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1. Introduction

Let G be topological group. M:ilnor [8] defines sequence of principal
G-bundles (En, Bn, G) (1 _-< n < oo such that

SG BI B. Boo Be,

where SG denotes the suspension of G and Be is a classifying space for G.
The work of Borel [3], [4] gives relations between the cohomology of G and that
of Be, whereas Rothenberg [10] investigates the cohomology of the spaces B.
Suppose now that X is an H-space, that is, X has a continuous multiplica-

tion with unit. One then may not be able to define a classifying space Bx,
but Stasheff [11] has defined the projective plane of X, Ps X, which has the
homotopy type of the space Bs in case X is actually a group. The purpose of
this paper is to discuss the relationship between the cohomology of X and that
of P X.

Consider commutative, associative, and graded algebras A over a field k
such that A0 is isomorphic to k. We denote the ideal of positive-dimensional
elements by and set

DA DA D-A n 2).

We call DA the ideal of decomposable elements. If A and B are two algebras,
we define their tensor product. A @ B in the usual way with grading

(A @ B) +s=A @ Bs ( 0).

Let X be n H-space. For the rest of the paper we shall ssume that X
is arcwise connected and that the integral singular homology groups of X re
finitely generated in each dimension. Now tke singular cohomology with

H*coefficients in a fixed field . Recall that n element u e (X) is clled
primitive if

mu vu+ *2 U

where m v (i 1, 2) re the homomorphisms induced by the mps from
X X X to X given respectively by the multiplication nd the projection on
the it factor. In }3 we define a (group) homomorphism

" H+(Ps X) H(X) (q > O)
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such that

Image P(H*(X)), the subspace of primitive classes in H* (X).

Let P- and P+ denote respectively the subspaces of odd- and even-dimen-
sional primitive classes of/]*(X), where/*(X) denotes the positive-dimen-
sional cohomology of X. Let/u}, {v.} be bases for P-, P+ respectively, and
choose classes Y}, z.} in/*(P2 X) so that

We shall prove

THEOREM (1.1). Let X be an H-space such that the algebra H*(X) is primi-
tively generated. Then there is an ideal S in H*(P2 X) such that

S O, S. I:I* (P2 X) O,

and one has the following to-algebra splitting:

H*(P2 X) (.A/D3A) @ S,
where

A (R)k[y] (R)5 A(z.) if characteristic tc 2,

A (R) k[y] (R) k[zs] if characteristic lc 2.

Moreover if tc Z (p a prime), there is a group splitting

H*(P X) (/D3) @ ,
where (R)k[y] and is an ,-module. Therefore /D3 can be given the
structure of an (-algebra.

Here Ct denotes the mod p Steenrod algebra, and & the subalgebra of a
generated by the operations ( (i _-> 0). (Recall that ( Sq, if p 2).

If X is a group and if H*(X) is an exterior algebra, then (1.1) is a special
case of the results obtained in [10].
The theorem (for the case k Z2) has the following applications. In

[13] the group splitting given at the end of (1.1) is used to study the behaviour
of the Steenrod squares in the mod 2 cohomology of an H-space satisfying the
hypotheses of (1.1). In particular it is shown that the primitive classes
whose dimensions are one less than a power of two form a set of generators for
H*(X) as an a.-algebra. In [14] this result is combined with (1.1) to show
that if an H-space (satisfying the hypotheses of (1.1) has no 2-torsion, then
its lowest positive-dimensional rational cohomology occurs in dimension
1, 3, or 7.
The remainder of the paper is devoted to the proof of (1.1).

2. The space E1 X
Let X be an H-space with multiplication m. Denote by CX the (reduced)

cone on X, which we think of as the space obtained from [0, 1] X X by identify-
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ing {0} X X and [0, 1] X {e} with a point (e denotes the unit of X). Follow-
ing Stasheff [11] we define E1X to be the space obtained from the disjoint
union of X X CX and X by identifying (x, (1, y) with re(x, y)" that is,

EX= (X X CX) u,X.

Let SX denote the (reduced) suspension of X, obtained from CX by identi-
fying {1} X X with a basepoint .. We define

p E1 X -+ SX
by p(x, (t, y) (t, y).
Now E1 X may be regarded as the total space of a proper triad [6]

(El X, M1, Mm), whereM and Mm denote respectively the mapping cylinders
of r and of m. That is,

M I(x, (t,y)) eEX, 0 <- <= 1/21,

so that
M {(x, (t, y)) eEl X, 1/2 =< _-< 1},

M u M E X, M1 n Mm X X X.

Take cohomology in the field/c, and denote by A the Mayer-Vietoris cobound-
ary [6, Chapter I, 15] from Hq(X X X) to Hq+(E X) (q > 0). From the
exactness of the Mayer-Vietoris sequence it follows that the kernel of A is
the subspace of H*(X X X) spanned by m*t*(X) and r’/*(X). Since/c is
a field and X has homology of finite type, H*(X X X) , H*(X) (R) H*(X);
and a simple argument shows that A restricted to t*(X) (R) I*(X) is an
isomorphism"

(2.1) A" /-7*(X) (R) /7*(X) /7*(E X).

Let X # X denote the collapsed product of X, which is obtained from the
Cartesian product X X X by identifying the axes X v X to a point. Let

*" H* H*(z#x)-+ (xxx)

denote the homomorphism induced by the projection X X X -+ X # X. By,
the Kiinneth formula, v is a monomorphism, and its image is a direct sum-
mand of H*(X X X)"

Thus
v*Hq(X # X) +;.= (X) (R)/TJ(X)

IT* x # x) l* x (R) I:I* X

(q > o).

and therefore from (2.1) we obtain

(2.2) A r]*" /-*(X # X) /-*(E1 X).

The existence of such an isomorphism follows from the fact that E1 X has the
homotopy type of X X (where denotes the join), but we shall find it convenient to
have this specific form of the isomorphism.
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We define a homomorphism

(2.3) ./*(x) - *(x # x)
by requiring that 7" * * *o m r r2. Since

, *Image (m* r r. C Image

and since t* is a monomorphism, is well defined.
We also can regard the suspension SX as the total space of a proper triad

(SX, Co, C1), where Co and C1 denote respectively the upper and lower cones
of SX. Thus,

Co u C SX, ConCh= X.

We can take the map p to be a triad map (El X, X, M,, M,) --> (SX, Co, CI),
and then

plX X X r." X X X-->X.

Therefore we obtain the following commutative cohomology diagram, where
denotes the suspension isomorphism and p* is induced by p.

Since v m

(2.5)

Hq(x x x) A Hq+(E X)

H(X r H+(sx).
* * and since A (m* r’) 0, we have71 7r2

A 7" p*

Let X be an H-space.
plane of X as

3. The projective plane
Following Stasheff [11] we define the projective

P2 X C(E1X) up

That is, P2 X is the cone on E X attached to SX by p. Thus SX is a sub-
space of P2 X, and by Adem [2, 3] we have an exact sequence (q > 0)

,-- Hq(SX) p Hq(EX) t Hq+(px)
.,

"t uq+l(sx) - ...,
where is Myer-Vietoris coboundary and i* is the iniection. We set

k t A 7*" Hq(X # X) -+ Hq+(P. X),
-. .,. Hq+Ia o, (P.X) Ha(X).
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Since A 7" and z are each isomorphisms, using (2.5) we obtain the following
exact sequence

-- Ha(X) Ha(x#x) k Hq+2(P2x)

Notice that

(3.1)

(i)
(ii)
(iii)

(3.2)

Hq+l(X) --+ ....

is an algebra homomorphism (and an (-map when ]c Z);
and are It-module homorphisms (and (-maps)
(D O,

where D D2H* (P2 X), since cup-prodcuts of positive-dimensional elements
vanish in the cohomology of a suspension.

/*For cohomology classes x, x2 e (X) we denote by x (R) x. both the
element in/*(X) (R) /*(X) and its counterimage under in/*(X # X).
Suppose now that xl and x. are primitive classes. Then

and so

* x + xmxi

(x,) (x.) o.

(i= 1,2),

Therefore by the exactness of (3.1) there are classes yl, y. e (P X) such
that yi x (i 1, 2). In [12, (2.4)] it is shown that

(3.3) k(x (R) x2) (--1)r+yly2,
where r dim x, and where the product on the right is the cup-product in
H*(P. X).
For u H*(X) and c H,(X) we denote by (u, c} e ]c the Kronecker index

of u and c, which gives us a dual pairing [7], H*(X) (R) H,(X) ]. If
u, u. e/*(X) and c, c e/,(X), then

(3.4)
Moreover,
(3.5)

(Ul ( U2, Cl ( C2 (Ul Cl}(U2, C2).

where o" c. denotes the Pontrjagin product of the homology classes c and c.
We now use these various facts to obtain the proof of our theorem. As in

1 take cohomology with coefficients in the field/c. Again denote by P- and
P+ the respective subspaces of I*(X) spanned by the odd- and even-di-
mensional primitive classes. Let/) denote the subspace of t*(X) spanned
by P+ and the decomposable elements. Assume now that the algebra H*(X)
is primitively generated. Then,

/*(X) P-@ 9,
special case of this is considered by Adams in [1].
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as a vector space over It. Choose a complementary subspace, /, to P+ in/.
Thus,/*(X) P (R) , where P P(H*(X)) P- (R) P+. Define

= (R)D@(R)P(R)P(R)

in *(X X), and set
S () in *(P2X).

Let {u}, {re} be respective bases for P-, P+, and choose classes {y}, {z} in
H*(P X) such that

Each z is odd-dimensional, and consequently,

z.z + z.z 0 (all r, s).

In particular, ff characteristic 2, z 0.
Denote by N the subalgebra of H*(P2 X) spanned by the classes {y} and

[z}. Since P2 X has category three (it is formed from the suspension by
attaching a cone), the classes

(3.6) {y}, {z}, {yz}, {yvya} (p q), {zz,} (r s),

span N, as a It-module. We show

LEMMA (3.7). Suppose that the algebra H* X) is primitively generated.
Set

+ vqdqyvyq + ,e,ZrZ,,
where a e e k, and where each e 0 if characteristic 2. If x e S,
then all the coecients ai e are zero.

By definition, if x e S, then x k(), for some e , and therefore t(x) 0,
by the exactness of (3.1). Now

(y z) (y y) (z z.) 0,

by (3.2) (iii), and by hypothesis

Thus, assuming x e S we have

o (x) ,+ b,
and hence each a, be is zero since {ui} and {re} are respective bases for P-,
P+andP-nP+ 0.

Set
{} {u} {vl.
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Thus {win} is a basis for P (= P- (R) P+), and the classes {win (R) wn} form a
k-basis for P (R) P. Let {} denote a set of dual homology classes to {w}.
That is,

(w, n) ., the Kronecker delta.

Since *(X) P @ D, and since Hq(X)is finite-dimensional (q 0), we
may choose the classes {} so that for ll m,

(b, ) o.
Thus by (SA) and ghe definigion of ,
(3.S) <, @ @ .) 0 (all m, n).

We define

in *(X X) and obtain by (3.3) that

Consequently X(A ) 0, and hence by exactness there is an element

f e (X) such that
(f) A .

To show that each coefficient c is zero, we observe that

<A, e @ ) c, <A, @ a) O,

by the choice of the dual classes and . Therefore if we define

we obtain, by (3.5) and (3.8), that

(A --,@ - @ ) c.
Hence if 0 0, then c 0. Now H*(X) is a primitively generated Hopf
algebra, and therefore its dual algebra, H.(X), is commutative by (4.8) and
(4.9) of [9]. Consequently since 0 is the commutator of and , it must
vanish, and hence so must c. An entirely similar argument shows that the
coefficients dva and e are zero, when p < q and r < s.
To show that the remaining coefficients da and e are all zero, we use the

fact that

(3.9) <6(5), a @ a) d, (6(f), @ ) e.

Suppose that characteristic k 2. Then by (4.9) of [9], since H*(X) is
primitively generated, we have x 0 for all classes x e .(X). Thus,

-2 -2
Uq O, O,Vs



ON THE PROJECTIVE PLA_NE OF AN H-SP_&CE 499

and hence by (3.5), dqq es8 O. On the other hand, f characteristic/ 2,
then by hypothesis, e88 0 (all s). But since q is odd-dimensional and
H.(X) is commutative, we must have 2q 0, which shows by (3.9) that
dqq O, completing the proof of (3.7).

4. Proof of (1.1)
It follows from (3.7), by taking x 0, that the classes given in (3.6)

form a ]-basis for the subalgebra N, and thus N (fI/DA), as given in
(1.1). Moreover, N n S 0, again by (3.7), and since S k(), it follows
from (3.1) that S 0. We show in an appendix (6) that S.I*(P2X) O.
Thus S is an ideal, and we complete the proof of the splitting given in (1.1)
by showing that

fl*(P, x) N + S.

I:Let x e (P: X).

where a, b

Since (x) is primitive, we may write

x au + b,.
Set

y aiy+ bzeN.
Then (x y) 0, and therefore by the exactness of (3.1) there is a class

/*(X # X) such that (w) x However,we --y.

/*(X#X) @ (P (R) P),

and since () S and (P (R) P) N (by (3.3)), we have x eN + S,
completing the proof of the splitting.
Assume now that / Z, p a prime. As above let N denote the sub-

algebra of/*(P X) generated by the classes given in (3.6), and define/ to
be the subalgebra of N generated by the classes {yi}. Let I denote the ideal
of N generated by {z}. Then

N=N@I,

as a/-module. Define S I @ S, which is an ideal in/*(P_ X). Then
by the splitting obtained above we have

/*(P X) @ ,
as a group. In 3 we defined /) to be the subspace of/*(X) spanned by
P+ and the decomposable elements. Define-- /)(R)D@ /)(R)P- @P-(R) /)

in fi* (X # X), and set

L the linear subspace of H*(P X) spanned by {zs}.
Then by (3.3) and the definition of the subspace S (see 3), we have

I (R) S L @ k().
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Since the elements of (p all have even degree, (p(P+) c P+ and
((P-) c P-. Moreover by the Cartan product formula, ((D2) D2,
where D DH*(X). Thus ((/)) /, and therefore (again by the
Cartanformula), ((1) c 1. Thus, by (3.2)(ii), ((kl) kl. Since
the elements of N all have even degree and those of L have odd degree,
(p(L) c , and therefore (() , as required.

Since
/D3 H*(P X)/,

we can regard /D3fi_ as an (-algebra. Define qt to be the ideal of ( gen-
erated by the Bockstein operator fl. Then a ( @ (,, as a Z-vector
space. Since the elements of _/D3 all have even degree, we then can re-
gard /D as an algebra over all of a by setting qt(/D3) O. This
completes the proof of (1.1).

5. Remarks
The hypotheses of (i.I) can be altered in various ways. For example let

k denote either the rational numbers Q or the field Z, p a prime; and suppose
that the algebra H*(X) is not primitively generated. If, instead, one has
that H*(X) is finite-diinensional (as a vector space), then the splitting given
in (1.1) is still obtained, but one can no longer assert that N is an -module.
Since H*(X) is not primitively generated, we can no longer use [9] to obtain
the appropriate lemma analogous to (3.7). Instead one now applies the
results of [5], especially (6.8).
Another change is to use the integers for coefficients, rather than a field

If one assumes that X has no torsion, and that H*(X; Z) is primitively gener-
ated and of finite rank, then a splitting analogous to that given in (1.1) is
obtained. One uses the fact that H*(X; Z) is an exterior algebra on odd-
dimensional, primitive generators. Thus, only the polynomial part (gener-
ated by the classes {y} is obtained in the algebra N.

6. Appendix
Let X and Y be spaces, and f a map X - Y. Denote by C the cone on X

attached to Y by means of f. Then we have a proper triad (Cs, CX, M]),
where CX is the cone on X and M] is the mapping cylinder of f (see [2, 2, 3]
for details). Moreover,

CX o Ms Cf CX n Ms X,

and hence one has a Mayer-Vietoris coboundary

" Hq(x) -- Hq+(Cs).
We prove

LEMMA (6.1). Letx eI*(X) andy eIJI*(Cs). Then

t(x) y O.
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This clearly implies the result needed in (1.1)--that S.t*(P2X)
since S k() and k is the composition of with other homomorphisms.
To prove (6.1) we recall the definition of ([2, 3]). This is given by the

following commutative diagram, where t is the coboundary, m* is the excision
isomorphism, and n* is induced by the inclusion:

Hq(x) Hq+l(C])

//+(C X).Hq+I(Ms, X)
m,_l

t* CX) such that n*Since CX is acyclic, there is a class v e (Cs, v y.
/*Choose u (Cf, CX) such that m*u x. Then,

#(x) y n*(u v) n*m*-l(x m’v).
Let l* denote the homomorphism induced by the inclusion M] c (Mf, X).
Then, by the naturality of the cup-product and the exactness of the co-
homology sequence of a pair, one has

ix m*v l*x m*v 0 m*v O,

completing the proof of the lemma.

BIBLIOGRAPHY

1. J. F. ADAMS, H-spaces with few cells, Topology, vol. 1 (1962), pp. 67-72.
2. J. ADEM, Un criterio cohomoldgico para determinar composiciones esenciales de trans-

formaciones, Bol. Soc. Mat. Mexicana (2), vol. 1 (1956), pp. 38-48.
3. A. BOREL, Sur la cohomologie des espaces fibres principaux et des espaces homognes

de groupes de Lie compacts, Ann. of Math. (2), vol. 57 (1953), pp. 115-207.
4. ------, Sur l’homologie et la cohomologie des groupes de Lie compacts connexes, Amer.

J. Math., vol. 76 (1954), pp. 273-342.
5. W. BROWDER, Torsion in H-spaces, Ann. of Math. (2), vol. 74 (.1961), pp. 24-51.
6. S. EILENBEI%G AND I. STEENI%OD, Foundations of algebraic topology, Princeton,

Princeton University Press, 1952.
7. S. LEFSCHETZ, Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol.

27, 1942.
8. J. MILNOR, Construction of universal bundles II, Ann. of Math (2), vol. 63 (1956),

pp. 430-436.
9. J. MIINOR AND J. MOORE, On the structure of Hopf algebras, Trans. Amer. Math.

Soc., to appear.
10. M. ROTHENBERG, On the Milnor construction of universal bundles, Thesis, University

of California, Berkeley, 1961.
11. J. STASHEFF, On homotopy Abelian H-spaces, Proc. Cambridge Philos. Soc., vol. 57

(1961), pp. 734-745.
12. E. THOMAS, 0n functional cup-products and the transgression operator, Arch. Math.,

vol. 12 (1961), pp. 435-444.



502 WILLIAM BROWDER AND EMERY THOMAS

Steenrod squares and H-spaces, Ann. of Math. (2), col. 77 (1963), pp. 306-317.
On the rood . cohomology of certain H-spaces, Comment. Math. Helv., vol. 37
(1962), pp. 132-140.

CORNELL UNIVERSITY
ITHACA, NEW YORK

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA


