y be isovariant and let f,: X, — Y, be the induced
map on orbit spaces. Then f is open if and only if f, is open, and f is injective if
and only if f, is injective. In particular, f is an embedding if and only if f, is an
embedding.

LEMMA 2.2. Let Z be any space and ¢: Z— Y, any map. Give the pullback

X={zyeZx Y| =y,}
the G structure g(z, y) = (z, gy). Then
(@) X, is naturally identified with Z,

(b) the projectionf: X — Y, f(z, y) =y, is a G map and
(© fy = ¢ under the identification of X, with Z.

Lemma 2.3. Iff: X— Y is isovariant, then the natural map

0: X = f{(Y), 6(x) = (x,,f(x)
of X into the pullback of Y by f, , is a G equivalence.

THEOREM (Palais). Let X and Y be G spaces, f: X— Y an isovariant map
and f,; X, — Y, the induced map on orbit spaces, Assume every open subset of
X, is paracompact (e.g., X, metrizable). If F,: X, x I— Y, is a homotopy of
S« that preserves orbit type, then F, is covered by an isovariant homotopy F of
f. Moreover, given two such lifts F,, F, of F,, there is a G equivalence 0 of
X x I over X, x I with 0| X x O the identity and F, = F 6.

Since the orbits are discrete if G is finite, we have:

Addendum 1. If G is finite, the lift F is unique. In particular, if 4 is an
invariant subspace of X and F, is constant on A4, , then F is constant on A.

Applying Lemma 2.1 we have:
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Addendum 2. F, is an isotopy through open embeddings if an only if F is
a G-isotopy through open embeddings.

Now let X be a G manifold, B < X a compact invariant subspace. Let
A < A’ be closed invariant subspaces with A’ a neighborhood of A. Let U be
an open invariant neighborhood of 4 U B.

G DEFORMATION THEOREM. If h: U— X is an open equivariant embedding
equal to the inclusion i on A" ~ U and h is sufficiently close to i, then there is
a G isotopy h,, 0 <t <1, of h such that hy =ion A U Band h,=h on A and
outside some compact set K in U. Further h, =i if h = i and h, depends contin-
uously on h.

Proof. Consider the space Z of G-embeddings of U in X with the C-O
topology and trivial G-action, and let F: Z x U— X be the equivariant map
F(h, x) = h(x). Then if F,: Z x U,— X, is the induced map, F (h, )=h,:
U,— X,. Siebenmann’s theorem says there is a neighborhood W of i in
Z and an orbit type preserving homotopy F,:W x U,— X, so that
F,(h, )=h,, satisfies the corresponding conditions for 4,, B, and a
compact set K, in U,. Since h,, = h, outside K, we may pull back F,, to
W’ x K, , where

W' ={h|K; he W},

K the preimage of K, in X. Then W' x K, is metrizable and we may apply
Palais’ theorem to obtain a G-deformation F, of F with h, = F/(h, )
satisfying the desired conclusions.

COROLLARY 1. Under the assumption of the G deformation theorem, for
each embedding h sufficiently close to i, there is a G equivalence H of X,
depending continuously on h, such that

(@@ H=hon A v B,
(b) H is the identity if h =i,
(c) H is the identity outside h(K), K a compact subset of U.

COROLLARY 2. Let h,: U— X, t € I¥, be a G isotopy with hy =i and h, the
inclusion on A’ n U. Then for some ¢ > 0, there is an ambient G isotopy H, of
X, ||t <&, such that

(@ H,=h,onA v B,

(b) H, is the identity outside h(K), K a compact set in U.
(c) H, is the identity.

G Isotopy EXTENSION THEOREM [2]. If h,: U— X, te I*, is a G isotopy
with h, the inclusion i on A’ n U and hy =i; then there is an ambient G
isotopy H, of X, t € I*, such that

(a H=honA v B,
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(b) H, is the identity outside h(K), K a compact set in U,
(c) H, is the identity.

Proof. This follows by a standard argument from Corollary 2; or as in
the proof above, by applying Palais’ theorem to Siebenmann’s isotopy exten-
sion theorem.

EQUIVARIANT LOCAL CONTRACTIBILITY THEOREM. Let X be a G manifold
and C = B = X compact invariant subsets, B a neighborhood of C. Let #%(X)
(resp. #5(X)) be the group of G homeomorphisms of X fixed on X — C (resp.
X — B) with the C-O topology. Then #S(X) is locally contractible in # $(X).

3. Equivariant fibrewise deformations

Let X be a locally smooth I' manifold, I' a compact Lie group. Let
p:E—Z be a G—T bundle [7] with fibre X over the compact G-CW
complex Z. In other words, p is a right I bundle with fibre X over Z and an
equivariant map of left G-spaces, such that g € G acts on E as a I' bundle
automorphism covering the action of g on Z, and satisfying the local
triviality condition that each z € Z has a G, invariant neighborhood U, with
p Y(U)="U, x X as a G, space over U,. G-CW complexes are defined in
[2]. Let A = A’ be closed invariant subspaces of X with A’ a neighborhood
of A. Let B < X be a compact invariant subspace and U an invariant neigh-
borhood of A U Bin X. Let E,, Eg, etc., be the associated G — I" subbundle
with fibre A4, B, etc.

FIBREWISE G DEFORMATION THEOREM. Let h: E;— E be an equivariant
embedding over Z, equal to the inclusion i on E ;. . y. If h is sufficiently close to
i, then there is a G isotopy h,, 0 <t < 1, of h through embeddings over Z such
that hy =ion E, g and h, = h on E, and outside Ex, K a compact set in U,
and h, depends continuously on h. If h =i over a subcomplex Z, of Z, we can
assume h, = i over Z,.

Proof. We proceed by induction on the dimesnion of the G cells of Z.
Over a O-cell G/H, E|G/H = G x 3z X, where H acts on X through a homo-
morphism p: H—T (see [7]). Now h: G x yU— G x g X restricts to an H-
embedding h: U— X. By the G deformation theorem there is an H isotopy
of h restricted to U which extends by equivariance to a G isotopy h, of h
over G/H, h, =i on G xzA and outside G x4z K, h; =i on G xyzB and
hy=iif h=1i

Now assume h, has been defined over Z"~ 1), Note that we can always
replace 4 by a closed neighborhood A; of A ih A’ n U and B by a compact
neighborhood B, of B in U. Then h, is the inclusion on Ey,|Z"™ Y, U, =
Int (4,) U Int (B,).
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Let f: G/H x " !— Z®~V be the attaching map of a G n-cell and
f: G/H x D"— Z®

its defining extension. Then f*E = (G x zy X) x D" and h pulls back to a G
embedding h': (G x g U) x D"— (G x g X) x D" over G/H x D". Also h, pulls
back to a G isotopy

B:(GxxgU)yx S 15 (GxygX)x S !

of ' over G/H x S"~1. This obviously extends to a G isotopy, again denoted
h,, of i’ over G/H x D", using a product neighborhood of $"~! in D" to undo
the isotopy over G/H x S"'. Then h||G x y U, x D" is a G embedding over
G/H x D" which is the inclusion on G x ; U, x S"" !, Now k = h| restricts to
an H embedding k: U; x D"— X x D" over D". Applying the G deformation
theorem to the H embeddings k;: U; — X, d € D, leads to an H isotopy of k
over D" and hence a G isotopy k, of k over G/H x D" satisfying the desired
conditions and with k, = i over G/H x S"~!. Thus reattaching the G cell and
using the G isotopy h, to extend h, over Z® and then k, to further deform the
extended h, rel Z"~ Y we end up with a G isotopy of h over Z™ satisfying
the theorem.

COROLLARY 1. The theorem holds for Z a G retract of a compact G CW
complex and Z, = Z a closed invariant subset, provided we can assume h =i
on a neighborhood N of Z,,.

Proof. Since any compact G CW complex is a G ENR [8], we can
assume Z is equivariantly embedded in a G representation space V and is a
G retract of a neighborhood W < V, say r: W— Z. Then r*(E) is a bundle
over W with fibre X and h pulls back to an embedding r*(h) of r*Ey in r*E.
Further r*(h) = i over r~!(N). Take an equivariant triangulation of W. Then
Z is contained in a finite G subcomplex L; and if the triangulation is suffi-
ciently fine, Z, = Ly = r"*(N), L, a G subcomplex of L. Restricting r*E to L,
the theorem gives G isotopies r*(h), satisfying the theorem for the pair
(L, Ly). Let h, be the restriction of r*(h), over Z. Then h, satisfies the conclu-
sions of the theorem for (Z, Z,).

COROLLARY 2. Let X and Y be G manifolds and Z a compact invariant
subspace of Y. Let A, A’, B, U < X be as above. Let h: Y x U— Y x X be an
equivariant embedding over Y, equal to the inclusion i on Y x (A’ n U). There
is a compact neighborhood K of Z x Bin Y x U; and if h is sufficiently close
to i, a G isotopy h,, 0 <t <1, of h depending continuously on h, such that
hy=ionZ x B,h,=honY x A and outside K and with h, =i if h = 1.

Proof. Let N be the interior of a compact neighborhood of Z in Y. Then
N is a G ENR and N embeds equivariantly in a representation space V with
N a G retract r: W— N of an invariant neighborhood W. As in the proof of
Corollary 1 we may find a finite G triangulation L of a neighborhood of Z in
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W. Apply the theorem to r*h over L and obtain r*(h), which restricts to a G
isotopy k, of h over L n N. By taking an invariant function 4 which is one
on Z and zero outside a compact neighborhood N, = Int (L n N), we can
construct a G isotopy h, of h which is k, over Z and identically h outside N, ;
ie.,

ht(ya X) = kl(y)t(y’ x)'

Then h, satisfies the conclusion of Corollary 2 with K =N, x K;, K; a
compact neighborhood of B in U.

COROLLARY 3. Let X and Y be G manifolds and C a compact invariant
subspace of Y x X. Let U be an invariant neighborhood of C in Y x X and
h:U—>Y x X an equivariant embedding respecting the projection
n:Y x X—>Y (ie, th=mn). There is a compact neighborhood K of C in
Y X X such that if h is sufficiently close to the inclusion i there is a G isotopy
h,, 0 <t < 1, satisfying:

(a) h, respects m;

(b) h, depends continuously on h;
(c) h, is the inclusion on C,;

(d) h, = h outside K;

€ h=iifh=i

Proof. Cover C by a finite collection of sets of the form
G x 4(W, x V) < U,
W, a G, chart about y € Y and V, a G, chart about x € X, H = G, n G,; say
GxgW xV) i=12..r

Any such cover has an invariant shrinking, and for convenience we will
assume C < (Ji=; G x g(Int D(W') x Int D(V?)), D(V) the unit disk in V.

We will use the following trivial observation: Call a G space of the form
G x 4 S an H sliced G space, with H slice S. Then:

LemMa 3.1. Let G xg, S, i=1,2,...,r, be a finite set of sliced subspaces
of the G space X. Then ();—, G x g, S' is the disjoint union of sliced subspaces
of X with (=, g:H;g; " slices (\i=1 9:S', g; € G, where the slices () g;S' and
() g;S* determine the same sliced subspace if and only if there is a g € G with
gieggHy,i=1,...,r.

For each sliced subspace in ()i—; G x s D(V,), pick a slice i=1 9:D(V,).
Then ‘

<‘k=r)l 9:G,, D(Wy.)> X <él g: D( Vx,)>
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is a ()i=; 9:G,,g; " slice, and the corresponding sliced sets are disjoint G

invariant subsets of U. Also every r intersection

()94DO%,) x DIV,)

is contained in one of these sliced sets. Now decompose the r — 1 intersec-
tions similarly, etc., until one comes to the G cubes

G x g (D(W,) x D(V,))) = G x¢, (G, D(W,,) x D(V,))

themselves. The sliced sets of n intersections meet only in higher order inter-
section and the n + 1 intersection sliced sets meet each n intersection

G XH<kU gika,k D(VVy ) X ﬂ gikD(Vx,k ))
=1 k=1

in a set of the form

GxH(U%ﬁﬂDM%)xmm“qm>

k=1

where
H= ()g,G. g;'
k=1

and B(iy, ..., i,) is the uniion of all n + 1 intersections ()2} g; D(V,, ) which
are contained in (i= g, D(V, ).

Now beginning with the r intersections, apply Corollary 2 with A =@ to h

restricted to
< U gi Gx.‘w/y.‘) X < m gi I/xl>
i=1 i=1

to obtain a ()j=, ¢;G,,g; ! isotopy h, with h, = h outside a compact set and
with hy, =i on ((Ji=; 9:G,,D(W,)) x (()i=1 9:D(V,)). Extending h, by equiva-
riance and replacing h with h; where defined, we may assume h is the inclu-
sion on (a neighborhood of) the r intersections. Now applying Corollary 2
inductively with 4 (a neighborhood of) the intersection of the n + 1 intersec-
tions with an n intersection, we may extend h, to (a neighborhood of) the n
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intersections rel the n + 1 intersections. Finally we obtain an extension of h,
to a neighborhood of

13

G xHiD(VV,w) X D(V;.)
=1

and hence with h; = i on C and h, = h outside a compact neighborhood of C
in U.

Remark. The fibrewise G deformation theorem and all the above corol-
laries can be put in the form of Corollaries 3 and 4 of Siebenmann’s theorem
or as a G isotopy extensions theorem. In particular, we have:

COROLLARY 4. Let X and Y be G manifolds, C a compact invariant sub-
space of Y x X, and U an invariant neighborhood of C. Let h,: U— Y x X be
a G isotopy respecting the projection nw: Y x X— Y, with hy the inclusion.
Then there is an ¢ > 0 and an ambient G isotopy H, of Y x X over Y, |t|| <&,
such that

(@ H,=h,onC,
(b) H, is the identity outside h(K), K a compact neighborhood of C,
(c) H, is the identity.

4. Theorem A and the Equivariant Submersion Theorem

Proof of Theorem A. Let f: I* x N— I* x Q, f(t, x) = (t, f(x)), be a G sub-
mersion. It follows from the definition that for each x € N we can choose a
G, chart h,: U,— N about x and a G, chart k,: W,— Q about y = fy(x), so
that for ¢ near O there is a G, isotopy hi: U,— N, hQ = h,, with f b}, = k, 7.,
n.: U,— W, a surjective G, linear map.

To simplify notation, we will identify U, with h(U,) and W, with k(W)).
We will also write U, = V, @ W,, where V, = ker n, and W, = V3, and W, is
identified to W, as a G, space via n,. Then the above conditions become:

For each x € N we can choose a G, chart U, in N about x so that

(@) there is a G, chart W, in Q about y = fy(x) with U, =V, @ W,, W,
equal to W, as a G, space, and

(b) for t near O, there is a G, isotopy h': U,— N, h° the inclusion, with
fibi =mn., n.: V, ® W,— W, the projection

Cover B by a finite number of sliced open sets G xg U,,,i=1,...,r, Uy
a chart about x; satisfying (a) and (b) above. Write U; for U,, etc. Since we
can shrink the cover, we may as well assume say that the sets G x g(Int D(V))
x Int D(W)), i=1, ..., r still cover B.

By Corollary 2 of the G-deformation theorem, there is an ambient G,
isotopy HY of V; @ W,, t near O, with H{ = h on a compact neighborhood
of D(V;) x D(W;), and the identity outside a larger compact set; i.e., we use
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the fact that for ¢ near O, h,(D(V;) x D(W,)) = V;, @ W,. Extend H} by equi-
variance to G X ¢g,(V; @ W;) and then by the identity to an ambient G
isotopy of N.

Assume by induction that an ambient G isotopy H; of N has been defined
for t near O with f, H! = f, on a neighborhood U, of a compact G neighbor-
hood C; of

Ce

G x 6, D(V) x D(W).

i=1

Let D, , be a compact G, neighborhood of D(V,, ) x D(W,,,). If t is close
enough to O, (H) 'h.,,(V,,; ® W,,,) contains a neighborhood U; of
C,nD,,,, U, a G,,, invariant subset of U,. Then (hi,,) 'H.: U,—
Vi1 ®W,,, is a G, isotopy commuting with f, = m,,,, since f,h,; =f5.

By Corollary 4 of the fibrewise G deformation theorem there is a G,
isotopy K, of V.., ®W,,,, commuting with n.,,, K,=(h,,) 'H, on
C,n D,,, and the identity outside a compact neighborhood of C;n D,
in U,. Define k', as H' on C, and K, K, on D,,, and by equivariance on
G X g,,,Ds+1. Then ki, is a well defined G isotopy of a neighborhood of

UG xg(D(V) x D),

13

and f,k!., =f,. By Corollary 2 of the G deformation theorem there is an
ambient G isotopy H:,, of N with H:,, = k!, , on a neighborhood of

s+1

UG xg(D(V) x D(W),

i=1

and thus f, H: ., = f, on this neighborhood.

Before we state the G submersion theorem we recall:

DEFINITION 4.1. A G manifold N satisfies the Bierstone condition if for all
H < G, the components of M ,/G are non-closed as manifolds.

DEerFINITION 4.2. Let X be a G space. Two G spaces over X with section
(E;, pi, 8)), i = 1, 2, are called micro G equivalent if there are invariant neigh-
borhoods E? of s(X) in E;, i = 1, 2, which are equivalent as G spaces over X
with section; i.e., there is a G equivalence ¢: E?— EJ such that ¢s, = s, and
P2 = p;.

DErFINITION 4.3. An n dimensional G microbundle & over a paracompact
G space X is a G space with section over X, (E(&), ps, Ss), such that & is
locally micro G equivalent to a trivial n dimensional G space with section;
ie., each x € X has a G, neighborhood U, such that p~!(U,) is micro G,
equivalent to U, x V,, V, an n dimensional G, representation space, with
obvious projection and O-section.
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Example 1. If & is a G vector bundle, then the O-section makes it into a
G microbundle.

Example 2. If M is a G manifold, then the tangent microbundle T = tM,
Ef)=M x M, p. M x M— M the projection onto the first factor, and
s.;: M— M x M the diagonal map, is locally micro G trivial.

DErFINITION 4.4. If & and A4 are n and q dimensional G microbundles,
n > g, over X, then a G microbundle surjection is a map ¢: E(&)° — E(A)° of
invariant neighborhoods of their sections such that:

(a) ¢ is a map of G spaces over X with section.
(b) For each x € X there is a G, neighborhood U, and local micro G,
trivializations h: U, x V,— p~(U,) and k: U, x W,— p~}(U,) with

k“l¢h=1xn:U,xV,->U,x W,
n, a G, linear surjection.

Two such are identified if they agree on a neighborhood of the section.

DEFINITION 4.5. If & is a G microbundle over X and 4" a G microbundle
over Y, then a G microbundle surjection over a G map f: X — Y is a map

b: E(6)° — E(N)°

of G spaces with section over f of invariant neighborhoods of the sections,
such that the induced map f*¢: E(6)°— E(f*4)° is a G microbundle surjec-
tion.

DErFINITION 4.6. Let N and Q be G manifolds. Then R(tN, tQ) is the sim-

plicial set whose k simplices are G microbundle surjections
¢: A* x E(tN)°— A* x E(zQ)°

over G maps ¢: A* x N— A*¥ x Q which commute with projection onto the k
simplex A

DEerINITION 4.7. Let S(N, Q) be the simplicial set whose k simplices are
submersions

fiA¥ x N> A* x Q
over A*. Then the differential d: S(N, Q)— R(tN, tQ) is given by
d(f),: EeEN)—> EQ), te A%, d(f),=f, xf,: Nx N—Q x Q.
G-SUBMERSION THEOREM. If N satisfies the Bierstone condition. then
d: S(N, Q)= R(zN, 1Q)

is a homotopy equivalence.
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The G submersion theorem follows from Theorem A in the same way as
the submersion theorem of Gauld [3] follows from his non-equivariant
version of Theorem A, except that the induction step (over the G-handles)
has to follow the order of induction given in [2] for the G-immersion
theorem. We will not repeat the arguments here.
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