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THE CARDINALITY OF THE SET OF LEFT INVARIANT
MEANS ON A LEFT AMENABLE SEMIGROUP

BY

ALAN L.T. PATERSON

1. Introduction

The study of the cardinality of the set of invariant means on a (discrete)
group essentially goes back to Banach ([1], [2]) who showed that there exist at
least two invariant means on the circle group. In his famous paper [5] of 1957,
Day continued the study, showing that many infinite amenable groups admit
more than one left invariant mean. Following progress made by Granirer, C.
Chou ([4]) obtained in 1976 the following definitive result: the cardinality of the
set (G) of left invariant means on an infinite amenable group G is

where EI is the cardinality of a set E. The method used by Chou has become
canonical. The idea (expressed precisely in (3.1)) is to construct a "large"
disjoint family z of subsets of G, each of which supports a left invariant mean,
then to close up these subsets and their complements in the Stone-Ch
compactification fiG, and then to find an even larger family of left invariant
means supported on intersections of translates of these sets. This procedure is
also followed in the present paper which deals with the result corresponding to
Chou’s for a left amenable semigroup S.
The semigroup case is substantially more difficult than the group case owing

to former’s more complicated multiplication structure.
Luthar [16] obtained the first positive result for the semigroup case: if S is

abelian, then S has more than one invariant mean if and only if it does not
contain a finite ideal. Granier [8]-[10] showed, along with other results, that
I(S)l is infinite if S is infinite, left amenable and left cancellative. Chou [3]
showed that if S is infinite and cancellative, then I(S)l >_ 21SI. The work
of Granirer [8], [9] and Klawe [14] led to the following definitive result dealing
with the case where the span z(S) of the set of left invariant means on S is
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finite dimensional: the space 1(S) is n-dimensional (n < ) if and only if S
contains exactly n finite, left ideal groups.
This leaves the case where dim 1(S) is infinite dimensional to be dealt with.

It is convenient, for this case, to deal with the cardinal I(S)l. In her paper
[15], Maria Klawe introduced the cardinal xl(S), where

xl(S) min(lBI B c S, m(B) 1 for all m E(S)}.

Theorem 2.6 of [15] asserts that dim 1(S) is infinite if and only if xl(S) is
infinite, and that if xl(S) is infinite, then I(S)l 22’’’ (= diml(S)).
However, there is a set theoretic difficulty in the proof (on p. 238), and this
seems to be irredeemable. (We will show in (3.9) that the above Theorem 2.6 is
true in many cases.)
An intrinsic difficulty with the cardinal xl(S) is that in order to calculate it

in general, we need to have detailed information about every (!) left invariant
mean m in order to know which B’s will give m(B)= 1. (As Klawe shows,
however, the situation is much better when S is amenable.) It is thus natural to
look for another cardinal, defined in terms of the algebraic structure of the
semigroup, to replace xl(S).

Such a cardinal m is introduced in 2: we define

n > 1, { $1,..., S } is a partition of S, SI,... S S 1"
In many cases ((2.6)), m equals the simpler cardinal , where min( IsSl:
s S ). Our main theorem ((3.6)) asserts that if m is finite, then dim l(S) <

while if m is infinite, then (S 22" ( dim t(S)).
The problem of determining I(S)l is a special case of the following more

general, naturally occurring problem. Suppose that the left amenable semi-
group S has a left action on a set X. A simple application of Day’s fixed-point
theorem shows that the set (X) of S-invariant means on X is not empty.
What is the cardinality of (X)? We obtain partial progress with this problem,
introducing the cardinal re(S, X) which is defined along the same lines as m
above, the partition {SI,...,Sn) of S being replaced by a partition
(X1,..., X,, ) of X. We show in (3.3) that /f rrt(S, X) is infinite and ISI -<
re(S, X), then I(X)l 22’’. We have been unable to remove the require-
ment ISI -< ra(S, x) from the result. (However, as (3.6) shows, when X S,
then this requirement is unnecessary.)
The main technical proof of the paper is that of (3.2). We claim that this

argument is paradigmatic for constructing large sets of invariant means, and
justify this claim by showing how other known cardinality results for sets of
invariant means can be derived using such a proof.
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2. Left invariant means and the a.l.c, condition

Let S be a semigroup and X be a left S-set, i.e. there is a left action
(s,x)sx of S on X. A mean on X is an element ml(X)’ with
m(1) 1 Ilmll. There is a right action (q, s) s of S on I(X) given by
qs(x) q(sx) (x X). The dual left action of S on I(X)’ preserves the set
of means on X, and such a mean is called (left) inoariant if sm m (s S).
Thus a mean m on X is invariant if and only if m(Os)= m(q) for all

I(X), s S. The set of left invariant means on X is denoted by
(S, X), or simply, by (X). The space (p lo(X)’: sp p for all s S}
of left invariant functionals in I(X)’ is denoted by I(S, X).
Of particular interest is the case where X S and S acts by left multiplica-

tion. The semigroup S is said to be left amenable if (S)4: . Right
amenability and (two-sided) amenability for S are defined in the obvious ways.
Now let X be as in the first paragraph above. The well-known fixed-point

theorem of Day yields that if S is left amenable, then (X) 4: .
Every mean m on X can be realised as a finitely additive, positive measure of

total mass 1 on X: simply write m(E) m(XE) (E c X). The mean m is left
invariant if and only if

m(E) m(s-lE) for all E c X, s S,

wheres-IE= { x X: sx E }.
The subsets of X which support a left invariant mean admit a well-known,

elegant, algebraic characterisation which we now state. A proof can be given
along the lines of [6, Theorem 7.4].

(2.1) PROPOSITION. Let S be left amenable and E X. Then there exkts
m (X) with m(E)= 1 if and only if E is left thick, i.e. given F ,(S),
the family offinite subsets of S, there exists x X such that Fx E.

(2.2) DEFINITION. The set X is said to be almost left cancellative (a.l.c.) (for
S) if, whenever n > 1, (X1,..., X,} is a partition of X and s,...,s, S,
then

-IXl. (1)

(Here, EI is the cardinal of a set E.)
To justify this nomenclature, suppose that X is a.l.c, and let s S.

Applying (1) with (Xx,..., X, } (X), we have IsSl IXI. So the action of
S on X is "close" to the left cancellative case in the sense that multiplication
of X by s does not "collapse" X too much.
Note that if the action of S on X is left cancellative (in the sense that s

if sx tx for some x X) and X is infinite, then, obviously, X is a.l.c..
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The semigroup S is said to be a.l.c, if it is a.l.c, with respect to the left
multiplication action of S on itself. We will return to the a.l.c, condition in this
case later in the section. For the present, we introduce an important cardinal
associated with the condition.

(2.3) DEFINITION. The cardinal re(S, X), or simply m, is defined by

re(s, X) min{ =JsX n >_ 1, { Xx,...,

is a partition of X, Sl,..., sn S}.
The significance of the cardinal ttt is that if rrt is infinite, then, in certain
circumstances, [(X)I 22m (See (3.3).) If X is a.l.c., then m IXI.

If Y c X, let Sr ( s S: sY Y}. Obviously, Sy (if non-empty) is a
subsemigroup of S, and Y is a left Sy-set. If Sy , then we take E(Sr, Y)
to be the set of means on Y.
The next result enables us to reduce to the a.l.c, case.

(2.4) PROPOSITION. Let n > 1, ( XI,..., Xn) be a partition of X and
S1,... S S be such that IAI m, where A (.J__lSiXi Let Y be such that
A YcXandlYI =m.

(i) If Sy 4 , then Y is a.l.c, for Sy, and m(S,, Y)= m.
(ii) m(Y) > 0 for all m (X), and the map m (mlr)/m(Y) is one-to-

one from (X) into (Sr, Y); further, the map p Pit is a one-to-one, linear
map from s t( S, X) into t( SY, Y).

(iii) I(S)l-< I(Sr, Y)l.

Proof (i) Let (Y1,..., Ym} be a partition of Y, and tl,..., Sy. For
1 <i<n, 1 <j<m, let Aij=XiNsIY. Suppose that AjfAkt4: .
Since (X1,..., X,} is disjoint, we have i= k, and since sflYj. slY
s/-X(Y N Y) and (Y1,..., Ym} is disjoint, we have j l. Further, if x X,
then x Xi, for some i’, and SrX Yj., for some j’ (since srXr A Y), so
that s A i,j,. It follows that

{Agj" I < i< n,1 <j < m}

is a partition of X, and so

m<

It follows that m(Sy, Y)-- YI rrt as required.
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(ii) Let m (X). For each i,

m(Y) > m(A) > m(s,X)= m(sl(s,X)) > m(X).

Since ET=lm(Xi) m(X) 1, we must have m(Y) > 0. Let my mly/m(Y).
As in the semigroup case [5, pp. 518-519], m r (Sr, Y). We now show that
the map m my is one-to-one.

Suppose that m,n (X) are such that m r n y. Now 1(S, X) is an
abstract L-space (cf. [6, p. 9]) under the canonical ordering. Let p n(Y)m
m(Y)n. Then p 1(S, X) and p vanishes on I(Y). So for q, > 0 in I(Y),

IPI(q’) sup(Ip(q)l q lo(Y), 0 Iql q’) 0. (2)

If IPl 0, then IPl kr for some r (X), k > 0, and since r(Y) > 0, we
would have IPl(Y) > 0, contradicting (2). So IPl 0, and hence p 0. Thus
n(Y)m m(Y)n, and evaluating at X gives m n as required. The proof of
the second assertion of (ii) is similar.

(iii) This is an immediate consequence of (ii). []

The next result shows that when m is infinite, the set Y above can be taken
to be left thick. This result, for X S, follows from [14].

(2.5) PROPOSITION. Let rrt be infinite and S be left amenable. Then there
exists a left thick subset Y of X such that A c Y and YI m.

Proof Let m (X), and

k sup(m(RA): R is a countable subset of S ).

For each n > 1, we can find a countable subset R of S such that m(RnA) > k
n-1. Let R U,1R,. Then R is countable, and since, for each n,

k- n -1 N m(RA) _< m(RA) _< k,

we have m(RA) k. Let Y A t RA. Since m is infinite, we have Y[ rrt.
It remains to show that Y is left thick in X. By (2.1), it is sufficient to show
that re(Y)= 1.

Suppose, on the contrary, that m(Y) < 1, and let Z X- Y. Then m(Z)
> 0. Define n lo(X)’ by n(E)= m(E Z). It is sufficient to show that
n 1(S, X); for then n/re(Z) E(X)and vanishes on Y, contradicting (2.4
(ii)).
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To this end, let E c X, s S. Then

n(s-lE) m(s-IE C Z) m(s-XE) m(s-lE (3 Y)
m(E)- m(s-lE O Y)
n(E)+ [m(E 3 Y)- m(s-E Y)].

We therefore have to show that

Now

m(E c r)= m(s-’E c Y) (3)

-1E 0 s-iV c (s-1E ("1 Y)I,_)(s-1y Y),
s-1E Y c (s-1E ("1 s-1y) i,_)(y..., s-1y),

and applying m to both of the preceding inclusions and noting that

m(s-1E o s-1y)= m(s-l(E o Y))-- m(E 3 Y),

we see that (3) will follow once we have shown

m(s-lyY)=O. (4)

To prove (4), observe first that m(Y) k m(sY), since

k m(RA) < re(Y) _< m(sY) m(({s) sR)A) < k.

Similarly, m(sY u Y) m(Y), and it follows that m(Y , sY) 0. Thus

0 m(sY , Y) m(s-l(sy)As-Iy) < m(s-l(sy)/x Y) + m(Y/xs-Y)
m(s-(sY)) m(Y) + m(s-iY/ Y) m(s-iY/x Y),

and (4) is established.

We now turn to the case in which X S. In many cases, the cardinal m
(= re(S, S)) is equal to a more easily calculated cardinal (S) (or simply, ).
The cardinal is defined by"

P min(IsSl" s S }.

Thus is the smallest possible cardinality of a right ideal of S. Since (S } is a
partition of S, we always have m < . In general m < p. For example, if S is
a finite group (xx,...,xn} and we take Si= (x- x} and si=x in the
definition of m (see (2.3)), then we obtain m 1, while, clearly, p SI.
Our next result shows that for many left amenable semigroups S, m .

(Characterise the class of left amenable semigroups S for which m p?)
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Recall that a semigroup S is left [right] reversible if the family of right [left]
ideals of S has the finite intersection property. Every left [right] amenable
semigroup is right [left] reversible.
A semigroup S is extremely left amenable or ELA if it admits a left invariant

mean which is multiplicative on loo(S ). A remarkable result of Granirer [10]
asserts that S is ELA if and only if wherever F o-(S), there exists s S
such that Fs (s }.

(2.6) PROPOSITION. Let S be left amenable. Consider the following:
(i) S is right reoersible;
(ii) S is amenable;
(iii) S is left cancellatioe;
(iv) S is right cancellative and left amenable;
(v) S is ELA.

If S satisfies (v) or if is infinite and S satisfies either of the conditions (i), (ii),
then rrt . If s is infinite and satisfies either of the conditions (iii), (iv), then S
is a.l.c. (so that rrt IS I).

Proof Suppose that (i) holds and that is infinite. Let ($1,..., S, } be a
partition of S and s s, S. Since S is right reversible, we can find
u ni=iSsi Let S be such that tis u. Then luS, ItisSl < IsiSil,
and using the infinitude of ,

luSI max IseSl-
l<_i<n

It follows that < rrt, and since the reverse inequality is always true, we have
rrt.

If (ii) holds, then so does (i), and so rrt if p is infinite.
Now suppose that (v) holds. Let S, s be as above, and let

Z= {s S: sis=sforl<i<n).

Then Z 4: , and is clearly a right ideal of S. Now for each i,

z) si z,

so that for z Z,

Thus rrt >_ p, and so rn .
This proves the first assertion of the proposition, and we turn to the second.

Suppose that S is infinite. If (iii) holds, then ((2.2)) S is a.l.c..
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Suppose, then, that (iv) holds. Let S,s be as above and B .Jin=lSiSi We
need to show that IBI ISI. If IBI < ISI, then an argument of Klawe [14]
shows that there exists a sequence (Yn) in S such that the family (ynB:
n > 1} is disjoint: but then m(B)=0 for any m (S), and we have
contradicted (2.4. (ii)) (which obviously applies with B Y).

This completes the proof of the second assertion of the proposition. [3

In connection with (iv) above, Klawe has shown that there exists a right
cancellative, left amenable semigroup S which is not left cancellative. (In fact,
an example is provided by a semidirect product F X p P where F is the free
commutative semigroup on an infinite countable set.) Such a semigroup
belongs to the class ag of a.l.c, but not left cancellative semigroups. Here are
some more examples of semigroups in the latter class.

Let S be a left amenable, left cancellative, infinite semigroup and F be a
left amenable semigroup which is not left cancellative and is such that
FI < Sl. Then S F ag. Now let {S } be a sequence of finite, left
amenable semigroups, not all left cancellative, such that Sn is a subsemigroup
of Sn+ and [K,[ where K, is the kernel of S,. Then T .JnC=lSn is a.l.c.
but not left cancellative. Finally, if V, W are semigroups with V left amenable
and a.l.c, and such that there exists an epimorphism Q" V W and a cardinal
m such that [Q-X({w})[ < m < VI for all w W, then W is also a.l.c..

3. Cardinalities of sets of invariant means

The following result, relating left thick subsets to sets of left invariant
means, is well known in one form or another, e.g., Chou [3], [4], Rosenblatt
[19], [20], Paterson [17], and Klawe [15]. For completeness, we briefly sketch
the proof. Let X be a left S-set as in {}2.

(3.1) PROPOSITION. Let S be left amenable, A be an infinite set and (0:
e A } be a disjoint family of left thick subsets of X. Then there exists a subset
of (X) such that:

(i) x is contained in the set Ext (X) of extreme points of (X);
(ii) I’I’1 22’*’.

In particular, I(X)I > 221A1.

Proof A result from set theory (cf. [12], (16.8)) yields a family {Nv"
3’ F} of subsets of A such that I’l- 2 IAI and, whenever 3’1,.--, 3’m are
distinct elements of F and ei {1, c }, where, for B c A, B B and B A

B, then
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Let P (1, c }r, so that PI 22’A’. For -{

_
F, let Ev U (0: e Nv }. Let

P P, 3q,...,’gn be distinct elements of F and sx,..., s S. Then we can
find

For E c X, set E X, E
e A], we have

X E. Using the disjointness of the family ( 0:

N S/--1 (Ep(?i)).[ 2D s-lorl (5)
i=1 i=1

and the latter intersection is non-empty since the left thickness of 0 entails
((2.1)) the existence of x X such that { s,..., s, }x c 0.
The left action of S on X extends, in the natural way, to give a left action of

S on the Stone-Cech compactification/X of X. Each map --, s is continu-
ous on/X. The Gelfand transform enables us to identify l(X) with C(BX)
and, dually, lo(X)’ with the space M(BX) of complex, regular Borel measures
on/X. For B c X, let B- be the closure of B in/X.

Let p be as above. Then by (5), the family {(s-(EvP())) s S, " F}
of compact subsets of/X has the finite intersection property, and hence

Ce Cl{(s-l(E((r’))-’s S,V F}
is non-empty and compact. If q P (p), then, for some "0 F, q(,0) 4=

P(’o), and for any s S,

Cp (7. (s-l(EyPo(Y0)))- Cq-- (s-l(Ey0))) -,
and since s-1EP()’lo 0 s-l(Eqo(’/) we have Cp cq Cq
s, S and -/ F, then

. Further, if

so that tCp Cp. Thus Cp is S-invariant, and by applying Day’s fixed-point
theorem to the natural action of S on the set of probability measures in
M(flX) vanishing outside Cp, we obtain a mean mp Ext E(X) such that mp,
regarded as a probability measure on fiX, vanishes outside Cp. Now take

(mp, p P}.

We now come to the fundamental proposition required to establish our
theorems. The use of transfinite induction to establish the existence of in-
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variant means goes back to Banach [1]. More recently, Chou, Rosenblatt and
Klawe have used such arguments to calculate or estimate the cardinalities of
sets of invariant means.
The following proof is of this kind, but is rather more involved since it uses a

"transfinite recursion within a transfinite recursion" argument. The author
wishes to claim that this argument is paradigmatic: we will show later that,
with minor modifications, the same argument applies to give the cardinalities
of other sets of invariant means.
The family of finite subsets of a set Y is denoted by o(Y).

(3.2) PROPOSITION. Let X be infinite and be a.l.c, for S. Let ISI IXI. Let
be the smallest ordinal of cardinality XI. Then there exists a disjoint family
0: e ) of left thick subsets of X.

Proof Clearly, Iow(S)l < Io(X)l IxI since x is infinite. Thus I.(S)
x X IXI [al, and we can find a bijection Q: a ow(S) x x. Let F/ be
the first coordinate of Q(fl) (fl a) and note that o-(S) (F/: fl a} and
that if F ow(S), then 1(/3 a: F/ F )l lal Using transfinite recursion,
we will construct a family (A" e, fl a, e </3 } of subsets of X having the
following properties:

(i) AnA= if e4=

(ii) A[ -< Ifll if fl is infinite and A{ is finite if/ is finite;
(iii) A c A whenever
(iv) n {s-(A{)" sF}
Suppose that 7 a and that sets A{ have been constructed so that (i)-(iv)

are satisfied for fl, fl < 7. Let

If 7 is finite, then K is finite by (ii), so that KI < Xl. If 3’ is infinite, then,
again using (ii), KI-< 13’13-- I’1 < Sl. So in both cases, KI < XI. Let
FGg {s ,Sn}.
We now construct, again by transfinite recursion, a family { F]: e < 3’ } of

subsets of X--- K such that:
(a) r {x,,...,x,,},
(b) ITnr(= e ife4:r/;
(c) for each e, there exists x X such that six x,i for 1 < < n.
To this end, suppose that 8 <3’ and that sets (F]: e<6) have been

constructed so that (a), (b) and (c) are valid for e, r/< 8. Let E to (FI:
e < 6 } and L K to E. Then ILl < XI since X is infinite and both KI, EI
< Igl.
Now define recursively a disjoint family (X1,..., X ) of subsets of X as

follows- X1 s{L and, for > 1, X (s[-L)--- (Ui-r=xX,.). Note that
[,3i=XSin-1L U=IX. Suppose thatUX X. Then UT= Isigil -< ILl < IXl,
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and we contradict the fact that X is a.l.c.. So LJ=IX :: S. Choose x[ X
.Jin=lXi), and let x[, six. Clearly, X[, t L, and (a), (b) and (c) are true for
e, rl < 8. This completes the construction of the sets F].
Now set

We now check that the conditions (i)-(iv) are satisfied for /,/1 "Y"
Obviously, (iii) holds. We need only check (i), (ii) and (iv) when
/3=’y. Suppose that e, rt<y with e4:. We can assume that e<. If
E 0 < "/’ ’0 1 < " and fl’= max{ flo, fli }, then by (iii)and (i), Ao
A’A A’= . Noting that F w F( c X-- K, we have, using (b),

ZI AT- [(U{AO E #o < "Y})U F’’/] r [(U{ AI" ,i, . fiX < T’})U I"T]

Now (i) follows for/3 y. Noting that F] is finite and that (c) holds, it readily
follows that (ii) and (iv) hold for fl y. This completes the construction of the
sets A (e </3 < a).
For each e a, let

Since A rh A J if e 4: /, it follows that the family { 0: e a } is disjoint.
It remains to show that each 0 is left thick in X. Let F -(S) and

A= { fl a" F= Ft }.

By construction, IAI al Xl. Since el < Sl, there exists fl A with
e < ft. Then by (iv),

(6)

Let x rq { s-10e: s F ). Then Fx c 0, and so 0 is left thick in X.

(3.3) THEOREM.
ISI -< m. Then

Let S be left amenable, rrt (= rrt(S, X)) be infinite and

I(X)l 22".

Proof Let A be as in (2.4) and Y SA. Since SI < rrt and IAI rrt is
infinite, we have YI m. Clearly, in the notation of (2.3), we have Sy S.
By (2.4), Y is a.l.c, for S, with re(S, Y)= rn. Then (3.2) applies to give the
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existence of a disjoint family { 0: e a} of left thick subsets of Y, where
levi m. Each 0 is obviously left thick in X, and from (3.1), we have
I( X)I >_ 2 2’". For the reverse equality, it follows, using (2.4 (iii)), that

I(S)l _< I(Y)I-< II(Y)’I- 22’Y’= 22m-

(3.4) COROLLARY.
Then I(X)l 22".

Let S be countable and left amenable and m be infinite.

(3.5) NOTES. An unsatisfactory aspect of (3.4) is the requirement that
ISI < m. What can be said if ISI > m? We will show in (3.6) that if X S,
then the above requirement can be removed. Here is another instance in which
the conclusion of (3.3) remains valid even though ISI > m. Let X be the set of
finite sequences (Xl,...,Xn) (n > 1) with x (-1,1}. Let S be the Carte-
sian product group ( 1, 1} P, where P is the set of positive integers. Then X is
a left S-set, where, for f S, (x xn) X, we define

f(x,...,xn) (f(1)Xl,...,f(n)Xn).

Note that S is amenable since it is abelian. Then m IXI 0 while ISI
(= 2o). For each n, let X, be the set of sequences in X of length n. Then
{ Xn: n > 1 } is a disjoint family of left thick subsets of X, and it readily
follows that E(X)I 2z.
When S is a group and X is infinite, then m ISl and (3.3) in this case is

noted by Rosenblatt and Talagrand [21]. They ask the question: IfX is infinite,
can there eoer exist exactly one G-inoariant mean on X? (Of course, in such a
case, GI > Sl.) The corresponding question for semigroups can be for-
mulated in the obvious way.
Another question arising from (3.3) is the following. What happens if m is

finite (and the condition ISI -< m is no longer required)? In this case, (2.4. (ii))
yields that , t(S, X) is finite-dimensional.
We now turn to the case where X S. The next result is the most important

one of the paper.

(3.6) THEOREM. Let S be a left amenable semigroup and m re(S, S).
(i) If rrt is infinite, then (S ) 22;
(ii) If m is finite, then st(S, X) is n-dimensionalfor some n < , and n is

the number offinite, left ideal groups in S.

Proof Suppose that m is infinite. Let A and Y be as in (2.5) and let T be
the subsemigroup of S generated by Y. Then IT m, and in the notation of
(2.3), T c Sr. By (2.4. (i)), T is a.l.c.. Applying (3.2), there exists a disjoint
family { 0: e a} of left thick subsets of T, where al m. Following Klawe
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[14], we show that each 0 is left thick in S. Indeed, let F o-(S). Since T is
left thick in S, we can find s S such that Fs c T. Since Fs -(T) and 0
is left thick in T, we can find T such that (Fs)t 0, i.e., F(st) 0. So 0
is left thick in S as asserted. By (3.1), ]E(S)] > 22". For the reverse inequality,
using (2.4. (iii)) and (3.3) we have IE(S)I < ]E(T)] 22. Thus (i) is estab-
lished.
Now suppose that m is finite. Using (2.4. (ii)),

dim ,(S, X) < dim ,(Sy, Y) < dimly(Y)’ < .
So t(S, X) has finite dimension n, and by [14], n is the number of finite, left
ideal groups in S. (Using the finiteness of A, a straight-forward, direct proof of
the preceding assertion can be given.) This establishes (ii). []

(3.7) COROLLARY. Let S be left amenable and satisfy any of the conditions
(i)-(v) of (2.6). Let min(IsSl: s S}. If is infinite, then I(S)l 22.
If is finite, then st(S, X) is finite-dimensional.

Proof Use (2.6). (A version of the result when (2.6. (ii)) holds is given by
Klawe [15].). rn

(3.8) COROLLARY ([15], [4]). Let S be an infinite, left amenable semigroup
which is either left or right cancellative. Then [(S)[ 221sl.

Proof From (2.6), p Sl.

In [15], Maria Klawe considers the cardinal xl(S), where

xI(S) min{lBI B c S, m(B) 1 for all m (S)).

We now show that, under the assumption of the generalised continuum
hypothesis (GCH), in many cases, xl(S) m 19.

(3.9) PROPOSITION. Let S be left amenable and assume GCH. If is infinite
and S satisfies any of the conditions (i)-(v) of (2.6), then xl(S) Ilt .

Proof Since m(B)= 1 for every m E(S) and every right ideal B of S,
we have rl(S) <_ . On the other hand, if C c S is such that ]C] rl(S) and
re(C) 1 for all m (S), then E(S) can be regarded as a subset of l(C)’,
so that, using (3.7),

22= I(S)I

The GCH then gives 19 < x/(S), so that xl(S), rn
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We conclude by justifying the earlier claim that the argument of (3.2) is
paradigmatic. We will outline proofs to show that other known cardinality
results can be readily derived using arguments along the same lines, thus
indicating that (3.2) provides a unified treatment of such results.

References for the results below are [15], [4], [7], [13], [17], [18] and [21].

(3.10) THEOREM. (i) Let S be an amenable semigroup and

n min(lsSsl: s S}.

Let S ) be the set of invariant means on S. If rt is infinite, then (S 22n.
If rt is finite, then S contains a finite ideal and (S) has exactly one member.

(ii) Let G be an infinite, amenable group and *(G) be the set of inversion

invariant means on G. Then I*(a)l 22.
(iii) Let G be an infinite, amenable group. For each F (G), let

CF= (X G" FxF(FxF)-= }.
Then the following statements are equivalent:

(a) I(G) *(G)I 2=’’;
(b) (G) *(G);
(c) for each F ,(G), we have CF 4= .

(iv) If G is an infinite, abelian group, then (G) 4= *(G) if and only if the
set B ( x2: x G) is infinite.

Proof (i) Suppose that n is infinite. Let so S be such that IsoSsol ,
and let TO soSso. If m (S), then the two-sided invariance of m easily
gives m(To) 1 so that I(S)l -< 2=.

Suppose that rt is infinite, and let a be the smallest ordinal of cardinality ft.

Well-order -(To): (To)= { Fa" fl ct). Construct subsets A of TO such
that (i), (ii) and (iii) of (3.2) are satisfied, and the following condition holds:

(iv)10(x-lABey-l" x, y F/} 4= whenever e < ft.
To achieve this, we let K, Fv be as in (3.2) and construct sets F] in TO K
such that (b) of (3.2) is satisfied, and the following conditions hold:

(a) F] {xV,i,j 1 < i, j < n};
(c) for each e, there exists x To such that sixsj=x,i,j for 1<i,

j<n.
Let 8, E be as in (3.2). Then find a disjoint family { TU: 1 < i, j < n } of

subsets of To such that

s-’(K U E)s) n To UTj

and siTijsj C K U E. Since every xToy(x, y S) supports every m (S),
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we can find s r]i,j(SiToSj). If Ui,Tij To, then IsTosl < n, a contradiction.
So we can find x[ TO (Ui, j.Tj.). The construction of the sets F], A, 0,
now follow as in (3.2), with x,i,j six[sj. Then show that if F o(T0), then
for each e,

M{a-lO,b -1" a,b F) 4: ,
The preceding conclusion is true with TO replaced by S, since TO is both left
and right thick in S.
Now modify the proof of (3.1)" take Cp to be the set

f’l(((x-lE(") y-1) -" x, y S}.
Each Cp is compact, non-empty and is both left and right invariant for S. Use
Day’s fixed-point theorem to find mp ,(S) supported on Cp. The first
assertion of (i) follows.

If rt is finite, then a straight-forward semigroup argument gives the second
assertion of (i).

(ii) Follow the proof of (i) with S G T0, n ]G]. We require that the
sets A satisfy the additional condition"

(V) 2 (Ae)-I A.
The sets F have to satisfy (a)t, (c) and the condition:

(b) - [rE u (FT) -11 n it{ u if e n.
We select

Now take

A (U(: < B < ,))u I’ (F:) -1

A r U(F) -1

Note that 0e--1 0e, and so E-1 Ev.
Now form the sets Cp. If m (S) vanishes outside Cp, then m*, where

m*(B) m(B-1) (B c G), is also in ,(S) and vanishes outside Cp. Thus
1/2(m + m*) is in (S) and vanishes outside Cp, and the desired result follows.

(iii) Trivially, (a) implies (b), so that it suffices to show that (b) implies (c)
and (c) implies (a).

Suppose that (c) does not hold. Then we can find F0 o(G) such that for
all x G, FoxFo ( FoxFo)- 4 . For a, b, c, d F0, let

Aa,b,c, d= {X G" axb (cxd)-l}.
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Then G is the union of the sets Aa, b,c,d, and if E c Aa, b,c,d, m (G), then
m(E) m(E-1). Thus ,(G) *(G), contradicting (b). So (b) implies (c).
Now suppose that (c) holds and let F -(G). We claim first that [CF[

[G[. To prove this, it is sufficient (cf. the proof of (2.6. (iv))) to show that CF is
left thick in G. If F o-(G), then Fix CF, where x is chosen so that
(HxH) C (HxH) -1 with H (FF U F) (G). Thus CF is left thick
as required. We now show that (a) holds.
We modify the proofs of (i) and (ii) as follows. The condition (v) is

replaced by

(v) AC3(A’) -1= whenever e_<<a,_<fl, <a.

To achieve this, we require the sets F] to be contained in G (K U K-1), and
to satisfy (b) of (3.2), (a), (c) above and the condition:

(d) F] c (Fnv)--l= whenever e < ,, < V-
Let E be as in (3.2), and B i,j(s-l(Ku K-U E E-)sfl). Then
[B[ < [G[, and since [CF[ [G[ where F- Fv, we can find z G such that

(FzF) n(FzF)-x ,
The construction of I’v now proceeds as in (i), and we obtain the desired sets

A. Each Ev is such that Ev N E-1 . If m (S) vanishes outside Cp
and Cp c E-, then m(Ev)= 1, m(E-1) 0, i.e., m ,(G)-- ,*(G). The
desired result now follows.

(iv) Let G be infinite and abelian. Suppose that for some F (G) we
have Cv . Then for all x G, FxF C (FxF)- 4= , so that B c F-4 is
finite. Conversely, if B is finite, then we can find F0 o-(G) with B F0-4
and obviously, Cro 4: . Thus B is finite if and only if (c) of (iii) holds, and
the desired result follows from (iii).
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