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ON THE AVERAGE VALUE FOR THE NUMBER
OF DIVISORS OF SUMS a + b

A. S,RK6ZY AND C.L. STEWART 2

1. Introduction

For any set X we shall denote its cardinality by Ixl, Let N be a positive
integer and let A and B be subsets of {1,..., N}. In recent years several
authors have investigated, subject to various assumptions on the cardinalities
of A and B, the arithmetical character of the sums a + b with a from A
and b from B, see for instance [1], [3], [5], [6] and [8]. If A and B are
sufficiently dense subsets of {1,..., N} then many of the arithmetical proper-
ties of the sumset A + B are similar to those of the set of consecutive
integers {1,..., 2N}. In [3], Erd6s, Maier and Srk6zy developed this analogy
by proving that if A and B are sufficiently dense then the sums a + b with a
from A and b from B satisf3’ a theorem of Erd6s-Kac type. This work was
refined later by Elliott and Srk6zy [2] and by Tenenbaum [9]. For any
positive integer n let o(n) denote the number of distinct prime factors of n.
In particular, it follows from [2] that if A and B are subsets of {1,..., N}
with

([A[[B[) 1/2 N/exp(o((loglog N) 1/2 logloglog N)) (1)

then

1 E w( a + b) log log N. (2)IAI IBI aA,bB
The asymptotic result (2) need not hold if (1) is replaced by the less stringent
condition

(IAI IBI) 1/2 > N/exp(6 loglog N logloglog N),

Received November 19, 1991.
1991 Mathematics Subject Classification. Primary 11 N56; Secondary 11 B75.
1The research of the first author was partially supported by the Hungarian National Founda-

tion for Scientific Research, Grant No. 1901.
ZThe research of the second author was supported in part by a Killam Research Fellowship

and by a grant from the Natural Sciences and Engineering Research Council of Canada.

(C) 1994 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America



2 A. S/RK6ZY AND C.L. STEWART

where 6 is any positive real number, see [8]. Nevertheless Sfirk6zy and
Stewart [8] proved that, for each e > 0,

1 E oJ ( a + b) > (1 e)log log N, (3)[A[ IBI aA,bB

for N sufficiently large as A and B run over subsets of {1,..., N} with

(IAI IBI) 1/2 Nexp(- (log N)(1)). (4)

For any positive integer n we denote the number of positive divisors of n
by r(n). In this article we shall investigate the average value of -(a + b) as a
and b run over the elements of A and B respectively where A and B are
sufficiently dense subsets of {1,..., N}. In this context the function is more
difficult to treat than the o function for the following reasons. First the
average of z(a + b) over a and b grows exponentially more quickly than
the average of o(a + b) over a and b. Secondly the main contribution to the
average

1 E r(a +b),IAI IBI aA,bB

comes from a sparse set of pairs (a, b) for which r(a + b) is large. This
phenomenon also holds for the set of consecutive integers. By Theorem 319
of [71,

n1 E r(j) log nn
j=l

whereas it can be shown that, for each positive real number e, the set of
positive integers n for which

-(n) > (log n)’g2+,

is a set of positive upper density zero.
Since r(n)> 2’(n) for all positive integers n, we have from (3) and the

arithmetic-geometric mean inequality that for each positive real number e,

1
IZl IBI aA,bB

-(a + b) > (log N)lg2-

provided that N is sufficiently large and that A and B run over subsets of
{1,..., N} for which (4) holds. Our principal result is the following.
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THEOREM 1. Let e be a positive real number, N be a positive integer andA
and B be subsets of {1,..., N} with

min(IAI, IBI) > eN. (5)

There exist effectively computable positive constants Co, C and C2 such that if
N exceeds Co and

1exp(-Cl(lOg N) 1/2) < e < ’, (6)

then

C2 log N1 E z(a +b) > (7)
a bB J)]

5

log log/])
IAI IBI A, /1og/]] 1

In particular is IZl >> N and IBI >> N then the average of -(a + b) is
>> log N, which is best possible as can be seen on taking A B {1,..., N}.
Moreover whenever e tends to zero as N tends to infinity there exists a
sequence of sets A and B satisfying (5) for which the average of r(a + b) is
o(log N), as our next result shows.

THEOREM 2. There exist effectively computable positive constants C3, C4
and C5 such that if N is a positive integer which exceeds C3 and e is a real
number satisfying

exp( log N/log log N) < e < (8)

.then there is a subset A of {1,..., N} with IAI > eNfor which

C5 log N1 E ’(a + a’) < (9)(1)a, a’ e.a log log -We suspect that the upper bound given by (9) is closer to the truth than the
lower bound given by (7).
Our final result shows that if e tends to zero as N tends to infinity there

exists a sequence of sets A with IZl > eN for which

1 E ’(a+a’).IA 12 log N a, a’ eA

THEOREM 3. For each real number with 8 > 0 there are positive numbers
C6 and C7, which are effectively computable in terms of 8, such that if N
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exceeds C6 and e is a real number with

N-1/8 < e < C7, (10)

then there is a subset A of {1,..., N} with

IAI > eN, (11)

for which

1

a, a’A

(12)

While we have not worked out an upper bound for the average of r(a + b)
subject to (5) we suspect that (12) cannot be improved on substantially. In
particular we conjecture that one cannot replace - in (12) by + .

Finally we remark that since z(n) > 2<n), estimates from below for the
quantity

max r(a + b)
a A, bB

may be deduced from lower estimates for the maximum of to(a + b) as a and
b run over A and B respectively. Such estimates have been obtained in two
recent papers [4], [8]. The first paper [4] treats the case when (IAI IBI)1/2 >> N
whereas the second [8] applies to much thinner sets.

2. Preliminary lemmas

LEMMA 1. Let u, v and k be integers with v and k positive. There exists an
effectively computable positive constant C8 such that if

V > C8e3k, (13)

and H is a subset of {u + 1,..., u + v} with

(14)

then there exist integers dl, d2,... dk with d H for 1,..., k for which
(di, dj) 1 whenever 4= j.
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Proof We take

C8 max e-3k 12k 1-I p 1
k> p<2k

(15)

and suppose that (13) and (14) hold. That C8 is well defined follows from the
prime number theorem and Mertens’ theorem. Put

p<2k

and let H(h) denote the set of the terms of H which are congruent to h
modulo P. We shall now show that there exists an integer h0 which is
coprime with P with

IH(h0)l > 2 v
3 P" (16)

This is so since otherwise

]H(h) E In(h)l/ E IH(h)l
<h <P <h <_P

(h,P)> (h,P)=l

3P
<h<P u<n<_u+v <hP

(h, P)> n=h(modP) (h, P)=

v ) v lv< E +1 + E p 3P E 1
<_h <P <h <_P <_h <P

(h,P)> (h, P)--- (h,P)=l

< v + P- -- pip -By (13) and (15) we conclude that

IHI _< 1- 1--I 1-p<_2k

which contradicts (14). Thus there is an integer h0 satisfying (16) and
coprime with P. Define m to be that integer which satisfies m h0(mod P)
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and rn <u <m +P. Then

[v/2kP]+

H( ho ) [,.J
/=1

(H N {n’m +2(1- 1)kP<n <rn + 21kP,

n h0(mod P)})
and so, by (13), (15) and (16), there exists an integer o such that

IH (n’m + 2(1o 1)kP < n < m + 2lokP, n ho(mod P)}I
2 v -1

> --fi ’ 2kP k.

Thus there exist integers dl, d2,... dk from H with

and

m + 2(l0 1)kP < d <_ rn + 2lokP (17)

d =- ho(mod P), (18)

for 1,..., k. If 1 < < j < k then by (17) and (18), d dj yP where
0 < y < 2k. Since ho is coprime with P so also are d and dj. But all the
prime divisors of d d are less than 2k and thus (di, dj) 1.

LEMMA 2. Let 6 and 7 be positive real numbers. Let k be a positive integer
.and let dl,..., d2k be positive integers with (di, dj)= 1 for j. Put D
dl...dEk. Let R be a subset of {1,...,D} and, for any integer j and for

1,..., 2k, let Ri(j) denote the terms ofR which are congruent to j modulo
di. If there are k integers d with 1 <_ <_ 2k for which there are at least td
integers j from {1,..., di} with [Ri(j)[ < rlD/d then

IR[ ((1 6) k + rlk)D.
Proof We shall suppose, without loss of generality, that the k integers d

with 1 <i < 2k for which there are at least td integers j with IRi(j)l <
D/d are dl,... dk. We write R as R U Rz where R consists of those
terms of R which are not congruent to any of the integers j with IRi(J)l <
lD/d modulo d for 1,..., k and RE is the balance of R. Then, by the
Chinese Remainder Theorem, IRll < (1 t)kD. Plainly

k D
IR21 < E d "rl i "okD

i=1

and the result follows.
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LEMMA 3. For each positive integer n, we have

V (d)log d
d

pin p- 1"

Proof For every complex number s we have

din
pS

Differentiating we obtain

X /z(d)log d
d

din pin pS
pin 1

1
pS

pin
p’-’7 p- 1"

Substituting s 1, we obtain (19).

(19)

3. Proof of Theorem 1

We have

Take

-(a + b) E E 1
d<2N aA, bB

dl(a+b)

[(log N)/log2] +

E E E
x=0 2X<d<2x+l aA,bB

dl(a+b)

k= [lg(C12e/lg(1/e))]log(2/3) + 3

where the constant C12 will be defined by (31) and (32). By (20),_
-(a+b) >

a A, bB

[(log N)/3k log2]

x=[(log N)/6k log2] 2x<d<2x+ aA, bB

(20)

(21)
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Note that for N > 218k,

3k log 2 6k log 2
log N
7k (22)

Put

1(1)=g FI 1-.p<_4k
(23)

For each integer x with

log N[6k log2] _<x_<
log N
3k log 2 (24)

we shall prove that for at least /2x integers d with 2x < d < 2x + 1,

E 1 > C14(1og(l/e)) -4 IAI Inl (25)d
aA, bB
dl(a+b)

where C14 will be defined by (34). It then follows from (21), (22), (23), (24)
and (25) that

C14 4 R:
r(a + b) > -]-(log(1/e)) EIAI IBIlog N,

and employing Mertens’ theorem we deduce our result.
Accordingly, suppose that x is an integer satisfying (24) for which there are

less than K2* integers d with 2x < d < 2x/l satisfying (25). Let H, be the
set of integers d with 2x < d < 2x/l for which (25) fails. Then Inxl > (1
K)2 x. There exist effectively computable positive constants CO and C such
that if N exceeds CO and (6) holds then

2x > 2[(logN)/(6klog2)] > N1/7k > C8e6k.

Thus we may apply Lemma 1 with u 2x 1, v 2" to deduce that there
are 2k integers dl,...,d2k in H, with (di, dj) 1 whenever 4= j. Put
D dl... d2k and let F(n) and G(n) denote the number of integers a in A
with a n(mod D), and the number of integers b in B with b n(mod D),
respectively. Thus F(n) < N/D + 1 < 2N/D and similarly, G(n) < 2N/D.
Write

o@(A,t) {n" 1 < n < D, F(n) > t}
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and

(B, t) {n" 1 < n < D, G(n) > t}.

We obtain, by partial summation, that

<nD
F(n) <_ E IAI

2D
<n <D <n <D

F(n) <[AI/2D F(n) > IAI/2D

< D I2AID + E
[A[/2D<t<2N/D

F(n)

IZl E
IAI/2D+ <t <_2N/D

t(l(A,t)i-l2(A,t + 1)[)

I(Z,t)l / ([IZl/2O] + 1)

I (Z,[IZl/2O] / 1)1.

We now put

M max tl(A, )
IAI/2D<t<2N/D

(26)

Thus we have

IAI < )--,. MA +MA2
IAI/ZD+I<t2N/D

C9, Clo,... will denote effectively computable positive constants. Then, by
(5),

IAI < MA log
IAI/2D + C9 M(log(4N/[A[) + C9)

< MA(IOg( 1/e) + C10)

whence

MA > C111A[(log(1/e)) -1.

Similarly, writing

MB max t ( B, t ) l, (27)
IBI/2D<t <2N/D
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we have

Mn > C111B[(log(1/e)) -1.

Let A, respectively tB, denote an integer for which the maximum in (26),
respectively (27), is attained so that

IAI/2D<tA < 2N/D, [BI/2D < B < 2N/D,

tAI(A,tA) MA > Cl, lAl(log(1/e)) -1

(28)

(29)

and

tBl(B, ts)l --MB > C,1]Bl(log(1/e)) -1. (30)

Then

I(Z, tA) > tlc,1lAl(log(1/e)) -1

D
> -Cll[A[(log(1/e))-l> Cl2e(log(1/e))-lD (31)

and similarly,

I(B, tB)I > C12e(log(1/e))-lD. (32)

We now apply Lemma 2 with 6 1/3 and r/ r/A I(A, tA)I/2kD.
Note that, in view of (31),

+’ok)D= + I(zt)l )D
< C12e(log(1/e))-l(2) D+ I(A,tA)I

Thus by Lemma 2, we conclude that there are at most k 1 integers d with
1 < < 2k for which there are at least 5di integers j from {1,..., di} with

DI{n" n .(A,t.), n =-j(moddi)}l < "OA.
Put r/B [(B, tB)[/2kD. A similar result holds on replacing (A, tA) and
r/A by (B, B) and r/B respectively. Thus there exists an integer d from
{dl,...,d2}, dl say, for which there are at most xd integers j from



AVERAGE NUMBER OF DIVISORS OF SUMS a + b 11

{1,..., di} with

DI{n" n (A, tA), n =- j(mod d)}l < /A //

and at most -d integers j from {1,..., di} with

DI{n" n ,_(B, t), n --- j(mod dg)}l <

But then

E
aA, bB
dll(a+b)

n=l u(A,tA) aA v,(B, tn) bB
umn(mod dl) a =-u(md D) v--- -n(mod d1) b--v(mod D)

n=l uq(A,tA) v(B, tn)
u =n(mod d) v- -n(mod d1)

n=l u(A,tA) v(B, te)
u n(mod dl u n(mod dl)

1)

(33)

2For at least 3 of the residue classes n from 1,..., dl,

D

u-(A,tA)
u n(mod d1)

2and for at least of the residue classes -n from 1,..., dl,

DE 1 > ’r/n d---.v ,(B, te)
v -n(mod d)
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Thus, by (29) and (30),

n= u ?(A, t,4) v 2(B,
u =n(mod d) v-- -n(mod d1)

1 D2 1 1 tl ,-( A, t,4 ) Its[(B, t)>-- -IAIBtAtB-I 12 kZdl

> C13(log(1/e))-2 IA IBI
k2dl

> C14(log(1/e))-4 IZl Inl
dl (34)

By (33) and (34), d nx contrary to our assumption. Our result now
follows.

4. Proof of Theorem 2

C15 C16,... will denote positive effectively computable constants. Also
denote the ith prime by Pi, so Pl 2, 102 3,..., and for n 1, 2,..., and

1, 2,..., define the integer ri(n)by

ri(n ) n(mod Pi), 0 < ri(n) < Pi.

Let t= [1/4 log(l/e)] and P I-I i=2Pi" Then, by the prime number theorem
and (8),

1 log(1/e)loglog(1/e)) < Vp < 3 log < exp (35)

for e < C15o Define A by

A= a’l <a <N,O<ri(a) < --fori=2,...,t

Then, for N > C16

1 fiPi-1IZl > N 2pi=2
2 Ni__ 2 1- -i
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by the Chinese Remainder Theorem. Thus

IAI > 3-tN > exp( log(I/e))N eN,

for N > C16. Moreover we have

E r(a+a’)= E E 1
a, a’A a, a’ eA dl(a +a’)

a, a’Aa,a’a dl(a+a’) d<vl dl(a+a’)d-<V (d,P)=I

=2 E E E 1 E 1, (36)
d < 1/’" j=l a’A a’A

a’ --j(mod d) a’ -j(mod d)(d, P)=

since by the construction of the set A, if a and a’ are from A and d divides
a + a’ then d and P are coprime. By (35) and the Chinese Remainder
Theorem, for each positive integer d up to which is coprime with P and
each integer j,

a eA
a =j(mod d)

=l{a" 1 <a <N,O <re(a) <pi/2fori= 2,...,t,a =j(mod d)}
1

_< 2al{a" 1 _< a < N, 0 < ri(a) < pi/2 for 2,..., t}l

IZl"-2d"

Thus it follows from (36) that

, r(a +a’) <2
a, a’ .A av@ i=1

(d,P)=

81A [2 1

(d, P)--

(37)
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Observe that

E
(d,P)=l

1

DIP k <_ /D

1 p(D)
D-- E D

DIP

< E /x(D) log(v-/D)D
DIP

D
DIP

1 log(V/D)k

1 /z(D)< - log N D
DIP

/z(D)log D
D

DIP
D

DIP

Thus, by Lemma 3,

E
(d, P)=

1 1 i__i2 (1) fi( 1) logpi
< log N 1- / + 1-

i=2 // Pi-- 1
i=2

By Mertens’ theorem and the prime number theorem,

E
(d,P)=l

C18 fi 1-// logN+
1 fi 1_

1--1
i=2 i=2 i=2

< C19((1og t)-l(log N + log t) + log t)
< C20( log log( 1/e) ) -’ log N. (38)

We obtain (9) from (37) and (38). This completes the proof of Theorem 2.

5. Proof of Theorem 3

As before for each positive integer let Pi denote the i-th prime number.
Let 6 be a positive real number. CZl, Cz2,... will denote positive numbers
which are effectively computable in terms of 6. Suppose that e is a real
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number satisfying (10) and define the positive integer k by the inequalities

1
Pl... Pg < - < Pl... Pg+l. (39)

Put

P =Pl’’’Pk,

and define

A {n’l <n <N, PIn}.

By (10), (30) and the prime number theorem

P < N1/8, (40)

and

N N
IZ[ (1 + o(1)) > > eN, (41)

provided that N exceeds C21. Thus (11) holds. It remains to verify (12).
Plainly _

z(a + a’) _, z(P(u + v)).
a, a’A u, v <NIP

We shall restrict our attention to those pairs (u, v) of positive integers less
than or equal to N/P for which d1, the greatest common divisor of u + v
and p2, is square-flee. For such a pair (u, v) there is a unique integer t such
that

u + v -= dlt(mod p2), 1 < < P21d and (t, P21dl) 1.

Thus

E z(a + a’) > E I-I E z(P(u + v)). (42)
a, a’A dllP <t <p2/d u, v <N/P

(t, p2/dl)= u+v=dlt(mod p2)
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Observe that since dllP and (t, p2/d1) 1 then

’(P(u + v)) > r(Pm)
u,v<N/P N/2P<m<N/P

u + v dlt(mod p2) m dlt(mod p2)

E
u,v<N/P
u+v=m

N
> 2P "N/2P<m<N/P

m dt(mod pZ)

e m

N 3W(dl)2k_o(dl)=UP E E
N/2P<m <N/P dim
m =-dlt(mod p2) (d, P)=

=ff 2 E E
dN/P N/2Pd <z <_N/Pd
(d, P)= dz=_dt(mod p2)

Thus, by (40),

E
u,vN/P

u + v dlt(mod p2)

(P(, + v)) > -p - 2k E E
d< gr N/2Pd <z <N/Pd

(d, P)-- dz=_dlt(mod p2)

N (3)’(da)2k
d <_ vr- 2p3d

(d, P)=I

N2 (3)’(dl)2k 1

dV
(d, P)--

(43)

whenever N exceeds C22. As in the proof of Theorem 2 we deduce that

E
(d, P)=

1 l(logN) l-i 1 + 12> i // pi-1"= i=1 i=1

k(1)C23./1-I1 1+//
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Thus, by Mertens’ theorem, the prime number theorem, (10) and (39),

E
(a,e)=l - > -(log N)rI 1-

PIP -’ (44)

whenever N exceeds C24o
Therefore, by (42), (43) and (44),

N2 log N(3)E z(a +a’) > E E 32p4
a, a’A dllP <t <p2/dl

(t, p2/dl)=l

(1)(d)2k 1--I 1 -( 1)
2N2 1ogN2kI-I 132p2 pIP

1 3 )o(d’), (45)

for N greater than C25. Note that

1 3 (dl)

dlP
VI 1+- >c61-I 1+pIP pIP

>_ C27H(1_ 11-3/2pIP
(46)

It now follows from (41), (45), (46), Mertens’ theorem and the prime number
theorem that

E z(a + a’) > C281A12(log.N)2k(log k) -1/2, (47)
a, a’Z

for N greater than C25. By (39) and the prime number theorem

(()log( 1/e)/log log( 1/e ),k> 1--
provided that e < C29 and so (12) follows from (47).
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