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1. Introduction

A flag in a projective space (P of dimension d _>- 2 is a sequence

So c S c c S_

of linear subvarieties of ( such that Si has dimension i (i 0, 1, d 1)-
Thus, for example, a flag in a projective plane is an incident point-line pair.
A collineation group G of ( will be called flag-transitive if any one flag can be
carried onto any other by some collineation in G. The little projective group
of a Desarguesian (i.e., the group generated by all elations of , isomorphic
with PSL+(F), where F is the coordinatizing field) is flag-transitive. Thus
the following theorem can be considered as giving a geometric characteriza-
tion of PSL+(F) for finite F. If the number of points on each line of
is n + 1 we will refer to n as the order of . (For d > 2 this differs from the
order of the symmetric design formed by the points an hyperplanes of .)

THEOREM. A flag-transitive collineation group G of a Desarguesian projective
spe of dimension d 2 and finite order n must contain the little projective
group of unless
() d 2, n 2, and ]GJ 3.7, or
(b) d 2, n 8, and G 9.73, or
(c) d 3, n 2, and G is isomorphic with the alternating group A

of degree 7.

For d 2 this theorem coincides with Theorem 1 of [6]. The extension
to dimensions 3 (where, of course, the Desarguesian property necessarily
holds) is obtained in this paper as an application of extensions of results of
Andr [1], Gleason [5], and Wagner [9] concerning perspectivities, together
with a special result about embeddings of PSL(F) in PGL+z(F).
The exceptions stated in the theorem are real. In case (c), G A is

doubly transitive on the points of . Concerning the question whether the
Desarguesian condition can be moved from the hypotheses to the conclusion
of the theorem, i.e., whether the existence of a flag-transitive collineation group
on a finite projective plane implies Desargues’ Theorem, see [6].
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2. Perspectivities
In this section we obtain the needed extensions to higher dimensions of

results of Andre, Gleason, and Wagner concerning perspectivities of projective
planes.

If a perspectivity (elation, homology) has center C and fixes a hyperplane
H pointwise, we shall refer to it as a (C, H)-perspectivity (-elation, -homology).
We refer to the group of collineations generated by all elations of a

Desarguesian projective space (P as the little projective group of (P; this group
is isomorphic with PSLd+I(F) if (P has dimension d and is coordinatized by
the field F.

If G is a collineation group of a projective space 5), and S is a linear sub-
variety of (P, we denote by Gs the subgroup of G consisting of all elements
g e G such that g(S) S.
The case d 2 of the following proposition is due to Andr [1]. His proof

carries over with only verbal changes; we include the details for the con-
venience of the reader.

PROPOSITION 1. Let 5 be a finite projective space of dimension d >= 2, H a
hyperplane of (P, G a group of perspectivities with hyperplane H, and T the normal
subgroup of G consisting of all elations in G. Then

(a) G is transitive on the points outside H if and only if T is, i.e., if and
only if G contains all possible elations with hyperplane H, and

(b) T is transitive on the set of all centers of homologies in G.

Proof. First we prove (a). Let A be the totality of points not in H, and
let Ap (p 1, 2, r) be the orbits of A under G. Since T is a subgroup of
G, each A is a union of orbits under T, say up in number. Since T is regular on
A, every orbit under T contains exactly points, where IT [. Hence
[Apl Up$ and
For P in Ap we have A,

Hence

(1) g spupt.

But Ge is the totality of homologies in G with center P; hence

g T A- P([ Gp 1),
i.e.,

(2) g -- = up t(sp 1).

The referee informs the author that in a paper to appear in Mathematische Zeit-
schrift, H. Liineburg has proved Propositions 1 and 2 as well as Lemma 1 under the
more general hypothesis that (P is a symmetric design. That (P is actually a projective
space can be proved. Liineburg has also given a partial answer to the question raised
in the remark following Proposition 3.
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By writing R -lup, the number of orbits under T,
g -}- rg Rt, or

(2) gives

(3) g(1 r) t( R).

Hence r 1 if and only if R 1, proving (a).
To prove (b), note first that if R 1, T is transitive on A, and there is

nothing to prove. Assume R > 1. If sl s. sr 1, then Ge 1
for all P e A, and G contains no homologies 1. Assume therefore that
sl,... ,st, > 1, s,+l s,+2 s 1 (r’ => 1). We want to prove
thatr’ 1. By (1) and (3),

and therefore

:Hence

But

upspt g t(1 R)/(1 r),

lisp up(1 r)/(1 R).

;.. lisp R(1 r)/(1 R) > r 1 since R > 1.

;-l l/sp ";’_ l/sp -{- r r’ <- r’/2 + r r’ r- r’/2.
ttence

r- r/2 r-- 1, r 2, r 1.

We now have s > 1, s2 sa s 1, and A contains all centers of
homologies inG. By (1) and (2),ults g t-t- ult(sl 1),whence
ul 1. Thus A is an orbit under T, proving (b).
As an immediate corollary of Proposition 1 we have the following proposi-

tion, due to Andr [1] in case d 2.

PROPOSITION 2. A group G of collineations of a finite projective space 6

of dimension >- 2 which contains a (P, H)-homology for every point P not on
some given hyperplane H must contain every possible elation with hyperplane H.

The case d 2 of the following lemma is due to Gleason [5].

L.MM. 1. Let G be a collineation group of a projective space 5 of dimension
d >-_ 2 and finite order n, and let H be a hyperplane of 5). If for each point X
on H, G contains the same number h > 0 of (X, H)-elations 1, then G contains
all possible elations with hyperplane H.

Proof. The subgroup T of all elations in G with hyperplane H is the dis-
joint union of the identity and the sets of (X, H)-elations 1 with X on H.
Hence the order of T is given by

t= h.N_- 1,

where N_ n-1 -t- n- -t- -t- 1, the number of points on H, and > n-1

since h > 0. Since T acts regularly on the points not on H, divides the
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number of these points, which is n,
nd tm,

andre < nsincet > n-1. Thusn (h.N_l- 1) m-= m (modN_l).
Butn 1 (mod Nd_l) hence Nd-l m 1, givingm 1 since m < n < N_.
Hence n t, and T is transitive on the points not on H.

PROPOSIrION 3. If a collineation group G of a finite projective space 5 of
dimension d >- 2 contains a (P, H)-elation 1 for every incident point-hyper-
plane pair (P, H), then 5) is Desarguesian, and G contains the little projective
group of 5

Proof. The result is obtained easily by induction on d, from the important
case d 2 due to Gleason [5].
Assume d _>- 3; then of course we automatically have that 5) is Desarguesian.

Let H be a hyperplane of 5), L a hyperplane of H, and P a point of L. Let K
be a hyperplane H of (P such that K n H L, and let a be a (P, K)-elation
in G. Then a lH is a (P, L)-elation of H. Hence the induction hypothesis.
implies in particular that G is transitive on the points of H. Hence the
number h of (X, H)-elations of 5) is the same for each X on H, and therefore
Lemma 1 implies that G contains all possible elations with hyperplane H.
Since this is true for every hyperplane, we conclude that G contains the little
projective group of 5).

Remarl. For d 2 the conclusion of Proposition 3 holds under the weaker
hypothesis that every point is the center of some elation, and every line is
the axis of some elation (Wagner [9]). This cannot be extended to d > 2,
at least not for odd d, because the symplectic group has the corresponding
property.

PROPOSITION 4. Let G be a collineation group of a finite projective space
5 of dimension d >= 2, transitive on incident point-hyperplane pairs. If G con-.
tains a perspectivity 1, then 5) is Desarguesian, and G contains the little projec-
tive group of 5).

Proof. We deduce the result from Proposition 3 by adapting an argument
of Wagner [9]. Because of the assumed transitivity property of G, the result.
follows at once by Proposition 3 if G contains an elation 1.

Suppose we know only that G contains homologies 1. If we assume that
every homology with a given center P has the same hyperplane 0(P), and.
every homology with a given hyperplane H has the same center 0(H), then
we can easily check that is a polarity. By its construction, 0 has no ab-
solute points, contrary to the fact that a polarity of a finite projective space
of dimension _>- 2 always has absolute points (that this is true for arbitrary
finite projective planes is due to Baer [2]). If some hyperplane is the hyper-
plane of homologies with different centers, Proposition l(b) implies that G
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contains an elation 1. Otherwise some point is the center of homologies
with different hyperplanes, and the dual of Proposition 1 (b) gives the same
result.
For completeness we include the following result, immediately derivable

from Propositions 2 and 3.

PROPOSITION 5. If a finite projective space 5 of dimension d >= 2 admits
a group G of collineations such that for every nonincident point-hyperplane pair
(P, H), G contains a (P, H)-homology, then 5) is Desarguesian, and G contains
the little projective group of 5).

Remarlc. For d 2 it is known (Wagner [9]) that if every point is a center,
and every line an axis of some homology 1 in G, then (a) if G fixes a line
L of 5), then G contains every possible elation with axis L, (b) dual of (a),
and (c) if G fixes no point or line of 5), then 5) is Desarguesian, and G contains
the little projective group of 5). Hence, for d 2, the conclusion of Proposi-
tion 4 holds under the assumption of transitivity on points instead of on
incident point-line pairs [9]. Again there appear to be some difficulties in
extending these results to higher dimensions.

3. Embedding PSLk(F) in PGLk+(F)
The following result is given in a more general form than actually needed

for the proof of our theorem, since the cost is slight and the result may find
additional applications. Here we will apply only the case in which S is a
hyperplane.

PROPOSITION 6. Let 5 be a projective space of dimension d >- 3 and finite
order n, and let S be a linear subvariety of 5) of dimension >= d/2. If G is a
group of collineations of 5) such that Gs is faithful on S, and Gs[ S contains the
little projective group of S, then if we exclude the case d 3, n 2, an element

" Gs is an elation of 5) whenever . S is an elation of S. In any case, if F
denotes the intersection of Gs with the little projective group of 5), 17 S contains
the little projective group of S.

Proof. The first step is to reduce the problem to one about linear groups.
We may realize 5) as the geometry PV of subspaces of a vector space V of
dimension d 1 over the field Fn of n elements, and then S PW where
W is a subspace of V of dimension 1 dim S _-> 1 d/2 > (d 1)/2, i.e.,
dim W 1/2 (dim V).
The hypotheses imply the existence of an isomorphism of PSL (W) into

the collineation group of PV such that ]PW , for every , e PSL(W).
Clearly PSL(W)

_
PGL(V), since a collineation which is a projectivity on

a subvariety of dimension __> 1 is necessarily a projectivity. Suppose
f SL(W) induces ePSL(W), and g eGL(V) induces ePGL(V) (land g
exist since dim PV >- dim PW >- 2). Then g W induces / PW ,, and
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hence g W hf, h e F*. Letf h-g GL(V) ;f induces andf W
k-(g W) f. If h eGL(V) induces andhlW f, we must have
h f,eF*,andf h[W flW f, whence land h =f.
Hence

(1) for each f SL(W) there is a unique f GL(V) such that
(i) if f induces . e PSL(W), then f induces , and
(ii) fiW-f.

We observe that

(2) the mapping a" SL( W) --. GL( V) defined in (1) is an isomorphism.

In fact, iff g, f, g SL(W), thenf fl W g W g; hence a is
one-to-one. If f and g in SL(W) induce and ti in PSL(W) respectively,
then fg induces flt, and fg induces t (ti). Moreover, fglW fg,
and hencefg (fg), proving that a is an isomorphism.

In view of (1) and (2), our proposition will be an immediate consequence of

LEMM 2. Let W be a subspace of dimension k >= 3 of a vector space V of
dimension ]c l, < ], over the field Fn of n elements. Let (r be an isomorphism
of SL(W) into GL(V) such that fl W f for all feSL(W). Then,
SL(W)

_
SL(V), and, if we exclude the case ]c 3, n 2, f is a transvection

of Vfor every transvectionf of W.

We postpone the proof of this lemma, which is computational, and proceed
to derive the following needed consequence of Propositions 4 and 6. In the
next section we give the proof of our theorem, and finally in 5 we complete
the discussion by proving Lemma 2.

LEMM/k 3. Let G be a collineation group of a Desarguesian projective space 5

of dimension d >= 3 and finite order n, such that for each hyperplane H of 5),
G, induces the little projective group on H. Then G contains the little projective
group of 5 unless d 3, n 2, and G A the alternating group of degree 7.

Proof. Clearly G is transitive on points, and hence on hyperplanes ([4],
[7], [8]). Hence G is transitive on incident point-hyperplane pairs, since G
is transitive on the points of H for every hyperplane H. If G contains per-
spectivities 1, Proposition 4 implies that G contains the little projective
group of (e. Otherwise, for each hyperplane H, G. is faithful on the points of
H. By hypothesis, G. H contains the little projective group of H, and hence,
by Proposition 6 we must have d 3 und n 2. Moreover, the order of G
will in this case be given by

GI (number of planes in 5)) (I G, ])
15.168 7!/2.

But G is a subgroup of PSL(2), which is isomorphic with As, and the only
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subgroups of As of index 8 are those of the single conjugate class of subgroups
isomorphic with A7. Hence G A7 in this case, proving Lemma 3.

4. Proof of the theorem
We now complete the proof of the theorem stated in the introduction. Thus.

we assume that

6 is a Desarguesian projective space of dimension d >= 2 and finite order n, and
G is a flag-transitive collineation group of .

We must prove that if (d, n) (2, 2), (2, 8), and (3, 2), then G contains the
little projective group of P.

If G contains a perspectivity 1, it follows from Proposition 4 that G
contains the little projective group of . We assume therefore that GH is
faithful on H for each hyperplane H. The assumption that G is flag-transitive
certainly implies that GH is flag-transitive on H for each hyperplane H.
The case d 2 is Theorem 1 of [6]. We establish successfully the cases.

d 3 and d 4, and complete the proof by induction on d.
Case d 3. For d 3, Theorem 1 of [6] implies that, if G does not con-

tain the little projective group of H, then n 2 or 8, and G is regular on the
flags of H. ThusIGl 3.Tor9.73andIG[ 15.3.7or585.9.73. Gis
primitive by Proposition 3 of [4]. But it is easily seen that there is no primi-
tive group of order 15.3.7 and degree 15, nor is there one of order 585.9.73
and degree 585. For groups of these orders are solvable, and a solvable
primitive group must have prime power degree ([3; 154, Theorem XIII,
Corollary]). Hence G contains the little projective group of H. Since
G is assumed to contain no perspectivities 1, Lemma 3 implies that n 2
and G A. The theorem is therefore established for d 3.

Case d 4. If d 4, the result already established implies that either
GH contains the little projective group of H, or n 2 and G A is doubly
transitive on the points of H. Since G is assumed to contain no perspectivities

1, Lemma 3 rules out the first possibility. Thus G A, and G is doubly
transitive on the points of P. Therefore G is doubly transitive on the hyper-
planes of P, i.e., there are exactly two G-orbits of points. One of these must
consist of the 15 points on H; hence the other consists of the 16 other points.
It follows that 16 I1G !, i.e., 161 (7!/2), a contradiction, which completes
the proof for d 4.

Case d > 4. If d > 4, the results already established, together with the
induction hypothesis, imply that for each hyperplane H, GHIH contains the
little projective group of H. By Lemma 3, this contradicts the assumption
that G contains no perspectivities 1.
Remark. It would be interesting to know if transitivity on incident point-

line pairs is sufficient for the conclusion of the theorem for dimension d > 3.
Wagner [10] has announced that for d 3, 4, double transitivity of G implies
that G contains the little proiective group unless d 3, n 2, G A.
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5. Embedding SLy(F) in SL+(F)
We still hve to give proof of Lemm 2. We will derive it s corollary of

LEMMk 4. Let W be a subspace of dimension k >= 2 in a ector space V of
dimension lc l, > 0, oer a (no necessarily commutative) field F, and le
r: SL(W) ---, GL( V) be an isomorphism such that for each f e SL(W) fi W f
and f induces the identity transformation on V/W. Then, if we exclude the
cases
() l 2, characteristic F 2, and
(b) /--3, F=F,.,

there exists a subspace U of V such that V W U and f U is the identity
transformation for every f e SL(W), andf is a transvection of V for every trans-
vection f e SL(W). If we exclude the case (a), SL(W) SL(V).

Proof. We shall assume that 1 since the result for general follows at
once from this case. Representing linear transformations of W and V by
their matrices with respect to bases

{a,..-,a} and {a,...,a,a+}

of W and V respectively, we can interpret the isomorphism a as an
isomorphism

a: SL(F) ---. GL+(F)

such that for A e SLy(F),

( 01)K

K(A) being a (k 1)-matrix in F.
The group SLy(F) is generated by the matrices B.(h) I

(i j 1, 2,... n; h eF), E being the (/ X k)-matrix with 1 in the
intersection of the ith row and jth column and all other entries 0. Write

and

B(X) [Bs(X 01)kg(X

K(k) (K.(k) K(k), K(k)).
The cases k >_- 4, k 3, and k 2 require separate treatment, and we will

consider them in order. Suppose for the moment that /c => 3. Then for
j 3, 4,..., k, B(k) and B..() commute. Hence the same is true of
B,(,) and B.(g), giving

K()B() + g.() K,.()B() + K(X),

whence
K{,.() KI(,)
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Hence KI(,) 0 for all , i.e.,

(1) If k

Now we shall dispose of
The case k => 4. Since k 2, 3, B(k) and B() commute. From the

same relation for their images under z we obtain

K(k)B() + K() K()B(k) + g(k),

whence

(2) K(g) 0.

By (1) and (2) we have K() 0 for all j 1, and hence by symmetry

(3) Kt() 0 for all s.
Hence

(4) B(X) I K(X)E+..

(Here, of course, I and E,, now represent (k + 1) X (k + 1) -matrices.)
Since B(h)- B(--h), B(h) B(-X), and hence by (4),

g(--h) --K:(h), and

(5) B(X)-= I- E- K(X)E+,+.
For r s we have (B(X), B,(g)) B:(Xg) since this relation holds

before is applied. Using (4) and (5) we obtain

(B(X)’, B,():) I + XE, + K(h).E+,.,,

and hence K:,(A) K(A) .v. Setting

+ g:.(1) K$,(1)
we have therefore

(6) K(g) a, for all s r.

Now set

If f is the transformation of V determined by the matrix Brs(h)" with respect
to the original basis, then

f(a+l) [Kr(h).a, + a+l] [ax ai -b -b a,.(ha .+ a,.)+ + a, a,]

The proof for the case k _>_ 4 is now complete on taking U (a+).
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Next we consider
The case/c 3. By (1) we have Kl(k) 0, and hence by symmetry,

(7) K.(k) 0 for all i, j.

From the fact that B31(,) and B.() commute we obtain

K3(k)B.(t) -4- g(t) K(t)B(k) -f- K();
hence

and therefore
g(k) kK().

Setting x K(1) K(1) we have therefore

(8)

Similarly,

(9)

(10)

K(x) Xx K(X),

g13(k) ),x3-- K:(k).

Comparing the last rows of the relation B2(k) (B(k), B2()) and
gwriting ux Kx(X) vx K2(h) and wx a(X), we have

(Xgx wx 0 1)

(K(x),

(K(X), )B,()B,( --X)B( --g)

(u, Xx 0 1) 1 B...B...
1

v x 1

1
1 B...

-ux --hx 0 1

1

1

-v --ux 1

(-Xx Xx+ux 0 1).

Hence wx, Xgx + gux, or Ka(hg) Xg x + gKa(X)
we have therefore

(11)

By symmetry

K’(},t) kgx q- K8(h), for every permutation (i, j, s) of (1, 2, 3).
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Moreover, x2 --x., x. -x2, and therefore x 0 if F has char-
acteristic 2; similarly x x 0 in that case.
Assume now for the moment that F has characteristic 2. By (11),

K(1) x+K(1) and K(1) x+K(1),
giving x xa. Similarly, x x. Writing x x x xa, and revert-
ing to the notation used above, (11) gives

w, u and u w.
Putting h -, in the first of these relations, and 1, the
second, we obtain

w tx W tu- and u- t- W t-w.
Hence x t-, for all e F, implying that x 0 unless F F.
We now have for all F F that x x xa 0, and hence by (11),

K(X) K,(h). Putting a K(1) K,(1) we have K() a,
i j. The case k 3 can now be completed in the same way as the case
k 4, taking U (a), a a {a al + a2 a2 + aa aa}.
The cases so far considered are the ones needed for our proof of the main

theorem. For completeness we include
The case k 2, charteristic F 2.

ces B2(X) and B(X), X e F. Write

)B(X) 1 and B(X) 1
x yx 1 ux vx 1

From B(X)B()= B:(X + )’= B()B(h) we obtain

whence

SL.(F) is generated by the matri-

(12) xx hxl and xl yd-y_l.

Similarly,

(13) vx =),vl and v ud-u_.

Let

t}--I 1 x

(0 1 )r s 1

1 1
yl 1 v-1 1



FLAG-TRANSITIVE COLLINEATION GROUPS 445

wherer=xl-yl-[-vl-u,s=yl-2v-u. Then

)T 1
b 1

where a r s, b r -{- s, and T must belong to the center of SL(F).
From B.()T TBI(X) we get

and
-xx-a a-xx, or

--Yx -F b ,a -F b -F yx, or 2yx --ha.

Hence, since F is assumed to have characteristic 2, xx 0 for all e F and

2yx --[r s] 2by1,
giving

(14) yx ),y.

Similarly,

(15) ux XUl.

The case/ 2, characteristic F 2 can now be completed in the same way
as the other cases.

If F has characteristic 2, (12) and (14) give immediately that xx vx 0
for all e F and hence in this case B.(h) and B() represent transvections.
If F F., the relations (14) and (15) are of course immediate.

COROLL.RY. Let W be a subspace of dimension t >= 2 of a vector space V
of dimension ]c - l, < k, over the field F, of n elements. Let

a: SL( V) -- GL( V)

be an isomorphism such that ff W f for all f SL(W).
clusions of Lemma 4 hold.

Then all the con.-

Proof. If 1, the homomorphism r*:SL(W) ---, GL(V/W) induced by
is trivial since SL(W) is generated by elements of order dividing n. If
> 1 we must have k > 2. Hence, if * is nontrivial in this case, its kernel

must be contained in the center of SL(W). Therefore,

SL(W)* >- PSL(W) I,
contrary to the fact that, since dim W > dim V/W,

PSL(W) > GL(V/W) !.
Hence a* is trivial in any case, and the hypotheses of Lemma 4 hold, proving
the corollary.
The proof of our theorem is now complete since the corollary certainly in-

cludes Lemma 2.
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Added in proof. Since this paper was submitted, a paper by A. WAGNER,
On collineation groups of projective spaces. I, Math. Zeitschrift, vol. 76 (1961),
pp. 411-426, has appeared, containing the results of the above 2 with essen-
tially the same proofs, and an entirely different proof of Proposition 6. The
main results are different.
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