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1. Introduction

Let N/K be a finite normal extension of number fields and let G
Gal(N/K). By E. Noether’s theorem (cf. [5, p. 26-27]), the ring of integers
oN of N is projective as a G-module if and only if N/K is at most tamely
ramified, in [14], M. Taylor proved that in this case, (Ov) [K: Q](Z[G])
WN/r where (Ov) is the class of oN in Ko(Z[G]) and Ws/r is the Cassou-
Nogus Fr6hlich class of N/K (cf. [2, p. 18-19], [5])..The group K0(Z[G]) is
the Grothendieck group of all finitely generated G-modules of finite projec-
tive dimension and the class Ws/r is defined by means of the Artin root
numbers of the irreducible symplectic representations of G.

Let rank: K0(Z[G]) ---, Z be the homomorphism by

rank((A)) rankQt6j Q (R) z A

if A is finitely generated and of finite projective dimension. The class group
CI(Z[G]) of G is defined to be the kernel of rank. In [3], T. Chinburg defined
Galois invariants f(N/K,i) of N/K in CI(Z[G]) and proved that
I(N/K, 2) (Ov) K: Q](Z[G]) for all N/K which are at most tamely
ramified.

Since both classes, f(N/K, 2) and WN/, are defined for all N/K, and
not only for those which are tamely ramified, one may ask the following
question.

QUESTION (Chinburg [3]). Is 12(N/K, 2)= WN/r for all N/K?

Here we will prove the following result.

THEOREM 1. Suppose that K Q and that G is isomorphic to the quater-
nion group Ha of order eight. If there are at least two places over the prime 2 in
N then 12(N/Q, 2)= WV/Q.

The techniques of this paper apply as well to the case in which there is
exactly one place over the prime 2 in N. We believe that further computation
will determine whether the conclusion of the theorem holds in this case.
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If the prime 2 is at most tamely ramified in N then it is unramified and
there exist at least two places over the prime 2. In this case Theorem 1 was
proved by A. Fr6hlich in [6]. Fr6hlich’s theorem began the line of develop-
ment leading to Taylor’s theorem; see Fr6hlich’s book [5, Chapter I]. Theo-
rem 1 is a step towards proving fI(N/K, 2) Wv/r for all N/K, including
those which are wildly ramified.
The first step in proving Theorem 1 is to prove a general formula for

I(N/K,2) which is useful for computation; see Proposition 2.4 and the
remark following it.
Theorem 1 will be proved by combining the ideas from Fr6hlich’s original

proof for tamely ramified H8-extensions of Q, as presented in J. Martinet’s
paper [7], with the ideas of Chinburg’s paper [3]. The key idea will be
defining ok, a projective G-module which has finite index in Ov, which can
be used to compare I(N/Q, 2) with Wv/(a.

This paper is based on my Ph.D. thesis. I would like to thank my thesis
advisor, Ted Chinburg, for his help and guidance.

II. I(N/K,2)

Let N/K be a finite normal extension of number fields with G
Gal(N/K). In this section we define ok, a projective G-module which has
finite index in ON, in order to compare fI(N/Q, 2)with Wv/Q when G
GaI(N/Q) --- H8. In general, f(N/K, 2)will be the sum of the class (ok)
[K: Q](Z[G]) in CI(Z[G])with factors indexed by the places of K which are
wildly ramified in N, these factors depending however on the choice of o:;
see Proposition 2.4 and the remark following it.
For each finite place w of K, let v v(w) be a place of N lying over w

and define oo as follows.

o:: a free ow[Go]-module which has finite index in oo if N/K is wildly

ramified at v.

o oo otherwise.

Here, No is the completion of N at the place v, o, (resp. ow) is the ring of
integers in No (resp. Kw) and Go is the decomposition group of v.
For all G:modules A we define Ind,, A Z[G] (R)ztG,] A. If v v(w)

and A is a submodule of No, we may regard Indo A as a G-submodule of

o’lwNo’ via the natural isomorphism

Ind,. NO Z[ G] ztG,,] No No,.

We regard N as a submodule of
homomorphism.

No, by means of the diagonal
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DEFINITION 2.1. Let ok f’lw{N 3 IndigoS" w ranges over all finite
places of K and v v(w)}.

Remark. By [10, Theorem 5.3], ow (R)oK ok Indv o. If v is at most
tamely ramified, then by [5, p. 26-27], oo is a free ow[Go]-module. By
construction, o is a free ow[Go]-module for all v v(w). Hence o is a
locally free or[G]-module, and it is a projective. G-module which has finite
index in o.

Now as in [3, Section II, p. 352-353] we may assume that, by enlarging S if
necessary, S is a finite set of places in. N, stable under G, for which the
following is true:

(a) S contains the archimedean places Soo of N and those places which are

ramified over K. The S-class number of every subfield of N containing K is 1.
(b) The set Sf of finite places in S is non-empty. There are integers

z, m or which are units outside of S such that

zofv

_
Fr

_
mofv c_ molv

where Fr is a free Z[G]-submodule offinite index in
(c) exp: mov --* {N*: v Sf} is a well-defined injection, where

exp ]) expo" v S} and expo(x) E xn/n

for all x in the additive group No+ ofNo which are sufficiently close to zero.
Define exl(Fr) to be the closure of the image of Fr under exp, and let

Sf, o {v(w): w is a place of K lying under a place in Sf}. Then Sf, 0 is a set
of representatives for the G-orbits in Sf.
The following results are simple consequences of work of T. Chinburg in

[3, Lemma 5.1].

LEMMA 2.2 (Chinburg). For v Sf, o define o(1) as follows"

( exp (mo)
Uo(1) Uv(1)

if v is wildly ramified over K,
otherw&e

where Uo(1) is the group of principal units in oo*. The group -e-(Fr) is
contained in

f(1) ) {Indv/-)o(1)" v S,0}.
The G-module f(1)/ e---(Fr) is finite and offinite projective dimension and has
class (o) -[K: Q](Z[G]) in K0(Z[G]).
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Proof. The lemma is a consequence of the following observations:

(i) exp(mofv)/ -e--(Fr) exp(mofv)/exp(-) mofv/ -F-I=- mofv/Fr,
where -7 (resp. moor) denotes the closure of Fr (resp. mok) in {o"
v Sy}, and -= denotes an isomorphism of G-modules.

(ii) (mo[v) (ok) and (Fr) K: Q](Z[G]) in K0(Z[G]).
(iii) f(1)/exp(-bTN) {Ind (Oo(1)/expo(mo[)): v Sf 0}.
(iv) If v Sz, 0 is wildly ramified then (1) =.expo(mo)’by definition.
(v) If v S, 0 is not wildly ramified, then Uo(1)- Uo(1) and o o.

The argument of [1, p. 285-288] shows that if expo is well defined on moo,

then expo(moo) 1 + moo. Hence Oo(1)/expo(mo) Uo(1)/(1 + moo) if v
is not wildly ramified. By [3, Lemma 5.1], U(1)/(1 / moo). is finite and of
finite projective dimension with trivial class in Ko(Z[Go]).

(vi) From (iii)-(v)we see that f(1)/exp(mo----b)u is finite and of finite
projective dimension as a G-module with trivial class in K0(Z[G]). Now
Lemma 2.2 follows from this and observations (i) and (ii).

All references to cohomology in this paper will be to Tate cohomology.

DEFINITION 2.3. For v S let a HE(Go, No*) be the local canonical
class at v. If v Sf,0, let ho(1) N*/Oo(1) and let

2 z 2 zh ExtGo( No* ) ExtGo( ,/o(1) )

be the homomorphism induced by the quotient homomorphism N* /o(1).

It is shown by Chinburg in [3, proof of Lemma 5.1] that if v is at most
tamely ramified in N/K, then the Gv-module Uv(1) is of finite projective
dimension. If v is wildly ramified in N/K, then

Uo(1) expo(mo)

is also of finite projective dimension because mo is isomorphic to expo(mo’)
as a Go-module and because mo is free over ow[Go]. Thus the quotient
homomorphism N* (1) induces an isomorphism in cohomology. Now
cup product with the class

ho(ao) Exto(Z,/o(1))
induces an isomorphism between the cohomology of Z and that of .o(1) after
a dimension shift of two. This is because cup product with

a Ext2o(Z, N*)
induces such an isomorphism between the cohomology of Z and that of No*
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and because the quotient homomorphism No* A.(1) induces an isomor-
phism in cohomology (see the diagram below).

Hi(Go, Z) Ua., Hi+2(Gv, Nv.)

Hi(Go, Z) Uh.(a Hi+E(G., /.(i)).

Since A(1) is finitely generated, the mapping cylinder construction of [11, p.
56-57] now yields an exact sequence

(2.1) 0 -+ A?o(1) + A1, v
.-.--> A2, v

.-.--> Z --.> 0

of finitely generated G:modules with extension class

h.(a.) Exto(Z,/(1))
in which A1,. and A2,. are of finite projective dimension.

The following result is a consequence of Lemma 2.2 and the results of
Chinburg in [3, Proposition 5.1].

PROPOSITION 2.4 (Chinburg). For v S:, o we define

a.---- (AI.v) (A2..)

in Ko(Z[G. ]) where Ai, v are the modules in (2.1). Then Cl(Z[G.]). Let

n (IndoA,,. 2,0I d.f. )-(Ind.A )
I Gin K0(Z[G]). Then fI(N/K, 2) (o) -[K" Q](Z[G]) + E{ ndofIo" v

Sf, o and v is wildly ramified over K}.

Remark. (1) it is not difficult to see that any effect on the class

(o) [r: Q](Z[G])

caused by different choices of o is balanced by the opposite effect on the
last term in the formula. Thus the right hand side of the formula is indeed an
invariant of Galois extension N/K.
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(2) For all cases considered in this paper, the term Indv Io in the formula
will be zero.
When N/K is a tame extension, Proposition 2.4 is nothing but Theorem

3.2 in [3]. In fact Proposition 2.4 may be proved by the same arguments as
those of [3, p. 366-367]. We summarize these arguments after reviewing
some definitions and results in [3].

Proof of Proposition 2.4. We begin by extending Definition 2.3 to infinite
places. For v Soo let W be a finitely generated Go-submodule of No* for
which

(i) Wo contains the group of S-units U UN, S of N and Wo/U is torsion
free, and

(ii) the inclusion of Wo into No* induces an isomorphism in Go-cohomology.

The existence of such a module was proved in [3, Lemma 2.1]. For v
let/o(1) Wo and let h o: Exto(Z, No*) -o Ext(Z, A?v(l)) be the inverse of
the cohomology isomorphism induced by the inclusion of Wv into N*.
Then, by [3, Proposition 5.1], there is an exact sequence

(2.2) 0 A?o(1) A1, o -- A2, v Z 0

of finitely generated Go-modules with extension class

h(ao) Extv(Z,/o(1))

in which A1, o and A2, o are of finite projective dimension. Let Soo,0 be a set
of representatives for the G-orbits in Soo. For v Soo,0, as for the case
v S/,,0, we define

’v (Al,o) (A2,o) and Indo fo (Indo AI,v) (Indo A2,)

in K0(Z[G]) where A 1, o and A 2, are the modules in (2.2).
Let now Y be the free abelian group on S, and define the exact sequences

(X), (U), and (U)f, which is a finitely generated approximating sequence to
(U) (cf. [3, Section III]), as follows:

(X) 0oXoYoZ 0

(U) 0-o U--, J --, C 0

o -, o,
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where O(v) 1 for v S,
U Us, s is the group of S-units of N,
J Ju, S is the group of S-ideles,
C Cv is the idele class group of N,

Jr J0 Indw" vS,o}
Jo {N*" v Sf}/-6-(Fr) and

c =b/v.
In [3, Corollary 2.1] Chinburg constructed a unique class

(a)f Ha(G, Hom((X),

from the Tate canonical class

(a) H2(G,Hom((X), (U)))

(see [12] for the definition of Hom((X), (U)) and the class (a)). Let (a)2, f
HE(G, nom(r, Jr)) Ext(r, Jr) be the second canonical projection of (a)f
as in [3]. Then there is an exact sequence of finitely generated modules

(2.3) O --- Jf --- A .-- A 2 Y --) O

with extension class (a)2, f in which the Z are of finite projective dimension.
By definition

(2.4) f(N/K,2) (A1) (’2) (Z[G]) in Ko(Z[G])

for some integer f.
Let / be the module f(1)/-(Fr) in Lemma 2.2. The sequence (2.3), by

push out, gives rise to an exact sequence of finitely generated modules

(2.5)

with extension class

ag Ext,(Y,
the image of

(a)2,r Ext,(Y, Jr)
under the homomorphism induced by the quotient homomorphism Jf Jf/E.
From (2.3) and Lemma 2.2, 1// has finite projective dimension.
On the other hand, the arguments of [3, p. 366-367] show that by inducing

from G to G the sequences (2.1) and (2.2) and then summing the resulting



A GENERALIZATION OF FROHLICH’S THEOREM 165

sequences over v SO Sf, o u S=, o, we arrive at a sequence

(2.6) 0 -") Jf/ - A A2
-) Y 0

with extension class ag in which the A are finitely generated and of finite
projective dimension.

Since (2.5) and (2.6) have the same extension class, by [4, Proposition 5.1],

(2.7) (1//) (2’2) (A1) (A2) in Ko(Z[G]).

By construction and [3, Proposition 5.1],

(2.8) (A1) (A2) E{Indvlv’v So}

E {Indv 1v" v Sf, o and v is wildly ramified}
+ r(Z[G])in Ko(Z[G])

for some integer r. From (2.4), (2.7), (2.8) and Lemma 2.2,

(2.9) I(N/K,2) (/) + (A1) (A2) f(Z[G])

[(oh) [K" QI(Z[G])]

+ ] {Indg 12v’v Sf, 0 and v is wildly ramified}
/(r f)(Z[G])in K0(Z[G]).

Since all the classes but (r f)(Z[G]) in the last equation are in CI(Z[G]), we
conclude that r f.

We define a quaternion field N to be a finite normal extension of Q with
G Gal(N/Q) isomorphic to the quaternion group H8 of order eight. From
now on we restrict ourselves to quaternion fields.

In this case CI(Z[G]) may be identified with {+ 1} because CI(Z[H8]) has
order two. With this identification, the class Ws/o is equal to the Artin root
number W(XN/Q)-- 1 where XN/Q is the character of the unique two
dimensional irreducible symplectic representation of G H8. The question
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in Section 1 now becomes:

QUESTION. Is fRN/Q, 2) W(xv/o) 5:1 for all quaternion fields N?

Notation. From now on we denote by K the biquadratic subfield of a
quaternion field N. We abbreviate Xv/o by X and we write

Hs (o’, z" 0.4 1, ’r 2 0"2, 7"0.’/"-1 0.-1.

J. Martinet proved the following results in [7] (see also [6]).

LEMMA 3.1 (Fr6hlich, Martinet). Let N be a quaternion field. For each
place t 2 of Q, define a and fit as follows"

a 1 if is not ramified in K/Q (in particular, a= 1);
ap (2/p) for a finite prime p 2 ramified in K/Q;

/3oo=e(N)= {+1_1 ifN is totally real

ifN is totally imaginary;

p 1 ifp is unramified in N/Q
p image ofp mod 4 (-1)(p-l)/2 ifp is ramified in N/Q.

Then the local root number W(xt) Wt att + 1, where Xt is the restric-
tion of X to the decomposition group Go for a place v ofN over t.

DEFINITION 3.2. For the place t 2 of Q, we define a2

W(X2) WE SO that aEfl2 WE.

1 and f12

The following result is clear from the lemma.

PROPOSITION 3.3 (Fr6hlich, Martinet). Let

Do I-I p,
p2,
PldK/Q

i.e., the product of all odd primes ramified in K. Then

12 )WN/O l if andonly if =- W2e(N) I-I p
p2,
pIdN/Q

mod 4
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and

(2)WN/O l if and only if W2e ( N) I-I p
p2,
PldN/Q

mod 4

where dN/O (resp. dr/O) is the discriminant of the field N (resp. K).

Proof All local factors are + 1 and + 1 except for finitely many places t.
Since WN/Q W(/) 1-ItW(xt) (cf. [8] or [13]),

WN/Q 1 H W(xt ) 1

p2,
pldN/

Later we shall use the following results in [7 or 9] on projective Z[G]-mod-
ules where G H8.

LEMMA 3.4 (Martinet).
Define

Let M be a projective G-module of rank one.

M+= {xM:tr2x=x) and M- {xM’tr2x= -x}.

Then M/ (resp. M-) is a free module over Z/ (resp. over Z-), where

Z+= Z[G]/(1 tr 2) Z[g] forg Z/2Z Z/2Z

and

Z-= Z[G]/(1 + o.2 ) Z[1, i,j,k],

the ring of integral quaternions.

PROPOSITION 3.5 (Martinet). Let M, M+ and M- be as in Lemma 3.4. Let
and q be bases for M+ and M- over Z+ and Z-, respectively.
(1) d and d/ are well defined up to sign and the multiplication by an element

of G.
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(2) 4) and d/ can be chosen in such a way that one of the following
congruences holds:

(a) q =- 4) mod 2M
(b) q 0’4) + ’4) + 0"rb mod 2M.
Moreover, for a given module M, only one of the congruences (a) and (b) is

possible, and M is free if and only if (a) holds.

Now let N/Q be an H8-extension. From now on we fix an isomorphism
G Gal(N/Q)---H8 and identify G with H8 via this isomorphism. For a
place v of N over the prime 2, let Io be the inertia subgroup and Go the
decomposition subgroup of the place v. We denote the order of a group H
by #H. In the remainder of this paper, we shall prove fI(N/Q, 2)= WN/(
for the following cases:
#I #Go 2 in Section IV
#I 2 and #Go 4 in Section V
#I= #Go 4 in Section VI.

IV. The case in which #Io #G 2

LEMMA 4.1. There are exactly six non-isomorphic ramified extensions of Q2
of degree two. These are the extensions E Qa(vfc-) where c 3, 7, 2, 6, 10 or
14.

Proof. Consider all Kummer 2-extensions of degree two. Among them
these are all that are ramified.
Now let N be an H8-extension of Q with both the inertia subgroup Io and

the decomposition subgroup Go of order two, i.e., Io Go {1, 0"2} c G
H8 where v is a place of N over the prime 2. Let K be the biquadratic
subfield of N and let w w(v) be the place of K under v. In this case we
may identify N (resp. Kw) with E Q2(vCb-) (resp. Q2) for one of the values
of c listed in Lemma 4.1 by means of an embedding of N into Q2 which
induces the place v, where Q2 denotes an algebraic closure of Q2. With this
identification, we note that ow Z2 and o oe Z2[x/b-].
We define a projective G-module o as follows.

DEFINITION 4.2. Let

o {a + bv’a =- b mod 2 and a, b Z2} Z2[Go](1 + vf-).

As in Definition 2.1, let ok be the unique submodule of oN such that

Z2 (R)z o: Ind,. o Z[G] (R)zto.l o
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and

Zp tSzo=zp (R)z Ov forp4:2.

Remark 4.3. (1) By the remark following Definition 2.1, oh is projective.
(2) From the semi-local construction of oh we have

(Ov o) (ov ov 16 and onK=2or.

Define (o)+= (x o: o-2x X} and (ok)-= {x ok: o’2x --X}. Then
by Lemma 3.4,

(o)+= o C K Z+b and (ok)-= Z-q,’

where th’ (resp. q’) is a free basis over Z/ (resp. Z-).

PROPOSITION 4.4. Let N/Q be an H8-extension with No E Q2(v/-b-)
and K Q2.

(1) For c 3 or 7,

* (b’2 ) +4mod 16Wv/Q 1 Tr/(/Q ) TrK/o($,2

and

..Wv/o 1 Trr/o ) Trr/o( -= +4 mod 16.

(2) For c 2 or 10,

Wv/Q 1 ** 2 Trr/0($’2) Trr/o($’2) _= + 8 mod 32

and

Wlv/O 1 * 2Trr/o($’2) -TrK/Q(,’2) -= +8 mod 32.

(3) For c 6 or 14,

WN/O 1 ** 2 Trr/o($’2) Trr/o($’2) -= + 8 mod 32

and

Wv/o 1 ,, 2 Trr/Q(b’2) =- Trr/o($’2) =_ + 8 mod 32.
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Proposition 4.4 will be a consequence of the following lemma and Proposi-
tion 3.3. Let ki, 1, 2, 3, be quadratic subfields of the biquadratic field K
and let d dk/O the discriminant of ki. Then d -= 1 mod 4 since K/Q is
at most tamely ramified in this case. Also

dr/Q dld2d3 D) where DO VI p,
p2,
pIdK/Q

i.e., the product of all odd primes ramified in K.

LEMMA 4.5.

(a) Trr/Q(b’z) 1 + d + dE + d3

(b) Trr/Q(h’E)

(2)=4 00 =- +/-4md16"

e(N)4 1-I P -= +/-4mod16
p2,
pIdN/Q

e(N)8 I-I P -t-8 mod 32
p42,
PldN/Q

for c 3 or 7

otherwise

(see Lemma 3.1 for the definition of e(N)).

Proof of Lemma 4.5. (a) Let ok (o)+ o[v q K. By Remark 4.3
ok 2Or, and b’= 2b for a normal basis b for or. Since

4)0 (1 + 1 + + )/4
is a normal basis for Or and b is determined up to sign and multiplication by
an element of G H8 by Prop. 3.5,

(b’2Trr/Q ) 4 Trr/Q(4)2) 4 Trr/Q(4)02) 1 + d + d2 + d3.

Now (a) is a consequence of the congruence

l+d+dE+d3 ( 2 )4 mod 4,

which follows from the fact that if AB =- BC =- CA --- 1 mod 4 then

1 +AB +BC+CA _(2)IABCI mod 4,
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the proof of which is straightforward together with the definition

2 )IAB[ =1 forlABCI =1.

(b) Note that both TrK/Q(O’2) and e(N) have the same sign. This is
because ,2 is totally positive if N is real and because ’2 is totally negative
otherwise. By using the same arguments as in [9, III] or [7, 3], we have
diSCN/Q(o) diSCK/(t(ok)[TrK/((O’2)]4 where disc denotes the discrimi-
nant. We thus have

dv/Q dK/Q[TrIc/Q(O’2)] 4
since (Ov" o) (oK" ok) 16.

Now again as in [9, III] or [7, 3], we can use ramification groups to
compute dv/o/dic/(t, from which (b) follows.
We now prove Proposition 4.4.

Proof of Proposition 4.4. By Proposition 3.3,

t 2 )WN/q= 1 W2e( N) I-I P mod4
p4=2,
PldN/Q

and

2
W’/O= -1 0 =--W2e(N) II p mod4.

p2,

PJdN/o

Since

2) 1 +d +dz +d3

4 mod 4

by Lemma 4.5, Proposition 4.4 now follows from Lemma 4.5 and the
following results on local root numbers.

Claim.

1 forc=2or10
1 otherwise.

Proof of Claim. Let ,’2 be the restriction of X to Gv where X is the
character of the unique two-dimensional irreducible representation of G
H8. Then X2 ’2 + ’2 for the non-trivial character A2 of Go. We thus have
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W2 W(,’2) W(}k2)W(}k2) =/2(- 1) where (- 1) is the image of (- 1)
under the Artin map: Z’ - Io {1, tr 2} (see, for example, [8] or [13]). Since
Norme/Q2(1 + x/b-)= 1-c-= -1 mod 8 for c 2 or 10 since (Z’)2= 1 +
8Z2 is contained in the norm group,

(-1) Norme/Q2(E*) forc=2orl0.

Furthermore these are the only such cases. This is because the conductor of
A2 is 1 + 4Z2 for c 3 or 7 and because the conductor of A 2 is 1 + 8Z2 with

Norme/Q2(1 + vrb-) 3 mod 8 for c 6 or 14.

PROPOSITION 4.6. Let N/Q be an H8-extension with N E Q2(v-)
and K Q2-

(1) For c= 3 or 7,

(a)
(b)

,’ b’ mod 2o TrK/Q(,’2) ------ --TrK/Q(O’2) mod 16,

,’ o’tk’ + ’4’ + trztb’ mod 2ok
(b’2 ) mod 16.Trr/Q ) Trr/Q(’z

(2) For c 2 or 10,

(a) q’ =- b’ mod 2o 2 Trr/Q(b’2) -= Trr/Q(’2) mod 32,

(b) ’ ’ + ’ + z’ mod 2oh
= 2 Trr/o(’2) Trr/o(’2) mod 32

(3) For c 6 or 14,

(a)

(b)

q’ b’ mod 2o = 2 Trr/Q(b’2) =- Tr/c/Q(O’2) mod 32,

’ b’ + rb’ +’ mod 2o
= 2Trr/(’2) Trr/o(O’2) mod 32.

Before proving Proposition 4.6, we note these corollaries.

COROLLARY 4.7.
if and only if

The projective G-module ofv given in Definition 4.2 is free

Trr/Q(b’2) -Trr/Q(’2) mod 16 for c 3 or 7,

2Trr/Q(th’2) Trr/Q(O’2) mod 32 for c 2 or 10
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and

2 Trr/Q(th’2) Trr/Q(O’2) mod 32 for c 6 or 14.

Proof Combine Propositions 3.5 and 4.6.

COROLLARY 4.8. Theorem 1 is true if the inertia and decomposition groups
of v each has order two.

Proof Since CI(Z[Go]) is trivial in this case, 12(N/Q, 2) (o) (Z[G])
by virtue of Proposition 2.4. Recall that (o)- (Z[G])= 1 CI(Z[G])=
+ 1} if and only if ok is free as G-module. Corollary 4.8 now results from

Proposition 4.4 and Corollary 4.7.

Proof of Proposition 4.6. (a) Let q’= b’ + 2x for some. x ok. Since
(ok)+= ok 2or by Remark 4.3, we may set b’ 2b, and q’ 2q where

q ON and b is a normal basis for or. It suffices to show that

Trr/o(b2 + q2) 0 mod 4 for case (1),

Trr/Q(2b2 q2) _= mod 8 for case (2)

and

Trr/Q(2b2 + q2) 0 mod 8 for case (3).

Denote by xo the image of x under the embedding of N into E Q2(v/b-)
which has been identified with No. It is clear from the relations tr2b b and
tr2q =-q that tr2bo b and tr2qo =-qo. Therefore in 0o oe
Z2[fC-], bo a and qo bYrc-- for some a,b 0w Z2. Furthermore the
condition q b x ok gives rise to the condition qo bo xo 0,
which implies by Definition 4.2 that -a -= b mod 2.

Using these relations we now have

qb2o + d/2o a 2 + b2c a2 b 2 O mod 4 for case (1),

2bo2 qo2 2a2 bEc =_ 2a2 2b2 0 mod 8 for case (2)

and

2b2 + tv2 2a2 + b2c 2a2 2b2 -= 0 mod 8 for case (3)O

We note that in each case the same congruence holds for any place of N
over the prime 2.
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Therefore, for case (1),

Trr/t(b + ) ETrr<,,/o(bz + z)
t12

E +
t12

0 mod 4

where ranges over all the places of N over the prime 2 and w(t) denotes
the place of K under t. Similarly Trr/Q(2bz z) 0 mod 8 for case (2)
and Trr/((2b + q/z) 0 mod 8 for case 3).

(b) Let q’ crb’ + rb’ + cr’b’ + 2y for some y o:. As in (a) we set
b’ 2b and ’ 2. Then

/=crb+rb +crrb+y=Tr/c/t(b)-b+y= +l-b+y,

where the last equality results from the fact that

b0= (1 + + 2 + 3)/4
is a normal basis for or and b -I-gb0 for some g G H8 by Proposi-
tion 3.5.

It suffices to show that

and

Trr/((b2 2) _= 0 mod 4 for case (1),

Tr/c/o(2b2 + 2) 0 mod 8 for case (2)

Trc/t(2b2 /2) 0 mod 8 for case (3).

By the same arguments as in (a), the conditions

-(+i b) +O=yov, and o’Z@ -b,

give rise to the relations,

-(+l-b,) =a, Oo bYrc- and a b mod 2 for some a, b Z2

Using these relations we now have

4,.2_.2= (a+ 1)2

2b.z + @02 2(a + 1) 2
b2c =- (a + 1)2 _. b2 =_ 1 mod 4 for case (1),

+ b2c =- 2(a :t: 1) 2 + 2b2 -= 2 mod 8 for case (2),
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and

2tho2 2 2(a _+ 1) 2 b2c --- 2(a + 1) 2 + 2b2 2 mod 8 for case (3).

We note that in each case the same congruence also holds for any place t
of N over the prime 2.

Therefore, for case (1),

Trr/Q(1)
0 mod 4.

Similarly, Trr/Q(2b2 + 2) 0 mod 8 for case (2) and Tr/c/o(2b2 2) 0
mod 8 for case (3), which completes the proof of Proposition 4.6.

V. The case in which #Io 2 and #Go 4

LEMMA 5.1. There are exactly three non-isomorphic cyclic extensions of Q2
of degree four with the inertia subgroup of order two. These are the extensions
E F(f-) where F Q2(sr), sr is a primitive cube root of unity and

c (1 + 2)(1 + st22), 2(1 + 22) or 2(1 + 2)(1 + st22).

Proof. By local class field theory there are exactly three non-isomorphic
extensions of the above kind. Since Q2(’) is the only unramified extension of
Q2 of degree two, each such extension must contain F Q2(’). Consider all
Kummer 2-extensions E of F of degree two such that

(i) E/Q2 is normal with Gal(E/Q2) -= Z/4Z and
(ii) E is ramified over F.

These extensions are the ones listed in Lemma 5.1.
Let now N be an Hs-extension of Q with the inertia subgroup of order two

and the decomposition subgroup of order four, say, Io {1, 0"2} and G
(0-) c G H8 where v is a place of N over the prime 2.
Let w w(v) be the placed of K under v. In this case, by means of an

embedding of N into Qz_which induces the place v, we may identify No

(resp. Kw) with E F(qc) (resp. F) for one of the values of c listed in
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Lemma 5.1. With this identification, we note that ow
o.
We define a projective G-module o as follows.

OF Z2[] and

DEFINITION 5.2. Let

o {a + bv/-" a b mod 2 and a, b OF}.

A simple computation shows that

and that

Z2[G.]’(1 + x/C-)c o

(o." o[:)= (o.’Z2[G.](l + v/))= 4.

So o Z2[G,]’(1 + v/--). As in Definition 2.1, let ok be the unique sub-
module of oN such that

Z2 ()z o--- Indv o and Zp (R)z ok Z, (R)z ON for p 4: 2.

Remark 5.3. (1) The same remark as 4.3 holds here with

(oN" ok) (o," o)2 16.

(2) We can define (ok)+, (ok)-, th’ and q’ as above.

PROPOSITION 5.4. Let N/Q be an H8-extension with No E F(x/) and
Kw F QE(sr).

(1) For c (1 + 2)(1 + 22),

WN/Q 1 * Trr/Q(th’2) =- -Tr/(/o(q’2) =- +4 mod 16

and

WN/ 1 ** Trr/o(b’2) Trr/o(q’2) _= + 4 mod 16.

(2) For c 2(1 + ’22),

WN/ 1 ** 2 Trr/o(b’2) Trr/o(q’2) + 8 mod 32

and

WN/O 1 * 2 Trr/o(b’2) -= Trr/Q(q’2) =- + 8 mod 32.
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(3) For c 2(1 + 2)(1 + ’22),

WN/Q 1 2 Trr/ ) -= Trr/0( ) + 8 mod 32

and

WN/ 1 * 2 Trr/(b’2) TrK/o(q ’2) + 8 mod 32.

Proposition 5.4 will be a consequence of the following Lemma and Propo-
sition 3.3.

LEMMA 5.5.

(a)

(b)

Trr/o(’2)

Trr/Q(th’2) 1 + d + d2 + d3 +4 mod 16 for allc.

4e(N) I-I p= +4mod16
p2,
PldN/Q

8e(N) I-I p-- +/-8mod32
p4=2,
pldN/Q

forc= (1+2)(1+sr22)

otherwise.

Proof of Lemma 5.5. (a) Let ok (o[v) + oh N K. By Remark 5.3,
ok 2or. Since K/Q is at most tamely ramified in this case, (a) results from
Lemma 4.5(a).

(b) This follows from the same arguments as in Lemma 4.5(b).

Proof of Proposition 5.4. We refer the reader to the proof of Proposition
4.4. With the same notation as there we prove only the following results on
local root numbers.

Claim.

1 forc=2(l+sr22)I,V
1 otherwise

Proof of Claim. Let ,’2 be as above. Then ,’2 A2 + A2 and WE W(,’2)
W(/E)W(A2) =/2(- 1), where A 2 is a character of G of order four and

(-1) is the image of (-1) under the Artin map. Since

Norme/o2(1 + srf-) -1 mod 8 for c 2(1 + r22)
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and (Z’)2 1 + 8Z2 is contained in the norm group,

(-1) e Norme/Q=(E*) for c 2(1 + (22).

Furthermore, by local class field theory, this is the only such case which
completes the proof of the claim.

PROPOSITION 5.6.
K F Q2(’).

Let N/Q be an Hs-extension with No E F(Vt-) and

(1)

(a)

(b)

(2)

(a)

(b)

(3)

(a)
(b)

For c (1 + 2)(1 + ’22),

’ -= b’ mod 2o = Trr/Q(b’2) Trr/o(0’2) mod 16,

O’ trb’ + ’4; + trzb’ mod 2o
Trr/(b,2) TrK/O(q/2) mod 16.

For c 2(1 + ’22),

0 b’ mod 2o = 2 Trr/o ) -= Trr/Q(0 mod 32.

’ ’ + r’ + r’ mod 2o
= 2Trr/Q(’2) Trr/Q(O’2) mod 32.

For c 2(1 + 2)(1 + 22),

’ b’ mod 2o = 2 Tr/c/o(q/2) _= Trr/o(q/2) mod 32

0’ rb’ + rb’ + rzb’ mod 2o
2 Trr/Q ) Trr/Q( ) mod 32.

Before proving Proposition 5.6, we note these corollaries.

COROLLARY 5.7.
if and only if

The projective G-module o[v which is defined in 5.2, is free

Trr/o(b’2) -Trr/o(O’2) mod 16 for c (1 + 2)(1 + ’22),
2 Trr/Q(b’2) -= TrK/Q(O’2) mod 32 for c 2(1 + st22)

and

(b,2 ,2 2(1 + 2)(1 + ’22)2 Trr/ ) -= Trr/o(q ) mod 32 for c

respectively.
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Proof. Combine Propositions 3.5 and 5.6

COROLLARY 5.8. Theorem 1 is true if the inertia and decomposition groups
of v have orders two and four respectively.

Proof. Since CI(Z[Gv]) is trivial in this case, IRN/Q,2) (ok) (Z[G])
by Proposition 2.4. Recall that (o) (Z[G]) 1 CI(Z[G]) {+ 1} if and
only if o is free as G-module. Corollary 5.8 now results from Proposition
5.4 and Corollary 5.7.

Proof of Proposition 5.6. (a) This part of the proof is the same as that of
Proposition 4.6 with the following modifications:

E =.F(x/b-), ov oe OF[X and Ow OF Z2[’].

(b) Let ’ trb’ + rb’ + trrb’ + 2y for some y o. As in the proof
of part (a) of Proposition 4.6 we set b’ 2b and g’ 2g. Then

g=trch+r4+trr4+y=Trr/o(4)-ch+y= +l-4+Y

where the last equality results from the fact that b0 (1 + 1 + 2
3)/4 is a normal basis for or and 4 +g4o for some g G H8 by

Proposition 3.5.
It suffices to show that

Trr/Q(b2 g2) m 0 mod 4 for case (1),

Trr/c/(2b2 + g2) 0 mod 8 for case (2)

and

Trr/o(242 g2) 0 mod 8 for case (3).

By the same arguments as in part (a) of Proposition 4.6, the conditions
-(+ 1- 4)+ g =Y o, tr24 b and tr2@-- -g give rise to the rela-
tions, -( + 1 bo) a, g bx/- and a b mod 2 for some a, b oe Ow.
Using these relations we now have

2 2 42o b2c dp2 + b2 =_ dp2 + a2

-= 2b2 + 2bo + 1 mod 4 for case (1),

24)2 + q,2 2bo2 + b2c =_ 2(b2 + b2)
2(2b2 + 2tbv + a) mod 8 for case (2)
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and

2qb2 g,2 22 b2c =_ 2(b2 + b2)
2(2b2 + 2bo + 1) mod 8 for case (3).

We note that in each case the same congruence holds for any place of N
lying over the prime 2.

Therefore, for case (1),

Trr/Q(2 2) E Trgw,o/Q2(dZ_ ,2)
t12

g TrF/02($ *)
t12

m ETre/o2(2$ + 25, + 1)
t12

Trr/(22 + 2 + 1)
0 mod 4.

Similarly, Trr/o(2$2 + 2) m 0 mod 8 for case (2) and Trr/0(2$2 2) 0
mod 8 for case (3), which completes the proof of Proposition 5.6.

VI. The case in which #Io #Go 4

LEMMA 6.1. There are exactly eight non-&omorphic totally ramified cyclic
extensions of QE of degree four. These are the extensions E F(Vr) where
F QE(’rr), r x/ or f and

c ,r(1 + zr), 7r(1 + 7r)(1 + 71"4), 71"(1 + 7/’)(1 q" 77"3) or

zr(1 + 7r)(1 + ,r3)(1 + T/’4).

Proof. By local class field theory there are exactly eight non-isomorphic
extensions of the above kind. For each ,r V- or v/i-0-, consider all Kummer
2-extensions E of F of degree two such that

(1) E/Q2 is normal with Gal(E/Q2) -= Z/4Z and
(2) E is ramified over F.

These extensions are the ones listed in Lemma 6.1. Since these are all
different from each other, the conclusion of Lemma 6.1 follows.
Now let N be an H8-extension of Q with both the inertia subgroup Io and

decomposition subgroup Go of order four, say, Io Go (tr)c G H8

where v is a place of N over the prime 2. Let w w(v) be the place of K
under v, where K is the biquadratic subfield of N. In this case, by means of
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an embedding of N into Q2 which induces the place v, we may identify No

(resp. Kw) with E F(vrC-) (resp. F) for one of the values of c and 7r listed
in Lemma 6.1 respectively. With this identification, we note that ow oF
Z2[7r and oo oE OF[VC].
We define a projective G-module o as follows.

DEFINITION 6.2. Let

o: + + oo

As in Definition 2.1, let ok be the unique submodule of ON such that

Z2 )z ofi Ind,. o’ and Zp (Z O Zp )Z ON for p 2.

Remark 6.3. (1) By the remark following Definition 2.1, ok is projective.
(2) Since o’Vrb-/v-= Ul + u2rr and u 1 mod 2Z2, (o "o) 8. From

,)2 64.the semi-local construction of ok we have (ON Ok) (O O

As in previous sections let

(ok)+= {xo’tr2x=x} and (0)-= {xo’tr2x= -x}.

Then by Lemma 3.4,

(o)+=oK=z+b and (o)-=Z-’

where b’ (resp. q’) is a free basis over Z/ (resp. Z-). Let ki, 1, 2, 3, be
quadratic subfields of K and let di dki/Q, the discriminant of ki. Without
loss of generality, we may assume that the prime 2 splits in k 1. Then k
Q(I) with Gal(N/k 1) Go (tr), k 2 Q(d2/4 )and k3 Q(d3/4 ).

PROPOSITION 6.4.
Kw F Q2(’).

Let N/Q be an H8-extension with No E F(v/-) and

(1)
WN/Q 1 TrK/Q(b’z) + 4(1 + dl) 2TrK/O(q’z) +32 mod 128

and

WN/ 1 Trg/o(4)’2) + 4(1 +dl) 2 Trg/((q,’2) _= + 32 mod 128,
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for all the following four cases"

(2)
WN/

rr vl and c=rr(l+rr),
rr / and c=rr(X+rr)(X+rr4),
rr= f and c=rr(l+rr)(l+rr3),

= 1i-6 + =)(1 + +

=0 (t/’2 -I- 32 mod 1281 Trg/t/ ) + 4(1 +dl) 2 Trg/o(O’z)

and

WN/O --1 Trg/o(b’2) + 4(1 + dl) 2Trg/o(,’2) +32 mod 128

for all the other four cases:

,r / and

zr= / and

-= VC and

r and

c rr(1 + r)(1 + rr3),
c rr(1 + r)(1 + rra)(1 + rr4),
c=rr(l+rr),
c rr(1 + rr)(1 + r4).

Proposition 6.4 will be a consequence of the following lemma and Proposi-
tion 3.3.

LEMMA 6.5.

(a)

(b)

d 1 mod 8 and d2/4 =- d3/4 -= 2 mod 8.

1 + d + d2/8 + d3/8 [ 2
4 00 mod4 whereDo

(c)

(d)

TrK/Q(’2) 4(1 + d + d214 + d3/4).

TrK/Q(t’2) e(N)24 I-I P.
p4=2,

PldN/

I-I p.
p4=2,
PIdK/Q

Proof of Lemma 6.5. (a) Since the prime 2 splits in kl, d mod 8.
It is shown by A. FrShlich in [6, Theorem 3] that

( 1, d)2( 1, d2/4)2(dl, d2/4)2
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should be equal to 1 for K klk2 Q(I, /d/4) the maximal abelian
subfield of a quaternion field N, where the symbol ( )2 is the Hilbert
symbol. From this the congruence d2/4 =- d3/4 2 mod 8 follows.

(b) Let do be the greatest common divisor of d and d2/4 and let
d dodI, d2/4 2dod and d3/4 2dId 2 mod 8. Then

1 + d + d2/8 + d3/8 1 + dod + dod + did

=(2)-idodidl
2

(c) Let ok (ok)+= ok K and H Gal(K/Q) (ff)x() -= Z/2Z
Z/2Z.
From the semi-local construction of o (see Definition 6.2)we have

and

Zp (R)z ok Zp (R)z or for p # 2

Z2 (R)z ok Indnnw o Z[ H] (R)ztz_i.,lo,

where Hw () is the decomposition subgroup of the place w and o
o f30w which we can identify with oA ok c3 OF Z2[Hw]2(1 + 7r) by
means of the embedding of N into Q2 which induces the place v.
We note that ok, as a free module over Z/= Z[H], has

4 :kl + 1 + 2/2 + v/-d73 /2

as a free generator. This results from the following conditions: for each
irreducible character : of H, in order for $’ to be a free generator for ok
over Z/= Z[H], we must have

proj Zp[H]$’ proje(Zp (R)z OK) for p 2

and

proj Z2[H ]b’ proje(Z H Ztnwl o)

where proje xEs/_/(s 1)$, i.e., the idempotent corresponding to the
irreducible character :.
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Since by Proposition 3.5, ’ +gbo for some g G H8,

Trg/0(’2) Trg/o($’o2) 4(1 + dl + d2/4 + d3/4).

(d) This follows from the same arguments as in Lemma 4.5(b). We just
note here that

(o" ok) (Ow" o;) (o,," o) =64=(ON’Oh)

and that ord2(dK/Q) 6 and ord2(dN/Q) 22.

Proof of Proposition 6.4. By Proposition 3.3,

2
W/Q 1 o =- W2e(N ) 1-I p mod 4

p2,
PldN/Q

and

(2)w/o 1 =- W2e(N) I-I p mod 4.
p4=2,
PIdN/Q

By Lemma 6.5,

2 1 + dl + d2/8 + d3/8

TrK/Q(dp’2)/8 + (1 + dl)/2
mod 4

and

e(N) l-I P TrK/O(dg’2)/16.
p2,

PIdN/o

Therefore the proof of the proposition will be complete if we show the
following results on local root numbers.

Claim.

1 for all the four cases in (1)W2 -1 otherwise.
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Proof of Claim. Let ,’2 be the restriction of X to Go where X is the
character of the unique two-dimensional irreducible representation of G
H8. Then X2 2 + ’2 for a character ,t 2 of Go of order four. We thus have

W2 W(X2) W(h2)W(2)= A2(-1)

where (-1) is the image of (-1) under the Artin map (see, for example, [8]
or [13]). Since (Z’)4 1 + 2422 is contained in the kernel of the Artin map
in this case, A2 can be regarded as a character of

Z/(Z)4 (1 + 2Z2)/(1 + 24Z2) ()x() Z/4Z Z/2Z.

Furthermore h2(3)= +i since E/Q2 is totally ramified. Therefore (-1)
Norme/(2(E*) if and only if 7 NormE/(2(E*) since (-1) 327 mod 16.
The claim now results from the fact that

Norme/(2(1 + vCb-) 7mod(1 + 2422)

for all the four cases in (2) and that there are exactly four cases for which 7 is
in the norm group by local class field theory.

PROPOSITION 6.6. Let N/Q be an H8-extension with Nv E F(v/-) and
Kw F Q2(Tr).

(1) For all the four cases in Proposition 6.4 (1),

(a) ’ b’ rood 2ok Trr/o(b’2) + 4(1 +dl) 2Trr/o(O’:) mod 128

6’ rb’ + ’b’ + rrb’ rood 2o
Trr/o(b’2) + 4(1 +dl)-= 2Trr/o(6’2) rood 128.

(2) For all the other four cases in Proposition 6.4 (2),

(a)

(b)

0’ 4)’ mod 2o
TrK/((4)’2) + 4(1 + dl) 2 TrK/Q(6’2) mod 128

’ ’ + z’ +’mod 2o
Tr/o($’2) + 4(1 + d,) 2 Tr/o ) mod 128.

Before proving Proposition 6.6, we note these corollaries.

COROLLARY 6.7.
if and only if

The projective G-module o which is defined in 6.2, is free

Trr/((th’2) + 4(1 + dl) ---- 2Trr/o(@’2) mod 128
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for all the four cases in Proposition 6.4 (1) and

Trr/(6’2) + 4(1 + dl)= -2Tr//o(q’1) mod 128

for the other four cases in Proposition 6.4 (2).

Proofi Combine Propositions 3.5 and 6.6.

COROLLARY 6.8. Theorem 1 is true if the inertia and decomposition groups

of v each has order four.

Proof This results from Propositions 6.4 and 2.4 and Corollary 6.7 by the
same arguments as in the proof of Corollary 5.8.

Proof of Proposition 6.6. (a) Let q,’= b’ + 2x for some x o. Recall
that (o)+= ok Z[H]b’ and that b + 1 + 1 + 2/2 + i/rd73/2 is
one such generator. Since bb 2or, ok is contained in 2or, and we may set
b’= 2b, b 2b0 and q,’= 2q, where b, q, Ov and b +sb0 for some
s H Gal(K/Q).

Let b +s((+ 1 + 1)/2) and b2 +s((2/2 + 3/2)/2) so that
b b + b2, tr4l bl and trb2 -b2. Then 1 +dl Trr/Q(b12). It now
suffices to show that

Trr/Q(b2) + Trr/(tk) 2 Trr/(q,z) 0 mod 32 for case (1)

and

Trr/o(b2) + Trr/o(bl2) + 2 Trr/Q(02) -0mod 32 for case (2).

Denote by x the image of x under the embedding of N into E F(v/-C-)
which has been identified with No. It is clear from the relations tr2b th,
tr2q, -q,, trb b and trb2 -b2 that

O’2])v )o’ O’2v --o’ O’l,v l,v and O’2, v --2, v"

Therefore in o oe OF[f], b ov and Oo ovVr. Furthermore the
condition 0 b x o gives rise to the condition

qo bo xo o ok Z2[ Go](1 + r + v/b-).

Let

# 4 xo (a +/3r + yr 2 + 6r3)(1 + r + V-)



A GENERALIZATION OF FROHLICH’S THEOREM 187

where a,/3, 3’, and 6 Z2. Then we have

-6 ( + t + r + ) + (- + t )r,, ( r) + (0 )(),
=-(a+/3+/+6) and bz, o=-(a+,-/3-6)rr.

Now it is straightforward by using these relations to prove that

Tr/c,o,/oa(b2 + bx2 2qt 2) TrF/o(b.2 + bz..- 2q,2)
0 mod 32 for case (1),

and

Tr/,.,/o(42 + b + 2q) TrF/O,(42 + b2.. + 2q,o2)
-= 0 mod 32 for case (2).

We note that for each case, the same congruence also holds for the other
place of N lying over the prime 2.

Therefore, for case (1),

Tr/e/Q(b2) + (1 + dl) 2Tr//Q(q/2) Tr/e/(b2 + b- 2q, 2)
E Trz,:w,t)/o:z(dP2 + 4’- 2q’2)

-=0 mod32

where ranges over all the places of N lying over the prime 2.
Similarly, for case (2),

Tr/e/o(b2) + (1 + all) "+" 2Tr//o(q,2) -= 0 mod 32,

which completes the proof of (a).
(b) Let ’ rb’ + ’b’ + trrb’ + 2y for some y e o. As in (a) we set

b’= 24 and q’= 2q. Then

q, rb + rb + trrb + y Tr//o(4) b + y +2 b + y,

where the last equality results from the fact that

cb +SCbo and 4o (+1+ 1 + 72/2 + fd73/2)/2.
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Since Trr/o(bl2)

and

1 + dl, it suffices to show that

Trr/Q(b2) + Trr/Q(b2) + 2 Trr/o(q,2) --0 mod 32 for case (1)

Tr/c/o(b2) + Trr/o($12) 2Trr/o($2) 0 mod 32 for case (2).

Since y o, Yv oo’ ok Z2[Gv](1 + 7r + vQ-). Let

y, (a +/3or + ycr 2 + cr3)(1 + rr + V-)

for some a,/3, 3’ and 6 Z2. Then by the same arguments as in (a), the
conditions

-(+2 $) + q, y 0, (r25 $, (rz0 -q,,
0"(/1 =4) and 0"(/)2---4)2

give rise to the relations,

-(_+2-b)o= (a+/3+3,+6) + (a+3,-/3-6)rr,

q, ( ) + (0 a)(),
-(2-1,o)=a++y+6 and 2,o=(a+y-O-a).

Using these relations it is straightfoard to prove that for case (1),

TrKw,o)/O2(2 + 21 + 22)

Tr/o(6 + 6, + 2)
TrF/O2(2b21, + b, + 2ff)
16{(a++y+6)2+(a++y+6) + 1}
16(}. + l.v + 1)
8TrFm(,o + 1, + 1) moa 32.

Similarly, for case (2),

Tr.,m(2 +- 22) 8TrFma(21, + 1, + 1) moa 32.

We note that for each case, the same congruence also holds for the other
place of N lying over the prime 2.
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Therefore, for case (1),

Trr/o(b2) + (1 + dl) + 2Trr/o(2) Trr/o(b2 + bl2 + 22)_, Trrwm/((cb2 + + 22)
t12

ETrF/O( + 21,t + 2_..
t12

8 E TrF/O=(, + 1,, + 1)
t12

8 + + 1)
+ + +

0 rood 32.

Similarly for case (2), Tr/() + (1 + d) 2Tr/() 0 mod 32 and
this completes the proof of Proposition 6.6.
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