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BIVARIATE CARDINAL INTERPOLATION BY SPLINES
ON A THREE-DIRECTION MESH

BY

CARL DE BOOR1, KLAUS HOLLIG1’2 AND SHERMAN RIEMENSCHNEIDER

Dedicated to l.J. Schoenberg
to whose insight and sense of beauty we are all indebted

1. Introduction

In this paper, we carry Schoenberg’s beautiful cardinal spline theory [$2],
[$3] over to a two-dimensional context which is not just the tensor product of
the univariate situation. We find that we must work harder, yet must be
satisfied with less precise results.
We are after a bounded cardinal interpolant to bounded data. This means

that we are looking for a function of the form

If=

_
ajM(.-j)

jZ

with a /o(Z2) which agrees with a given bounded function f on Z 2. Here,
M is a fixed function of compact support. In Section 2, we follow Schoenberg
[$1] in describing necessary and sufficient conditions on the Fourier transform
of M to insure the correctness of the interpolation problem, i.e., the existence
and uniqueness of solutions.
We are particularly interested in using for M a box spline, i.e., the two-

dimensional "shadow" of an m-dimensional cube, as given explicitly in (1)
below. Let Z be a set of vectors in R. We find it convenient to change the
definition [BHt]

of the box spline M Mz to include an appropriate shift which makes the
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origin the center of the support of M. This means that we use the definition

Mq, / q)
-1/2,1/2] z

E h(’)’) dX. (1.1)

This gives the Fourier transform M^of M the symmetric form

M (x) I-I S(f*x) (1.2)
’z

with

S(t)
sin t/2 (1 3)
t/2

It is obvious from this formula that M Mz is unchanged if one or more of
the " Z are replaced by their negative; i.e.,

MAz Mz (1.4)

if A diag(_ 1,..., +_ 1). Further, if A is any matrix, then

Mz(X) Mz(A*x) and Maz(Ax)= Mz(x)/detA. (1.5)

This allows one to deduce symmetries in M in case AZ equals Z after,
possibly, some elements of AZ have been multiplied by -1.
The set Z of directions can, of course, be chosen arbitrarily. But since we are

interested in having

S span(M(. -j))jez

be a simple piecewise polynomial space, we choose Z from Z 2. It is shown in
[BHx] that the integer translates M(.-j), j Z 2, of the box spline are
linearly dependent (when allowing for infinite linear combinations) in case the
direction set Z contains two vectors which span a proper sublattice of Z 2.
Linear independence is an obvious necessary condition for the cardinal inter-
polation problem to be correct. Thus, up to obvious symmetries, this leaves the
three vectors (1, 0), (0,1) and (1,1) as the only candidates for the directions "in Z.
With this restriction, S is a space of piecewise polynomial functions, of

polynomial degree ZI- 2 or less, and with possible discontinuities only
across the three types

x(1) k, x(2) k, x(1) x(2) k, k Z
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of mesh lines. The overall smoothness of the elements of S depends on the
multiplicities of the directions in Z. Such details, as well as the relationship of
S to the space of all piecewise polynomial functions on such a three-direction
mesh, of degree ZI- 2 and of specified smoothness, are all discussed in
[BH2].

In Section 3, we supply certain details concerning symmetries of such a
three-direction box spline and its Fourier transform. We prove the correctness
of cardinal interpolation with such a box spline in Section 4. We spend the
major effort of this paper in Section 5 where we prove that, under reasonable
conditions, the cardinal interpolant /f of any suitably smooth function f
converges to f as ZI . Specifically, we prove such convergence under the
condition that f is the Fourier transform of some compactly supported
measure, following entirely the path established by Schoenberg [S] who showed
in the univariate case that such convergence could be had whenever suppf
G (-r, r). We find, though, that, in our bivariate setup, there are many
different sets playing the role of this interval, and which of these sets is relevant
depends on the manner in which ZI goes to infinity.
The final section is devoted to the many detailed estimates on which the

arguments in Section 5 are based.

2. Cardinal interpolation

Let M: R2 ---) R be a continuous function with compact support, and denote
by

S St span(M(. -j)" j Z 2 }

the space generated by its integer translates. Cardinal interpolation with M
concerns inversion of the linear map

S L l" f flz. (2.1)

We say that cardinal interpolation with M is correct if this map is 1-1 and
onto, hence boundedly invertible, and denote its inverse by IM or I. In other
words, cardinal interpolation with M is correct iff there exists, for every
bounded sequence f /oo(Z2), a bounded function If S which agrees with f
on Z 2. The interpolation problem, i.e., the determination of If, is equivalent to
the algebraic problem of determining the coefficient sequence a for If=
EajM(.-j) so that alo and EajM(.-j)=f on Z 2. Hence the cor-
rectness of cardinal interpolation is equivalent to the invertibility of the matrix

A (M(:- (2.2)

as a map on loo. Since A is a banded (bivariate) Toeplitz matrix, we have the
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following necessary and sufficient condition for the correctness of cardinal
interpolation.

THEOREM 2. Cardinal interpolation with M is correct iff

P(x) PM(X):= EM(j)eijx (2.3)

does not vanish.

Proof If P(x) 0, then (e-i9x)9z_ (kerA) cq loo and this contradicts
the assumption that A is 1-1. On the other hand, if P does not vanish, then the
inverse of A can be expressed as a Toeplitz matrix,

e-i(j-k)x
(A-1)jk

_,)2 P(x) dx/2r. (2.4)

In view of the geometric decay of the Fourier series for l/P, we have

1( A -1 ) j/ __< const X19- ,1 (2.5)

for some X X(P) (0,1). Therefore, A -1 is bounded on lp(Z 2) for any
p [1, o].m

It is convenient to write the cardinal interpolant in Lagrange form:

If= EfgL( -j)

with

L LM:= 18 Y’.(A-1)ogM( -j) (2.6)

the fundamental function of the interpolation process. The Fourier transform
L of L is particularly simple. Combining (4) with (6), we obtain

L^= MP. (2.7)

We will also make use of the identity

P(x)= EM"(2rj- x)

which follows from applying the Poisson summation formula Ef(j)
Y’.f(2rj) to (3).

3. Cardinal interpolation with a box spline

In this section, we develop in some detail facts about cardinal interpolation
with the box spline Mz. Recall from Section 1 that (M(. -J))9 z is linearly
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dependent if Z contains two vectors which span a proper sublattice of Z 2.
Linear independence of (M(.-j)) is an obvious necessary condition for
cardinal interpolation with MZ to be correct. Thus, up to obvious symmetries,
the only relevant case to consider is the case when the only directions in Z are

d1:= (1,0), d2.’= (0,1), and d3.’= (1, 1).

We show in Section 4 that, with this restriction, cardinal interpolation with Mz
is always correct.
Assume from now on that Z=(dl:r,d2:s,d3:t). In this case, Z is

characterized by the vector

n’= (nl, n2, n3):= (r,s,t)

of direction multiplicities, and we will freely write n instead of Z whenever it
is necessary to indicate by subscript the dependence on Z of some quantity.
Further, the general formulae given in Section 1 simplify. For example,

with

] (U,O)-- S(u)rs(o)Sa(u -- u) t, (3.1)

sin(t/2)

Further, the characteristic polynomial P Pn and the Fourier transform L of
the fundamental spline L Ln have the representations

P(2ru, 2rv) r-I"l(sin( ru))(sin( rv)) (sin( r( u + v)))

x E (-)’+’+’+ ’,, (u + k)’( + )’(u + + k + )’
and

1/L"(2ru, 2rv)

k,lZ
(__)rk+sl+t(k+l)( u--kU )r( o+l u+v+k+l

Let A* denote the transpose of A. The relation

Mz(X ) M^z(A*x)

(3.2)

(3.3)

valid for any matrix A together with the fact that
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in case A diag(el,... elnl) with e (- 1, 1 }, all i, implies certain symme-
tries of M and M if the matrix A leaves the set Z+_.’=
{dl, d2, d3,-dl,-d2,-d3} invariant. Denote by A the group of all such
invertible matrices A. Each A A is associated with a permutation 0A $3
(:= symmetric group on 3 elements) by the condition

Adi (doA(),-doA(i)}, i= 1,2,3.

From the two matrices corresponding to a given o $3, we choose one, A o, in
such a way that the six matrices form a group and we call this group A /. Thus,

Aod { do(i) -do(i)} for all o $3, (3.4)

and one choice for the group generators are the three matrices

A (12) A (13) A (23)-1 0 1 -1 0 1

corresponding to the transpositions (12), (13), and (23). With the definition

O( n ) (/’/o(1), no(2), no(3)),

it follows from (1.5) and from (4) that

M,,(x) Mo(.)( +Aox), and Mo(.)(y) M( +A*oy ). (3.5)

This implies

(3.6)

and

Lo(.)(y) L ( +_A*oy ). (3.7)

Of particular interest is the case r s t, i.e., when the direction multiplici-
ties are all equal. In this case, o(n)= n, all o; i.e., (5)-(7) hold with o(n)
replaced by n. For example, writing out in detail the relations (6) for
P P(s,s,s), we get

e(u.o) P(o..)= e(u + e(-..u +
(3.6’)

The relations for M P^ and L^will be used frequently in the sequel. Since
they are given in terms of the transposes of the matrices in A, we now consider
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R(23)
R

R(12)

Fro. 3.1

A* ( A*" A A} in more detail. Set

d’.’=(_10 01) d’
Z’_+.’= {d’" d Z+} {(0,1),(-1,0),(-1,1),(0,-1),(1,0),(1, -1)).

Since d’*d 0, we see from (4) that A* leaves Z’___ invariant. To further
illustrate the action of the group A*, we divide R2 into the six cones R o,

o $3, as indicated in Figure 3.1. It is easily checked that

A*oR Ro for all o S3. (3.8)

4. The correctness of cardinal interpolation with

In this section, we show that cardinal interpolation with M is correct for all
choices of n Z3+.

THEOREM 4. For all n Z 3+, p, is strictly positive.

Since P is 2rr-periodic, this amounts to the claim that P,,(x)> 0 for all
x [-r, rr ]2. This is the bivariate analogue of Schoenberg’s well known result
for univariate cardinal spline interpolation. To recall this result, denote by N
the univariate cardinal B-spline of degree r, and by Qr the corresponding
characteristic polynomial given by

Q(x):=_,N(j)ex.

Schoenberg showed in [$1] that

mJnQ,.(x)=Q,.(,rr)=2(2),.+l,,o_ (__) v(r+l)

x rr (2v+ 1)+
The fact that, for any r, the minimum is attained at x r is a consequence of
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the total positivity of the matrix (Nr( j k))j.,k z" In view of this result, one
might think that, in the above theorem, minu, vP(u,v ) P(r,r). This is
trivially true in the tensor product case, i.e., when n (r, s, 0). However, in
general, the point at which Pn attains its minimum depends on n. It would be
interesting to determine its location for special choices of n. The nicest
conjecture in this context (cf. Section 5) is that

minP(u,v)= e(2r/3,2r/3) if n= (r,r,r). (4.2)

In the proof of the theorem, we make use of (3.6). This allows us to assume
without loss of generality that r > s > t.
We first consider two cases which reduce to Schoenberg’s result.
The tensorproduct case n (r, s, 0). Here, we have M,(u, v) Nr(u)Ns(v ),

and this implies that P,(u, )= Qr(u)Qs(o).
The case n (r, 1, 1). Since the open support of M, intersects exactly one

mesh line of the form (., l), viz. the meshline (., 0), it follows that, in this case,

M(k, l) ( Nr(k)’o,
This means that cardinal interpolation with M, reduces to univariate interpo-
lation with N on each of the lines (., l), Z. In particular, P(u, ) Qr(u).

For the proof of Theorem 4, it remains to consider the cases where the
multiplicities are all at least 1, with equality for at most one. We make this
assumption for the remainder of this section.
To prove the positivity of P, we use the representation (2.10) in the form

P(2rrx) EM~(x +j), (4.3)

with

M (x) M (2rx).

Recall from (3.1) that, for x (u, v) and j (k, l),

M" (x + j) r-lnl(sinru)r(sinrrv)S(sinr(u + v))’

X
(_)rk+sl+t(k+l)

(4.4)
(U -Jr- k)r(u ql_ l)S(u JI- u JI- k Jr- l)

It is sufficient to show the positivity of P(2r ) on [0, 1/2] 2 for arbitrary n.
This follows from (3.6) since, by (3.8), [-1/2, 1/2] 2

_
u A AA*[0, 1/2] 2. For

x [0,1/2] 2, we now show that the three positive terms

M’(x), M-(x-d), and M-(x- d2) (4.5)
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J4

J1

FIG. 4.1

dominate the sum in (3). To this end, we associate each of the other terms with
one of these (even to the point of splitting one of the other terms between two
of these) and show that each of the resulting three sums, when divided by their
respective dominant term, is less than 1. For ease of argument, we actually split
the sum into altogether ten parts, as indicated in part by Fig. 4.1.
To simplify notation, we set

M~ (x + J)lb,,(j) b,,,,(j,x),= -=(; +j,,)
1,2,3, (4.6)

with

Jl 0, J2 -dl, J3 -d2.

We now prove that

E
j (J2 UJ5

j J3 UJ6

E b(j) + E b(l,-l) < 1,
jJx UJ4 14:0

b2(j)+ Y’. bE(-1, l)+b2(-1,-1)/2 < 1,
I/I >

b3(j) + E b3(l,-1) + b3(-1,-1)/2 <1.
I11 >

(4.9)

Since each of the summands (divided by its appropriate dominant term) other
than the three dominant terms (5) occurs in (7)-(9) exactly once, we conclude
from (7)-(9) the positivity of P.
The estimation of the various sums in (7)-(9) is straightforward. In each

case, we find a majorant which is independent of x [0, 1/2] E and n. For this,
recall that we are assuming that r, s, > 1 with at most one equality.
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We begin with the sum Ejlbl(j). By (3.1) and (6), for x (u,v) and
j (k, l) we have

bl(J)= u-(- v+l u+v+k+l

Since k, >_ 0 for j (k, l) J1 and we are assuming that u, v [0, 1/2], this
quotient is largest when u v 1/2; i.e.,

bl(j) <
1/2 + k 1/2 + 1 1)’+k+l

This bound is largest when the exponents r, s, are as small as possible, i.e.,
when n (1, 2, 2), (2, 1, 2) or (2, 2, 1). Since

k,l>O 1/2+k 1/2+l l+k+l
.1723...

for these values of n, we conclude that

Y’b(j) < .18. (4.10)

Similarly, one verifies that, for j (-k, -l) J4 and x [0, 1/2] 2,

bx(j) <
k- 1/2 l- 1/2 k 1)’+l-1

and so obtains

since

Zbl(j) < .02,
J4

(4.11)

E (2k- 1)-r(2/-- 1)-’(k + l- 1) -/= .0101...
k,l>l

for (r,s,t) (1, 2, 2), (2,1,2), or (2,2,1).
Finally, for j (-l, l) and 4= 0, we have

bl(-l,l)<
( 1/2 ]r

( 1/2 r( ___1__./2___2----i-/7) ,-1+1/2)
l>0,

l<0,
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and so obtain

b1(l, l) _< E + 1/2 1/2
+ + 1/214=0

1/2,_ 1/2)] =.5.

(4.12)

Combining (10)-(12) establishes (7).
The other inequalities are proved in a similar fashion and we only list the

estimates involved.

Proof of (8).

b2(j) u+k v+l
u+v-1
u+v+k+l

The case j (- k, l) 4.

b2(J) < ; l+ 1/2 k-

and

k=2 l=0 + 1/2 k- .30

(2,2, 1)
for (r, s, t) (2,1,2).

(1,2,2)

Therefore Y’%b:,_(j) < .35.
The case j ( k, l) Js.

b2(j ) < 1/2
l- 1/2

1

and

E E - l-1/2 k’l
k3 1=2

.027...

.081

.010

(2,2, 1)
for (r, s, ,) (2,1,2).

(1,2,2)

Therefore jsb2(j) < .1.
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The case j (- 1, l), III > 1.

b2(j) _<
( 1/2 1 1
l+1/2, (-1)

1

l>1,

l< -1,

II1>1 1>1

1/2 1 )21+ 1/2)(l-1 +( 329

The case j (- 1, 1).

v 1-u-v
< 1/3b2( 1, 1)<_l_v2_u_v_ (at (u, v) (0,1/2)).

Proof of (9). Since ];,s,t)(u, u)= ],r,t)(U, U)and therefore

b2,(r,s,t)((u,o),(k,l)) b3,(s,r,t)((o,u),(l,k))
the inequality (9) follows from (8) by interchanging the roles of u and o as well
as those of k and l.

This completes the proof of Theorem 4. m

5. Convergence of cardinal interpolation

This section is devoted to the main goal of our paper, a study of the
convergence of the cardinal interpolant to smooth functions as the degree
tends to infinity. We prove the analogue of I.J. Schoenberg’s basic result:

THEOREM [$2]. If f is the Fourier transform of a measure with support in

(- qr, qr), then its cardinal spline interpolant Irf of degree r converges to f as the
degree tends to infinity, i.e., IIf- Lfll --" 0 as r c.

This theorem is a consequence of the fact that the Fourier transform of
the fundamental spline converges to the characteristic function of the interval
(-, r).
The bivariate situation is more complicated. Here, the limit of depends

on just how n goes to infinity. Recall from (3.3) that

1/L^(2rrx) 1 + E e(x)a.,(x), (5.1)
jZ2\O

with e(x) ( 1,1} and

a,,,(k,t)(U ):= (5.2)u+k v+l u+v+k+l
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Define the "middle component"/(n) of n by the requirement that it equal the
middle or second number in any ordering of the three numbers r, s, t, and set

Then, the typical summand in the right hand side of (1) is, up to sign,

an,j(X ) (an,,j(X)) t(n).

This shows that L(2rx) is close to 1 for large tt(n) provided an,,.(x ) < 1 for
all j 4: 0.
The set

(x" a,,,,j(x) < 1 for all j Z2\O}
depends on n’. In particular, we cannot expect it to converge as [nl
unless n’ n/it(n) converges, to some 3-vector m, say. Here, we are willing to
allow rn to have infinite components. For example, if n (l,s, s2), then
tt(n) s and n’ (l/s, 1, s) (0,1, ) as s . But not every rn [0, ]3
is a possible limit. By construction of tt(n), n’= n/p(n) has exactly one
component equal to 1 and, among the other two, one must be < 1 and the
other must be > 1. Thus the set

N (n [0, oz]3" no,l)< 1 no,a)< noo for some o $3 )
makes up the collection of all possible limits. On this set, we set up a topology
of sorts by defining the open ball of radius r around rn N by

l/ni, mi

We extend the definition (2) of an, j to all n N, by pointwise limit if
necessary.

In what is to follow, the sets

m (X" am,j(X < 1 for j J),
with

J:= Z= ((1,0),(0,1),(-1,1),(-1,0),(0,-1),(1,-1)}

play a major role. Note that 2 fn,. A qualitatively correct picture of f,, is
given in Figure 5.1 which shows the roughly hexagonal shape of f, and also
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F(o,-1)

FIG. 5.1

shows the six curves

Fn, j {x c= C_j" a,,,(x)= 1}, j J

which contribute to the boundary, 8f.. Here, C_j is the union of the two
cones R which contain -j.

THEOREM 5.1. For m N, let Xm be the characteristic function of m"
Then, for any d > O, there exists e > 0 so that

I/_ (2rx) X.,(x)l < C(1 + Cdist(x, 19"m)) -p’(n) (5.3)

for all x with dist(x, O’m) d and all n (0, 00) with n’ n/t(n) B(m),
and with the positive constants C and C independent of m, n, d, or x.

Proof The proof is based on a series of propositions which we merely state
as needed and prove at leisure later. We begin with the following:

PROPOSITION 5.1. f,, depends continuously on n in the Hausdorff topology.

This is part of the corollary to Lemma 6.4 below. It implies, given d > 0, the
existence of e > 0 so that dist(2,,,m)< d/2 for all n’ B(m). Conse-
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quently,

dist(x, Of,,,) < 2 dist(x, a,,)

for all x with dist(x, Of,,,) > d and for all n’ B(m). It is therefore sufficient
to prove (3) with m replaced by n’.
For its proof, we use (1) and we consider two cases.
(i) x fin’- We need:

PROPOSITION 5.2. Let

J’ A*(1,1)= {_+(1,1), +(2,-1), _+(-1,2)}.

For n N and x f,, ,,
(1 + Cdist(x, On)) -1

a.,(x)<_
(1 -[- C[jl)-x,

jJUJ’
(5.4)

j Z2\(0 UJUJ’)

with the positive constant C independent of n, j, or x.

This, together with (1), implies that

[1//_ (2rx) 1[ < E (a,,,,(x))
j*0

< 12(1 + Cdist(x,

Cl(1 d" Cdist(x, oa,,))

+ E (1 + Cljl) -(’

jgiOuJuJ’

and so proves (3) for this case.
(ii) x ft,,. For this case, we need:

PROPOSITION 5.3. The integer translates of f form, up to a set of measure
zero, a partition of R2; i.e.,

U j + a2, a.n(j+a.)= forj :/: O.
jZ
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We conclude that there is j 4= 0 so that x x’ + j with x’ 2;. With this,
we use the periodicity of the characteristic polynomial P to write for such x,

U(x, +s)
e(2 (x, + j)) u (x,}

L (2rx’)

Therefore

I/_ (2rx)l I/_ (2rx’)la,,,(x’) IL (2rx’)l(a.,,,(x’)) (").

By (5), I/_(2rx’)l < C since x’ f.-;. Thus (3) is proved for this case once we
show"

PROPOSITION 5.4.
n R3+. Then

Let x x’ + j with j Z2 0 and x’ f, and with

a,,,j(x’) < (1 + Cdist(x, Oa,,)) -x (5.6)

for some positive constant C independent of n and x.

This finishes the proof of Theorem 5.1.

THEOREM 5.2. Let f be the Fourier transform of a measure with support
strictly inside 2w for some m N; i.e.,

d dist(suppf(O(2ram) ) > O.

Then there exists e > 0 so that, for all n Be(m),

II/- Ifll C(1 + Cd) -*(")llf II 1,

with Ilf II1 the total variation off? The positive constants C, C do not depend on
m, d, orn.

Proof Fix d>Oandchoosee>Osothat

suppf (2ra.,) and dist(suppf
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for all n’ B(m). We have to estimate

2
f _i+yl_ eiXyf(x) _,f(j)L,(x -j) f(x) E(2)- fa (j)e (y) dy

Since 2rfl,, is a fundamental domain, i.e., translatesby its 2rrj, j Z 2, form
a partition of unity (by Proposition 5.3), and suppf

___
2rf,,, (f(j))j. z are

the Fourier coefficients of the periodic extension of the measure f. Using the
weak convergence of the Fourier series of a measure, we obtain

f(x) -(Ii)(x ) (2r)-a/_[f (y) -^ (y)/_ (y)]eiX’dy.

Applying Theorem 5.1 yields, for n’ Be(m ),

Ilf- Ifll
< (2r)-2C:(1 + Cd)-’<n)[lf^[I / [[L (. / 2rj)ll,suppf’llf^llx

j0

< [C:(l + Cd)-’(n) / jqoujuJ’E (l + C[[)-(n)]]’f^"x
_< C:(1 + Cd)-(n)llf^ll. 1

We now discuss briefly the particularly symmetric and special case n
(r, r, r). Figure 5.2 shows the level lines for Pr e(r,r,r) for r 3. Note that
its minimum seems to occur at (2vr/3, 2r/3), and this can be verified analyti-
cally for r < 4. We conjecture that this is no accident, but is the case for all r.

Figure 5.3 shows L L(r,r,r for r 3. The fast decay is quite striking,
making plain that cardinal interpolation with this L would be strongly
essentially local.

If we assume that f L2 with suppf 2m, then the convergence of I,,f
can be stated in a particularly nice way. We define a bivariate "Whittaker"
operator

W: 1_ --+ L" f _, f(j)x (.-j),
jZ

with

2rr
cosT(u + o)

(u-20)(v-2u)

2" (2u- v)COS

+ +
(u+v)(u-2v)

2r
(2- u) -/COS

(u + 2u)
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the Fourier transform of X Xa, 2 2rrf](1,1,1). Note that the translates of

X are orthogonal in L2. As in the univariate case [S_], the "Whittaker" series
provides the limiting operator for cardinal interpolation I(r,r,r as r o.
More precisely, we have

W- Ir" 2 L211 - 0 as r

If f L2 and suppf 2r20,x,x), we have W((f(j))z2 f and hence (7) is
an L_-version of Theorem 5.2.
To prove (7), we first show that the cardinal interpolation maps I I(r r, r)

are bounded as maps from 2 to L2 uniformly in r: For f 12, we have

II rfll: IIEffa’)e-’; < <. + 2rrJ)ll 2 < cllfllo,2 2"

By the uniform boundedness principle, it is therefore sufficient to check the
convergence (7) for the unit vector ej 12. But this is an obvious consequence
of (3).

In the univariate setting, [MRR] proved the convergence in Lp for all
p (1, ), but we leave the corresponding bivariate problem to a later paper.

[R] extended Schoenberg’s univariate result to include the possibility that f
has support at +__ r. This requires the realization that L]( + r) 1/2. Theorem
5.1 says nothing about the limit of/_,(x) in case x 0(2’/rm). For the special
choice n (r, r, r), such a statement is relatively easy to make.

COROLLARY. For the special choice n (r, r, r ),

1/3, xAz,
(5.8)lim L(x)

1/2 x 0(2ra)\Az,OQ

with z (2r/3, 2 rt/3).

Clearly, our result concerning the convergence of I still holds if f is a
measure, absolutely continuous in a neighborhood of O2rf, and supported in
2rfm. Our result is best possible in the following sense. If suppf 02r2 4: ,
then, in general, Inf does not converge to f. For example, if f(x) cos(z’x),
then

Irf(x) -+ E ei(az)*x
r--* o A A

2rr
(2u v) + cos (2v u)cos T

This follows from the corollary. However, it requires slightly more precise
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information about the convergence asserted in (8). The heuristic argument is
that

1(2r)2(I,f) =^= E8+2,/_ (z + 2rrj)

and therefore

I,,f (8,z-1/3) asno.
A A*

Here, denotes the Dirac measure at .
6. Detailed estimates

In this section, we prove Propositions 5.1-5.4 and various lemmas needed in
the proofs. This amounts to a detailed study of the functions an, j and the set
f, and how they depend on n N. In particular, we need to study the
boundary of ,. This boundary is made up of pieces of curves given implicitly
by the equation a,, j(x) 1 for some j J.
We use the symmetries of the given situation. Recall the notation

o (n) ( n o(1), n o2), n oo))"
We conclude from (3.5) or directly from (5.2) that

a,,,2(x) ao(,,),a,,./(A*ox). (6.1)

This implies that

and therefore

+Ao*,, ,,{,,) (6.2)

Ao*(2,, R) 2o{,, Ro, (6.3)

where, to recall from Figure 3.1, R R(1 RZ+.
Next, we consider the boundary of f, (cf. Figure 5.1). Each -j J lies in

two cones R o. With C_j. their union, we define the curve

F, { x C_i" a,,,(x) 1}. (6.4)

The boundary of f.
(1) that

is made up of segments of these curves. It follows from

(6.5)
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LEMMA 6.1. For j J, denote by iv, Jl the vectors spanning the union Cj. of
the two cones R containingj. For n (0, )3, the curve Fn, j passes through the
points -Jo,-j/2,-ix and is symmetric with respect to the point -j/2.
Moreover, it is monotone (in an appropriate coordinate system) and is Lipschitz
continuous, uniformly in n.

Proof
relations

The symmetry with respect to the point -j/2 follows from the

a,,j(x-j) 1/a,,_j(x)= 1/a,y(-x)

which are immediate consequences of the definition (5.2) of a,,j.. For the rest,
it is, in view of (5), sufficient to consider j (-1, 0). In this case, the curve

Fn, j. is given by the equation

u- 1 u+ v- 1
1. (6,6)

Using the fact that u >_ 0, u + v >_ 0, and solving for v, we obtain

([ (u)], 0<u<l (6.7)v- -u+ 1+ i-u

where a r/t. This shows that, for any a (0, oz), the points -J0 (1, -1),
-j/2 (1/2, 0), and -Jl (0, 1) lie on the curve. Moreover we have

dv/du -1-I1 a (1 u) -2 (6.8)+
1-u i-u

which shows that

dv/du < 1, (6.9)

with equality only if u 0. This proves the remaining assertions of the
Lemma. m

LEMMA 6.2. Let Jo, Jl be the two vectors which span the cone R o. For
n (0, ), the curves I’,,-o and F,,-1 intersect at a unique point zn, R o.

The boundary of consists of the segments of the curves F,j connecting the
points in J/2 and z,, o, o 3.

Proof In view of (3) and (5), it is sufficient to consider the case o (1),
Ro=R and J0=(1,0), J1=(0,1). By (9), F,,(_l,0) has slope < -1, with
equality possible only at the point (0, 1). Similarly, a direct computation shows
that Fn,(O,_l) has slope between -1 and 0. Since F,(_l,0) and F,(0,_l) pass



554 C. DE BOOR, K. HOLLIG AND S. RIEMENSCHNEIDER

through the points (0, 1), (1/2, 0) and (0, 1/2), (1, 0) respectively, they intersect
at a unique point z,,(x (0, 1/2) 2. To show that the boundary of 2 inter-
sected with R consists of the segments connecting (0, 1/2) with zn,o), and

z,,o) with (1/2, 0), we prove that, for x (u, v) R,

an,(_l,o)(X), an,(O,_l)(X ) ( 1

implies that

an,j(x) < 1 for alljJ.

Indeed,

a"’(-x’)(x)= u- 1 u + v- 1
< 1

implies u < 1/2, and, from an,(O,_l)(X < 1, it follows that v < 1/2. This
implies

an’(-X’l)(X) u 1 v / 1

and the other cases can be checked just as easily.

LEMMA 6.3. For all m N, Fm, j

Hence Lemma 1 is valid for all n N.
limn-+ m{ Fn,j: n (0,)3(hN).

Proof Without loss of generality, we consider only the case j (-1, 0).
We claim that

Im,j

BL((O, 1), (0, 1/2), (1/2, 0), (1, 1/2), (1, 1))
if rn 0 and/or rn oo

BL((O, 1), (1/2, 1/2), (1/2, 0), (1/2, 1/2), (1,
ifmx= ooand/orm3=0

-1))’

where BL(xx,..., Xm) denotes the broken line with vertices Xl,...,xm. For
example, consider the first case. By (9) and the symmetry of the curves Fn, a.
and Fro, a., for n (0, oo) we have

dist(Fm,j., Fn,a. < u,

with u. such that a n, j(U n, 1/2) 1. From (6), we obtain

7 t/r In( u
ln(1 un) lnu

+ 1/2) -ln(1/2
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If n m with m 0 and/or m 00, we must have { and, by the
above equation, this implies that u, 0. The second case can be handled
similarly, m

Lemma 3 is a particular case of the next lemma which states that
depends continuously on n.

LEMMA 6.4. For n, m N, dist(F., j, Fro, j) 0 as n - m.

Proof In view of Lemma 3, we may assume that m (0, z) 3. Moreover, it
is sufficient to consider j (-1, 0). In this case, it follows from (7) that
F,,j- Fro, j pointwise, both curves being viewed as functions of u. By the
uniform Lipschitz continuity of the curves, this implies the assertion of the
lemma, m

Lemmas 1-4 give a qualitative description of the boundary of 2,. We
summarize the main features in the following result.

COROLLARY. (i) 02 consists of segments of the curves F,, j. connecting the
points in J/2 with the intersection points z,,o, a 3.

(ii) 2 is piecewise monotone and is Lipschitz continuous, uniformly in n.

(iii) 2 depends continuously on n in the Hausdorff topology.

Note that this provides the proof of Proposition 5.1.
To give a few examples, we list in Figs. 6.1-6.3 all cases for which

piecewise linear boundary. Moreover, we have

’(1,1,0)-- ’(oc,1,0)-- "(1,oc,O)
’(1,0,1) ’(oc,0,1)= ’(1,0, oc)

(0,1,1)-- (O, oc,1)-- ’(O,l,oc)"

has a

(6.10)

FIG. 6.1 n (1, 1, 1)
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(-V2, 1)

FIG. 6.2 n (1,1,0), (1,0,1), (0,1,1)

FIG. 6.3 n (1,1, oc), (1, oc, 1), (oc, 1,1)

We take the occasion to prove the following observation which stresses the
underlying hexagonal structure.

PROPOSITION 6.
A*[0, 1/2) 2

o A ,,,, int conv J/2,

Proof We claim that, for any n,

{(u,o)" u,o > 0, u + < 1/2}
___
R a, __c [0,1/2)2 (6.11)

This follows from Lemma 1, in particular from the fact that the curves
and Fn(0,_ 1) pass through the points (1/2, 0) and (0, 1/2) and, as functions of
u, have slopes < -1 and > -1, respectively. To complete the proof, note
that n (0, 1,1) gives equality in the first inclusion of (11) while n (1,1, 0)
gives equality in the second, m

We are now also ready for:

Proof of Proposition 5.3. Because of the continuity of , as a function of n,
it is sufficient to consider n (0, m)3. In this situation, Figure 5.1 gives a
qualitatively correct description of ,. Because of the geometry of and the
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FIG. 6.4

symmetry relations (2), it is sufficient to establish the following claims:
(i) j + Fn, j Fn,_j for all j J.
(ii) The curve (1, 0) + n,(1,-1) passes through the point z,(1).

The first assertion follows from the relation a,j(x -j) 1/a,_j(x) alluded
to earlier and directly derivable from the definition (5.2) of an, j. As to (ii), note
that

an,(-1,0)(Zn,(1)) 1 an,(0 1)(Zn,(1))

implies that

1 an,(O,_l)/an,(_l,O)(Zn,(1))-- an,(1,_l)(Zn,(1)-(1,0));

i.e., Zn,(1 (1, O) + F,,(x,_1).

The next three lemmas state various estimates for the functions an, j

for the proof of Proposition 5.2.
needed

LEMMA 6.5. For n [0, m)3 with at most one component less than 1, we have

a,,,j(x) < [1 + cdist(x F. j. a-)] -1
x fa-, jJ, (6.12)

with c a positive constant which does not depend on x, n, or j.

Proof We may assume that x (u, v) R, in particular that u,v
[0, 1/2]. We consider each j J separately and suppress all references to n.

(i) j=(1,0). We have

< 1/2aj(x) 1 + u 1 + u + v

This proves (12) since dist(x, Fn, j

the fact that min{ r, } > 1.
n 2-) < 1. For the estimate, we have used
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1, O)

Vo)

r,(o,_ 1)x (u. v) \ .,,,
FIG. 6.5

The case j (0,1) is similar.
(ii) j (-1, 0). Fig. 6.5 may be of help in following the argument. Let

(0, 1) and let z (u0, Vo) z(1 be the intersection of the two curves
and Fi. We consider two cases.

For v < vo, there exists

e > dist.(x, Fj. a-)

such that (u + e, v) Fj., i.e., aj(u + e, v) 1. It follows that

a+(u, a (u, +

1-u u+v+e 1-u-v

< ( U q- U ) max{r’t}u+v+e

< (1 + e) -.
For v >_ vo, we have dist.(x, F c -)= uo
and therefore also increasing

u. After possibly increasing

aj(x)= 1- u 1- u- v

we may assume that x e Fi, i.e., ai(x)- 1. Using the fact that a(z)- 1
a i(z), we obtain

a/(x)=
a(x)ai(z) =( u/(1- u) )ag(z)a,(x) Uo/(1 Uo)



BIVARIATE CARDINAL INTERPOLATION 559

For0 <p <q< 1/2, we have

q(1-p)
1+

q(1-p)-p(1-q)
1+

p(1- q) p(1- q)
q-P > 1+4(q-p).

p(1- q)

This inequality implies that

1/a(x) > (1 + 4rlu- Uol)(1 + 4s
V V0

/,/ U0
[u Uo] ). (6.13)

This proves the desired estimate for aj(x) in case r > 1. If r < 1, we use the
second factor of the product (13) together with the fact that sl(v Vo)/(u
uo) can be bounded below, uniformly in n and x. Since both (u, v) and
(uo, Vo) lie on the curve

Fi li-v 1-u-v

this last fact is established once we show that, on that curve,

min sldv/dul > c (6.14)
Co<V< 1/2

for some positive c independent of n. For this, a direct calculation yields

1 1 (u+v)(1-u- v)
1/Is dv/dul -+

s

1 1
<l+v<l+.tvo

Since, for (u, v) Fi,

v [+tln[ u+v
sln i"v 1-u-v

=0,

and u [0, 1/2], we conclude that, for vo < 1/4,

too
svolnlvo/(1 Vo)l

lnl(u0 + Vo)/(1 Uo- Vo)l
>_ vo/ln

1/2 + vo
1/2- vo

and this shows (14).
The case j (0, -1) is treated similarly.
(iii) j (1, -1). We have to show that

u+l
u

> 1 + cdist((u, v), Fj. C’l (6.15)
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/-1,O)
zo uo,Vo

FIG. 6.6

and this is obvious for r >_ 1 in view of our assumption (u, v) R r3 f-. To
prove (15) for r < 1, let (-1, 0) and consider the situation as depicted in
Figure 6.6. We may assume that x (u, v) 0f R, since increasing u

decreases [(u + 1)/ul and increases dist(x, Fj 2-). For x (F(_l,0)to
F(o, 1)) N f -, we have

dist(x, F2 2-) dist(x, zo) u u o. (6.16)

This follows because Fj has nonnegative slope as a function of u and passes
through the point (-1/2,1/2), while (F_l,o) to F0,_l) 2- is contained in
the triangle spanned by (1/2, 0), (1/2,1/2), (0, 1/2). Also note that (cf. Figure
6.6)

uo -u1, vo 1/2 1/2- V1. (6.17)

This is a consequence of the radial symmetry of the curves F with respect to
the point -i/2. In Figure 6.6, the curve F, which passes through z0 is meant
to be the curve F_l,0)-j. For the proof of (15), we consider the two cases.

(a) x F_ 1,0) 2-; i.e., u < u. In this case, from a(_ 1,0)(x) 1 we
obtain the estimate

1/a(x) a(_l,o)(x)/a9(x )
u+l rl--v U+V

V 1--U--V

1 U
V

u+v
1-u-v

>l+u,

where we have used the fact that s, > 1, and the last inequality is easily
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checked. Since

lu-Uo]-< ]u] + lUo] 21ul,

this proves (15) for this case.
(b) x F(o x) 2-, i.e., 0 < u < u Uol. First we assume that

o- 1/2 >_ lUol/3. (6.18)

Since zo Fj., we have

aj(x) aj(zo)/a2(x )

( u + 1)/u
(Uo + 1)/uo (1 vo)/vo

1+
( /
(1 vo )/vo

> 1 +(vo v).

In view of lu uol -< 21uol < 6(00- 1/2) < 6(00
der the assumption (18).

Next, suppose that

v), this proves (15) un-

o- 1/2 < luol/3. (6.19)
We claim that

](u o + 1)/uolr > 1 + cluol, (6.20)

and this finishes the proof of (15) for this case, in view of (16) and the
inequalities

1/a(x) > u+l[r>-u uo+l
uo

>_ 1 + cluol 1 +(c/2)lu- Uol.

To prove (20), we use the fact that zo F. F(_l,O)-j and therefore

I(uo + 1)/uolrl(uo + Vo)/(1 uo Vo)[ t= 1.

Solving for r, we obtain

r--t
lnl(uo + Vo)/(1 Uo- o)1

lnl (Uo + 1)/uol

> In
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Here we used the assumption (19) and the fact that > 1. Therefore, we have

rln[(uo + 1)/Uo[ > In
1 + (4/3)lUol
1 (4/3)1Uol

> ln]l + (4/3)lUol

which establishes (20). This completes the case j (1,
The case j (-1,1) is treated similarly, m

From the statement of Proposition 5.2, recall the definition

J’ A*(1,1)= (+_(1,1), +(2,-1), +_(-1,2)}.

LEMMA 6.6. For n [0, oe) (3 N, x a2, andj J’

a,,j(x) < [1 + Cdist(x,-j/Z)] -x,
with C a positive constant which does not depend on n, x, or j.

Proof Assume without loss that x (u, v) R.
First we consider j (-1, -1). For example, assume that

1/2 u dist.(x, (1, 1)/2) e.

Then we have

a(_x,_l)(X) 1-u 1-v 2-u-v

1/2 e

1/2 +e l+e

< 1/(1 + e).

In the remaining cases j J’ \ (- 1, 1), we have dist(-j/2, R) < 2 and
therefore it is sufficient to bound aj(x) by an absolute constant less than 1.
This is straightforward, using the fact that a(_l,o)(X ), a(o,_l)(x < 1. We list
only the estimates"

For j (1, 1),

u+ 1 v+ 1 u+ v+ 2
< 3-r3-’2-

For j (2,- 1),

a(2,_l)(x) _< a(2,_l)(x)/a(o,_l)(X
u

2+u

< 5-r2 -t.
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For j= (-2, 1),

<_

2+v 2-u-v

< 5-2 -.
The remaining two cases, j (-2,1), (1, -2) are similar.

LEMMA 6.7. For n

a,,j(x) < [1 + col]

with C a positive constant which does not depend on n, x, or j.

Proof Let j (k,/) and x (u, v) and, without loss of generality, let
x R; hence u, v [0,1/2]. We consider several cases.

(i) k, lg=0,-1, and k+14=0,-1,-2. Then

u + k
< (1 + Ikl) -a,

v + < (1 +

u+v
u+v+k+l

G (1 + I + 11/3) -a

Using the facts that

(1 +p)-1(1+ q)-l< (1 +p+ q)-i forp,q>_0

and

IPl + IP + q >- max{Ipl, ql },

we see that the product of any two of the above lefthand terms is bounded by

(1 + [j’lo/3)-

Since at most one of r, s, is less than 1, this yields

a,,,j(x) < (1 + Ikl)-(1 + I/1)-’(1 + Ik + ll/3)-’_< (1 + [/’1/3) -.
(ii) j= (0,-2). Sincex fn, wehave

an’(’-l)(X) 1 v 1 u- V
<1
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and therefore

an,j(x < an,j(x)/a,,(O,_l)(X )

1-v 1-u-v
2-v 2-u-v

< 2-2-< 1/2

(1 + [/’lm/2) -1.

(iii) k=0, 14= -2,-1,0. Here

n’J(x)= v+ u+ v+

< (1 + 1ll)-’(1 + 111/3)-’
< (1 + [/’l /3)-1.

(iv) k= -1, 14= -1,0,1,2. Here

1-u +l u+o+l-1
< 1-(1 + I/I)-S(1 + II-11/3)-’

< (1 + ’l/S) -1.

(v)
(vi)

k 0, -1 and 0, -1. Treated in analogy to cases (ii)-(iv).
l= -k, k4= -1,0,1. Here

.,(x)= u+ v-
_< (1 + Ikl)-r(1 +

< (1 + [/’l) -1.

(vii) l= -k- 1, k4= -2,-1,0,1. Here

an,j(X < an,j(x)/an,(_l,o)(X )

u+k v-k-1

< Ikl-r(1 + Ik-
_< (1 + Ikl/2) -
< (1 + [/’1/3) -1.
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(viii) l= -k-2, k4= -2,-1,0. Here

n,j(X) N an,j(x)/an,(_l,0)(X)
u 1[, v u+v-1
u+k v-k-2 u+v-2

< (1 + Ikl/3) -
_< (1 / [/I /9)-1.

This covers all j Z2\ (0 to J tO J’). m

Proof of Proposition 5.2. Lemmas 5-7 prove (5.4) for n N O [0, OQ) 3,
with the constants independent of n. Since n depends continuously on n N
(by Proposition 5.1), this proves (5.4) for all n N. m

Proof of Proposition 5.4. To prove (5.6), we consider three cases.
(i) j J. From the geometry of the set 2n 2, (cf. Figure 5.1 which

gives a qualitatively accurate description of the general situation) and, in
particular, from the estimates of the slopes of the curves F,,j., we can see that
in this case

dist(x, Oan) dist(x’, F,,. C3

Therefore, (5.6) is a consequence of Lemma 6.5 in this case.
(ii) j J’. For example, assume that x’ R N fn. Then, for j J’\

(- 1, 1), we have

disto ( x’, -j/2) > 1/2

and (5.6) follows from Lemma 6.6 since dist.(x, Of) < C.
It remains to consider the case j (-1,- 1). From the bounds on the

slopes of the curves F,,(1,0), F,,(0,1), we see that f, lies in the half space

{ y" y*(1, 1) >_ -(uo, Vo)* (1,1) }
where (uo, Vo).’= z(1 is the point of intersection of the curves F.,(_l,o) and

1-’.,(o,_1). Since f. q R
_

[0,1/2] 2, it follows that, for x’ E f. q R,

dist,(x, Olin) diStl(x’, -z(1) + (1,1)). (6.21)

Here, dist denotes the ll-distance. Moreover, in view of

I--Z(1 +(1,1)] -(1/2,1/2)= (1/2,1/2)- z(),



566 C. DE BOOR, K. HOLLIG AND S. RIEMENSCHNEIDER

we have

dist (x’, Z,l +(1,1)) diStl(X’, z,l)) + 2diStl(Zl (1/2,1/2))
< 2 dist (x’, -j/Z). (6.22)

This, together with (21) and Lemma 6, proves (5.6) for this case.
(iii) j Z2\ (0 k.)J k.)J’). In this case, (5.6) follows from Lemma 7

since, for any j 4: 0,

dist(x, 02.) < C

This completes the proof of Proposition 5.4.
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