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A NOTE ON CONFORMAL VECTOR FIELDS
AND POSITIVE CURVATURE

DAGANG YANG

Introduction

All known examples of compact Riemannian manifolds with positive
sectional curvature carries a positively curved metric with a continuous Lie
group as its group of isometries and thus carries a nontrivial vector field of
infinitesimal isometries, i.e., a Killing vector field. However, due to a theorem
of M. Berger [1], such a Killing vector field must be singular at least at one
point if the manifold is even dimensional. This is related to a well-known
conjecture that for an even dimensional closed positively curved Riemannian
manifold, its Euler characteristic is positive (cf. [4]). It is easy to see that
Berger’s theorem remains true for conformal vector fields (see also [3]). On
the other hand, the Euler characteristic of a closed odd dimensional manifold
is always zero. There are many simple examples of odd dimensional closed
positively curved Riemannian manifolds which carry nonsingular Killing
vector fields. The simplest example is perhaps the round 3-dimensional
sphere S3, which admits 3 pointwise linearly independent Killing vector fields
while any two of them do not commute. This is obvious if one considers S3

from the Lie group theoretic point of view.
The aim of this note is to give a generalization of M. Berger’s theorem to

odd dimensional manifolds.

THEOREM. On a closed odd dimensional Riemannian manifold of positive
sectional curvature, each pair of commutative conformal vector fields are
dependent at least at one point.

Remark 1. Analogous to the above mentioned conjecture, one might
expect the following: On a closed positively curved odd dimensional Rieman-
nian manifold, each pair of commutative vector fields are dependent at least
at one point.
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As an application, we have:

COROLLARY. On a compact Lie group G, except that the universal covering

of G is the 3-sphere S3, every smooth Riemannian metric conformal to a left
invariant one has nonpositive sectional curvature somewhere.

Remark 2. It is well-known that every compact Lie group carries left
invariant metrics of nonnegative sectional curvature. However, these nonneg-
atively curved left invariant metrics cannot be conformally deformed to one
with strictly positive sectional curvature.

Remark 3. This corollary is a generalization of a result by N. Wallach in
[2] where he proved the corollary for left invariant metrics on G.

The results of this note were obtained while the author was at the
University of Pennsylvania. The author would like to thank Professor W.
Ziller for his encouragement and to Professor M. Berger for kindly referring
him to the results in [3].

1. Preliminaries

Throughout this note, (M, g)will be a connected closed smooth Rieman-
nian manifold. All global and local vector fields will be smooth ones. The
capital letter X will be reserved exclusively for global conformal vector fields.
Thus, whenever we have X, X1, X2,..., and etc., they will all be conformal
vector fields. Two vector fields V and W are said to be commutative if their
Lie bracket is a zero vector field, i.e., if

Iv, w] =o.

Recall that a nontrivial vector field X on (M, g) is said to be conformal if
for all smooth vector fields V and W, we have

(1) Xg(V, W) g([X, V], W) g(V[X, W]) fxg(V, W)

for some smooth function fx: M R.
This function fx can easily be determined on the open subset f {p

MIX(p) 0}. Setting V W X in equation (1), we obtain

(2) fx X In g(X, X).

Notice that l) is dense in M. In case fx is identically zero on M, then
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equation (1) is reduced to

(3) Xg(V, W) g([X, V], W) g(V, IX, W]) 0.

Thus X is a vector field of infinitesimal isometries, or more often called a
Killing vector field.

LEMMA 1. Let X be a conformal uector field on (M, G). For any local or
global t)ector fields V which commutes with X, i.e., if IX, V] O, we have the
following two identities:

(4)

(5)

g(X,X)Xg(V,V) g(V,V)Xg(X,X)

g(X,X)Xzg(v,v) =- g(V,V)Xzg(x,x).

Proof The identities (4) and (5) are obvious on M \ 12. On 12, set W V
in equation (1); we have

Xg( V, V) fxg( V, V)

since IX, V] 0. Identity (4) now follows from equation (2) and the above
equation. Identity (5) is obtained by taking Lie derivative to (4) along the
direction X. Q.E.D.

DEFINITION. A conformal vector field X is said to be Killing at a point
p M if fx(P)= O.

Example. Assume that p M is a critical point of the smooth function
g(X, X) and X(p) 4: O. Then fx(P) X(p)ln g(X, X) 0 and X is Killing
at p.

Let be the Levi Civita connection of (M, g). Equation (1) is then
equivalent to the following equation.

(6) g(v.x, w) + g(v, VwX) f g(v, w)

for all smooth vector fields V and W on M.
Let Ax be the tensor field of type (1, 1) defined by

(7) AxV= VvX

for all vectors V in the tangent space of M. It follows from equation (6) that
Ax is skew-symmetric at a point p M if and only if X is Killing at p.
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Let R be the curvature tensor of type (3, 1) of the Levi Civita connection
V, SO

(8) R( V, W)Y VvVwY VwVVY V[v. wIY
for all vector fields V, W, and Y on M.

LEMMA 2. Let V be a smooth local vector field on an open subset U c M
such that [X, V] 0 and g(X, V) 0 on U, where X is a conformal vector

field on M. Assume that g(X, X) 0 on U. Then

(9) g(V,R(V,X)X) -- VZg(X,X) + g(V,v)XZg(X’X)
g(x,x)

Proof
have

g(vv, vx) + g(vx, vx).

Since X and V are commutative and orthogonal, 7xV 7vX, we

g(V, n(v, x)x) g(V, TvTxX) g(V, TxTvX )

v.(v. vx) g(vv, vx)
xg(v. vx) + g(vx, vx).

g(v, vx) -g(vv, x) -g(vx, x) -vg(x, x),
g(v, vx) g(v, vv) Xg(V, v).

Equations (9) now follows by substituting the right hand sides of the last two
equations into the first equation and then applying the second identity in
Lemma 1. Q.E.D.

2. Proof of the theorem

To prove the theorem, it suffices to show that if (M, g) is an odd
dimensional closed Riemannian manifold of nonnegative sectional curvature
which carries two commutative pointwise linearly independent conformal
vector fields, then there is a point q M and a 2-plane tr in TqM such that
the sectional curvature K(tr) at the 2-plane tr is zero.
Thus let X and X2 be two commutative pointwise linearly independent

conformal vector fields on (M, g). For each R, set

(10) X(t) cos tX -k- sin tX2

Thus X(t) is a 1-parameter family of nonvanishing conformal vector fields on
(M, g).
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Consider the function

(11) h" M R -+ R

defined by h(p, t) g(X(t)(p), X(t)(p)). h is obviously a smooth positive
function periodic in the second factor of period 2rr. Since M is compact, h
attains its positive minimum at some point, say, (q, 0) M R. Notice that
by a rotation,

cos toX + sin toX2
-sin toX + cos toX2.

One may, for convenience, assume that o 0. Thus, h attains its positive
minimum value at (q, 0) M R. It follows that for any vector field V
defined in a neighborhood of q in M, the matrix

(12)

0
V 2h V--fh

V-h
032

Oh
is nonnegatively definite at (q, 0), Vh(q, 0)= 0, and -0-7-(q, 0)= 0. This has
the following implications:

(13) g,2(q) O, g22(q) > ga,(q) min h

(14) Ax,Xl( q) Vxl(q)S 0

(15) V2gll(q) > 0

(16) {(g22 gll)V2gll 2(Vg12)2}q >- 0

for all vector field V defined in a neighborhood of q in M, where gij
g(Xi, X.), i, j 1, 2. Moreover, X is Killing at q and Axl is skew-symmet-
ric at q.
Suppose that there is a nonzero vector V TaM such that g(V, Xa(q)) 0,

and Ax,V 0. One can extend V to a local vector field in a neighborhood U
of q such that g(V, X1) 0 and IXa, V] 0 on U. It follows from equations
(9), (14) and (15) that

g(V, R(V, X1)X1)I q < O.
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Since (M, g) is of nonnegative sectional curvature, the sectional curvature
K(r) of the plane r spanned by V(q) and Sl(q) is

K(o’)
g(V, R(V, Sl)Sl)

g11g(V,V ) [q-’O.

Therefore, to complete the proof of the theorem, one need only to show:

LEMMA 3. Assume that (M, g) is an odd dimensional closed Riemannian

manifold of nonnegative sectional curcature. If h attains a positive minimum at
(q, 0), then the dimension of the kernel ofAXl" TaM TqM is at least 3.

Proof of Lemma 3. Let dim M 2n + 1 > 3. Since AxlXI(q) 0 and
Axl is skew-symmetric on TaM, there is an orthonormal basis
{e, el, e2,... en, El, E2,... En} for TqM and real numbers 0 < A A 2

A such that

(17) X(q) g/2(q)e

(18) Axle AiEi, AxlE -Aiei, i= 1,2,...,n.

We must show that A O.
Suppose on the contrary, 0 < A1 A2 An" Since X is conformal

and XI(q) :/: 0, one can easily extend {Xl(q),el, e2, en, El, E2,. En} to
a local frame Y, Y2,..., Y2+1 in an open neighborhood U of q such that
the following conditions are satisfied:

(19)

Y2i( q) ei,

g(Y1, Y/) =0,

Y2i+l(q) Ei, 1,2,...,n

[Y1,Y/] =0, i=2,3,...,2n + 1.

Since g2(q) 0, we have

n

(20) X2(q) E (aiei q- biEi)
i=1

for some constants a and bi, 1, 2,..., n. Set

(21) V= af-l(aiY2i+l biY2i ).
i=1
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It is clear that V(q) 4:0 since X2(q) 4: 0. Furthermore,

(22)
(23)

g(x1, v) 0, [x,, v] 0 on u
V<<q>X1 A>,V( q) -X( q).

We now claim that

(24) g( Xl, VV(q)X2 ) g( X2, Vv(q)Xl ) --g22(q)"

Indeed, since X2 is a conformal vector field and g(X1, V)= 0, it follows
from equation (6) that

(25)
g(X,, 7V(q)X2) fx2g(X, V(q)) g(V(q), 7xiX2) -g(V(q), 7xiX2).
Since [X, X2] 0, we have Vx,X2 XzX1, SO

(26) g (X1, Vv(q)Xz ) g ( V( q ) Vx2X1).
Now use the fact that X is a conformal vector field and X is Killing at q,
i.e., fx(q) O, equation (6)yields

(27) g(V(q), 7x2Xa) fx(q)g(X2, V(q)) g(X2, VV(q)Xx)
-g(X2, Vv(q)X).

Combine equations (23), (26), and (27), the claim (24) is proved. Thus

VY12(q) V( q) g( Xl, X2)
(28) g ( Xl, 7v(q)x2 ) + g ( X2, 7v(q)x )

-2gzz(q )

Evaluate equation (9) at q and solve for V(q), we obtain

(29)
VZg(q) {-2g(V,R(V, X1)X) g(g, g)g-llX21gll -Jr- 2gzz}q.

It follows now from equations (13), (15), (28), and (29) that

(30) {(g22 g11)V2gl 2(Vg2)2}q
{-(g21/2 gll)(2g(V,R(V, XI)X,)

-’l"g(V, V)gllXgll) 2g1gz2 6gzZz}q
<0.
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This contradicts with the fact that h attains its positive minimum at (q, 0).
Therefore, we must have A 0. This proves that the dimension of the
kernel of Axl’. TaM TaM is at least 3. The proofs of Lemma 3 and the
theorem are now completed. Q.E.D.

3. An application

Let G be a compact connected Lie group whose universal covering is not
S3 and let g be a Riemannian metric conformal to a left invariant metric on
G. Thus each right invariant vector field on G is a nonsingular conformal
vector field. If G is even dimensional, then (G, g) can not have strictly
positive sectional curvature since M. Berger’s theorem (cf.[1]) remains true
for conformal vector fields. If G is odd dimensional and dimG > 3, we first
notice that the rank of G is at least 2 except that its universal covering is S 3.
Therefore, there exist at least two commutative right invariant and therefore
conformal vector fields on (G, g). It follows from the theorem that (G, g)
does not have strictly positive sectional curvature. Thus the corollary is
proved.

REFERENCES

1. M. BERGER, Trois remarques sur les varietes riemanniennes a courbure positive, C.R. Acad. Sc.
Paris Serie A. 263 (1966), 76-78.

2. N. WALLACH, Compact homogeneous Riemannian manifolds with strictly positive curvature,
Ann. Math. 96 (1972), 277-295.

3. A. WEINSTEIN, A fixed point theorem for positively curved manifolds, J. Math. Mech. 18 (1968),
149-153.

4. S.T. YAU, Problem Section, #8, Seminar on differential geometry, Study 102, Princeton
University Press.

TULANE UNIVERSITY
NEW ORLEANS LOUISIANA


