A GENERALIZATION OF THE RIEMANN-ROCH THEOREM

BY
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1. Introduction

In this paper! a Riemann-Roch theorem is proved for a module, over a
function field K, which is under the action of simple algebras over K. Spe-
cialization of this module leads on one hand to the Riemann-Roch theorem
of I&. Witt [16] for simple algebras over K, and on the other hand to an exten-
sion of A. Weil’s Riemann-Roch theorem for matrices over function fields
[15], in the case that his ‘“signature” is taken to be identically 1. In each
case the constant field is allowed to be arbitrary.

There is also a brief account (in §2), partly new in method, of the arithmetic
of simple algebras over K. In §3 our generalization of the Riemann-Roch
theorem is proved for a certain module over the function field K. In §4 this
module is taken to be a simple algebra A over K; a restriction of the definition
of divisor then leads to a suitably specific form of the Riemann-Roch theorem
for A. Related questions—the different, the Riemann-Hurwitz formula, and
a genus-like invariant of A—are then discussed. Finally, in §5, it is shown that
our Riemann-Roch theorem for A implies that of Witt [16]. The paper con-
cludes with a theorem extending the generalized Riemann-Roch theorem of
Weil [15] (when his “signature” is trivial) for matrices over function fields.

Part of the origin of this kind of investigation is in the papers of Hecke
[7, 8], Chevalley and Weil [3], and Weil [14], which are concerned with the
problem of decomposing into its irreducible parts a certain natural representa-
tion of G/H(N), where G is the modular group and H(N) the subgroup of
matrices congruent (mod N) to the identity, as linear transformations of
the space of “cusp forms” of type (2, N). Since there is a natural iso-
morphism between this space of cusp forms and the differentials of the first
kind of the associated function field Ky , the problem can be transformed to
one in terms of matrices over Ky .

The methods used here are those of linear topology and duality, first applied
to this kind of problem by K. Iwasawa in [10] and particularly [9]. The
proofs in §3 are direct generalizations of the proofs of Iwasawa for the corre-
sponding theorems about K. Indeed, much of this paper may be thought of
as the tensor product of the appropriate spaces over K with [9].

I wish to thank Professor Iwasawa for suggesting to me the problems dealt
with here. As I have indicated, his works [9] and [10] made these problems
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easy to solve. I have also profited from several discussions with Professor
Iwasawa and with my friend Peter Schweitzer, from whom I have received
valuable advice and encouragement. Finally, I wish to thank the referee
for several very helpful suggestions.

T'or the preliminaries, let K denote a function field” with field of constants F.
Let M denote the set of prime divisors of K, v» the normalized exponential
valuation belonging to P ¢ I, Kp the completion of K with respect to P,
or C Kp the ring of local integers, b» the local prime ideal, 8 = 0p/pr the
residue-class-field, and np = [R5 F] the local degree.

The ring R of valuation vectors of K is defined as the weak direct sum of the
Kp in the sense that for almost all P, the component ap of the valuation
vector ¢ must belong to 0. In R we define the subring o as the direct sum
of the 0, . We then take the set of all ao, where @ runs through the regular
elements of R, as a fundamental system of neighborhoods of 0 in R, defining
thereby a linear topology’ on R, under which R even becomes a topological
ring. K is a discrete subfield of F; and there exists an open linearly compact
subspace W such that R = K 4 W, a topological direct sum (cf. [9, 10]).
A character of R is a continuous, F-linear mapping of R into F, F having the
discrete topology. The space X (R) of all such characters, with the (linearly)
compact-open topology, is a linearly topologized vector space over F. A
nontrivial character of B which vanishes on K will be called an admissible
character of R. If x is such a character, then a fundamental result of [9, 10]
is that R is self-dual under the pairing (a, b) = x(ab), a, b € R.

We shall so often need the following result from the theory of linear
topologies that we state it here as

LemMa 1.1. A linearly topologized space 1s finite-dimensional if and only
if it is linearly compact and discrele.

Let S be a skew-field of finite rank over the center K. For each prime
divisor P of K, define Spr to be the tensor product K, ® Sy over K. Then,
although Sor is not always a skew-field, it is a normal simple algebra with
Kp as center."  As such, Sop is isomorphic to the full up X wp matrix algebra
over some skew-field Sp with K as center; and Sp is uniquely determined
up to a Kp-isomorphism.

The valuation vr of Ky can be extended uniquely to Sp, via, for instance,
the norm of the regular representation of Sp/Kpr. We denote by vy the

2 By the term ““function field,”’” we mean a field K, containing a subfield F, (relatively)
algebraically closed in K, and containing an element z not in F, such that K/F(z) has
finite degree.

3 A vector space over F is linearly topologized if its additive group is a topological
group for which some collection of linear subspaces serves as a fundamental system
of neighborhoods of 0. For the theory of such spaces, including the duality theorem,
see Lefschetz [11, pp. 72-83]. The analogue of the ‘‘second isomorphism theorem’’ for
these spaces is proved in [9].

¢ For the structure theory of algebras assumed in this paper, see, for example, [2].
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uniquely determined normalized exponential valuation of Sp which results
from this extension. Sp is complete with respect to v, . We have the result
that [Sp:K»] = ep fr, where ep is the local ramification index and f» the local
rank of Sp/Kpr. We define 9p to be the ring of elements in Sp with non-
negative valuation, B» to be the maximal ideal of non-units in Op , and S =
O0p/Br , the local skew-field at P. &p is of finite rank fp over {5 .

It will also be useful to recall the following well-known result from the
theory of valuations: Let w;, - -, w; € Op be representatives of a basis of
Sp/Rp, and let t € Sp be a prime element for P, i.e., vp(t) = 1. Then we
have

Lumma 1.2°  The epfp elements wit’, with1 < i < fr and 0=sj=e —1,
form a basis of Sp/Kp; and if a € Sp is written a = Y, a;;w; ', with a;; e Kp,
then, for every integer m, ve(a) = mep if and only if oll ve(ai;) = m.

LemMma 1.3. If the skew-field Sy has rank my over the center Kp , then
er | mp and mp | fr, [18].

Proof. If t is a prime element for P, then K(t)/Kp has ramification

index ep , which divides its degree, which in turn divides m» [1, p. 53]. Since
’ 12 o e qe ’ !
ep | mp, we have mp = epfp dividing mpfp, or mp | fr .

Let A be an algebra over the center k. The reduced trace T of A/k is
always nontrivial if A is semisimple (in fact, the discriminant is nonzero).’
In particular, T is a k-linear mapping of 4 to k such that T(ab) = T(ba)
foralla, beA.

2. The arithmetic of simple algebras over function fields

In this section we present a brief account of the maximal orders’ and ideals
of a normal simple algebra A over K. The results are known (ef. [5] and
[12]), but some of the present proofs are simpler than the older ones.

We first define the ring A of valuation vectors of A as the tensor product
A=R® Aof Rand A over K. Ifuy, ---, u,is a basis of A/K, then 4 =
R® wu+ -+ + R ® u,; thus we may give 4 the linear topology of a direct
sum of copies of R. This topology makes A a topological ring and is inde-
pendent of the basis of A/K chosen above.

Let x be an element of K not in F. Call a prime divisor P of K finite if
ve(2) 2 0. An order of A relative to Fz] is a subring of 4, finitely generated
over F[z], containing Flz], and spanning A/F(z). In this section @ will
always denote that prime divisor of F(x) obtained by projecting to F(x) that
P ¢ I which is mentioned in the same context as Q. R, is defined as the
ring of valuation vectors of F(z), oo the ring of integers of Ro, and oq the
local integers of the completion F(x)q. One of the basic results of the

& See, for example, the proof of Theorem 5, p. 61, of [17].

6 For the definition and properties of the reduced trace, see [1, pp. 122-125].
7 An account of orders and their ideals will be found in [4, Ch. VI].



358 H. F. MATTSON

classical theory is that R is topologically isomorphic to the tensor product
Ry ® K over F(z), the latter having the direct-sum topology; we write®

(2.1) R =Ry ®rw K.
We now prove, letting A» denote K» ® A, the P-component of 4,

TuroreM 2.1.  The maximal orders of Ap relative to op are the same as those
relative to 0q and consist of all the maximal open linearly compact subrings of
Ap.

Proof. Let L be a maximal open linearly compact subring of A,. Then
L + o0p + 0p L is an open linearly compact subring of A5, so that L D oq.
L spans A»/Kp since it is open, and L is finitely generated over o by Lemma
1.1.

Conversely, if I is a maximal order of A, for 0s, then E is trivially open
and is linearly compact as a finitely generated space over 0, . If L D E is
an open linearly compact subring, then by the previous argument L is an
order of Ap, since we used the maximality only to prove L D op. There-
fore L = K, QE.D.

We now investigate the relation between the orders of A/F(x) and those
of Ap/F(x)o. We state but do not prove

Lemma 2.1, If J 2s an order of A relative to Flx] and P a finite prime, then
the closure L of J in A is an open linearly compact subring of A p containing v .

Lemma 2.2. If J is o maximal order of A relative to Flx] and P a finite
prime, then the closure L of J in Ap is a maximal order of A, .

Proof. By the previous lemma, we know that L is an order of Ar. To
prove L maximal, let L’ be an order of A; containing L. Following [5] and
[12], we define J’ as the set of all a e A n L’ such that for some integer «,
p(x)% e J, where p(z) is the irreducible polynomial from F[z] giving rise to
the prime divisor Q. Notice that J' is a subring of 4 containing J and hence
spanning A/F(x). Also, for some integer 8 > 0, we have J' C p(x)“ﬂJ ,
since J' is contained in the linearly compact subspace L’; thus J' is finitely
generated over F[x] as a submodule of p(2)"PJ. Therefore J’ is an order of
A ;since J is maximal, J' = J.

Now suppose there is an element @ in L’ not in L. Letting w1, -+, Un
be a basis of A/F(2), wewritea = ) a;u;, a; e F(x)q. We can find ele-
ments b; e F(z) close enough to the a; so that b = >~ b; usis alsoin L’ but not
in L, since L is closed and L’ is open. Thisbisin A. Thereisa g ¢ I'[z] such
that g-b e J, and we may factor g as g = p(z)“h, where h e F(x) is prime
to p(2). Then kb e I'; and, since & is a unit in 0o and L is an oe-module,

8 That (2.1) holds even when 2 is not a separating element of K was proved by Iwasawa
in [10, §3].
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KL, © L, which implies hb ¢ L. But kb is in J' = J C L, a contradiction.
Therefore I/ = L, Q.E.D.

LemMma 2.3. Let 4y, -, un be any basis of A/F(x) and define, for each
P eIN, Ly = oqui+ -+ + 0gum . Then for almost all P, Ep is @ maximal
order of Ap and equals 0p Uy + - -+ 4 0p U -

Proof. Let J be any maximal order of A relative to Flz], J» the closure
of Jin Ap. By Lemma 2.2, Jp is a maximal order of A, for almost all P.
Let J = Flz]by + --- + F[z]b, for some b, ---, b, € A, and let each b; =
> icijuj, where ¢;j e F(z). Then the matrix (¢;;) has no column consisting
entirely of zeros. Since Jp = 0oby + -+ + 0gb,, it follows that Jp, = Ep
for almost all P, Q.IE.D.

TaroreM 2.2. For each finite prime P, let Ly be a maximal order of Ap
such that almost all Ly = opuy + -+ = 0p Un , where the w's form a basis of
A/F(x). Let J denote the intersection of all A n Lp. Then J is a maximal
order of A relative to Flx].

Proof. Using the topological propertics established up to now, one first
proves that J is an order of A. Then Lemma 2.2 implies that J is a maximal
order. We omit the details.

In order to clarify later parts of this paper, and to make a convenience
rigorous, we now discuss isomorphisms between A and the matrix ring arising
naturally from A. That is, each A» is a normal simple algebra over Kp and
is therefore algebraically isomorphic to the full matrix algebra rp X rp Sp
over some skew-field Sp with K as center. If A is isomorphic to the full
matrix algebra r X rSy over the skew-field Sy, then Kr ® So =2 pp X ur Se
for some integer up , so that rp = rup . Wedefine Sp to be rp X 75 Sp and §
to be the weak direct sum

S = Z;’em SP

in the sense that cach matrix in S must have almost all its P-components taken
from 7» X rp Op, in the notation of §1. § can be given two topologies, one
in which a fundamental system of neighborhoods of 0 consists of the subspaces
of the form X7, where X is a regular element of § and I is the direct sum
> 7s X 72 O0p, another which the direct-sum topology of cach Sp gives rise
to; that these topologies are actually the same is a consequence of Lemma 1.2,

Let us agree to denote r» X rp Op by I» in what follows. An element U of S
(or of Sp) is said to be ungtary if it is a regular element of S (or of Sp) such
that both U and U " arein I (or I»). We shall need the decomposition [13,
p. 107] of a regular matrix C e Sp as

(2.2) C = Ui, )V,

where U and V are unitary in Sp, 6;; is the Kronecker delta,  is a prime element,
for P, and the e; are rational integers.
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We now have

LemMA 2.4. A maximal open linearly compact subring of Sp is always of the
Jorm C " p C, where C is a regular element of Sp .

Ifor a proof, see Hasse, [5, pp. 519-520].
This lemma enables one to prove rather easily

TuroreM 2.3. There is a topological K-isomorphism of A onto S. Any
topological automorphism of S onto S transforms almost all I, onto themselves.

Now let J; and J» be maximal orders of A relative to F[x]. Let M be a
left-ideal for J; and a right-ideal for J,. Let My denote the closure of M in
Ap , and similarly for Ji, J s . Itor each finite P let Ly be a maximal order
of Ap such that almost all Ly are equal to opu; + --- 4+ opu, = lp, fora
fixed basis uy, -+, u, of A/K.

TuroruM 2.4.  For each finite P, M p is an open linearly compact left-module
for Ji and right-module for J; ; almost all Mp = Ep. Conversely, the inter-
section with A of such Mp’s is an ideal of A relative to Flx]; in particular, our
original ideal M 1is the intersection of its components Mp . Kach Mp has the
Jorm C7'Lp C}, where Cp and C» are regular elements of A, such that almost
all C3'LpCh = Lp = Ip.

We omit the proof of this theorem, as well as that of the following

TuroreM 2.5. The maximal open linearly compact subrings of A are all
conjugate to each other in A. They are the direct sums of their P-components.

3. A general Riemann-Roch theorem

Let V be a finite-dimensional vector space over the function field K. Let
V' denote the dual space to V. As spaces of valuation vectors of V and V’,
we define V.= R ®x Vand V' = R ®« V’. The natural pairing (v, v')y =
v'(v) of V and V' to K can be extended uniquely by continuity to a pairing of
V and V' to R: (5, ¥') is a continuous, R-bilinear map of V X V' into R.
Letting x be an admissible character of R, we define

(3.1) [v, v'] = x({v, v")), veV, v el
and obtain thereby a continuous F-bilinear map of ¥ X V' into F.

TuroreM 3.1.  The mapping f:V — X (V') of V to the character space of
V" given by f(9) =[5, |1s a topological isomorphism onto; that is, the dual pair-
ing (3.1) s topological. Under this pairing, the annihilator A(V) of V is V'.

Proof. For any basis {vi} of V/K, let { i} be the dual basis of V//K. With
respect to these (or any) bases, ¥ and 7’ are immediately seen to be paired
as direct sums of copies of the self-dual space R (see §1). But [ , ] be-
comes this very pairing when expressed in terms of these bases. This ob-
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servation also shows immediately that A(V) = V’, since A(K) = K under
the pairing of R to itself mentioned in §1, Q.E.D.

If M is an open linearly compact subspace of V, then M n V is finite-
dimensional over ¥, by Lemma 1.1. Thus we may define for such M

M) = dimpg(M V),
and similarly for such subspaces of V.
We introduce the unique function »( , ) defined on ordered pairs of
open linearly compact subspaces of V' such that
(1) v(My, My) + v(Ms, M3) = v(My, My),
(ii) v(My, M;) = dimz(M;/My) if My D M,.

The existence and uniqueness of this »-function are quite easy to prove;’ and
it follows that

(33) V(M1 5 MQ) = V1(7I"M1 , TZ‘[Q) + V2(M1 n V, M2 n V),
where » and », are the analogous v-functions for the spaces V/V and V,
respectively, and = is the natural map from V onto V/V.

Now let M’ be the annihilator with respect to the dual pairing (3.1) of the
divisor M of V. M’ is open in V' by the continuity of [, ] and is linearly
compact as the dual space to the discrete space V/M. By Theorem 3.1, the
annihilator of M n V is the (closed) subspace M’ 4 V7 of V’; therefore
(3.4) M) = dimg(V'/(M' + V")),
since V//(M’ 4 V') is dual to the finite-dimensional space M n V.

We shall now restate (3.3) in terms of I. We have

n(aMy, 7My) = —un(V/V, #M1) + w(V/V, xM>)
= —dimy(V/(My + V)) + dimy(V/(M; + V))
= —I(M31) + U(M),

by (3.2) and (3.4). Also, (M n V,0) = (M), so that we may put (3.3)
as

(3.2)

TavoreMm 3.2. For any two open lLinearly compact subspaces My, M. of
V, we have )
v(My, M) = W(My) — W(My) — (I(My) — I(My)),

where M1 and M3 are the annihilators of M; and M, , respectively, with re-
spect to the dual pairing (3.1).

Let A and B be simple algebras of finite rank over the center K. Assume
now that V is a unitary left A-, right B-module. Then V' is naturally a
left B-, right A-module, and the pairing { , ) satisfies (avb, v") = (v, bv'a),
forallaeA,beB,veV,and v e V'

9 For proofs of these properties of the »-function, see [10, §1].
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There is a unique way to make V a unitary left A-, right B-module (with
the action denoted for the moment by a dot) such that

s =0-8=38Q® 0, seR, veV,
av = av, v-b = vb, aed, beB, vel.

The map of A X V X B to V which sends (d, 3, b) into @-9-b is then con-
tinuous. The analogous result holds for V/. IFurthermore, there is a unique
R-bilinear pairing ( , ) of ¥ and V' to R such that (v, v') = (v, v'), for
veV,v" eV’. ( , )isthen a continuous map of ¥ X V’into R such that
(avb, ¥’y = (v, bv’a) ford e A, 5 e V, cte. Finally, we have

LemMA 3.1, If A acts fasthfully on V, then so does Ap on Vp .

Proof. The result follows immediately from the general structure theorem
for such modules (see [2, p. 46]), which says that if A is K-isomorphic to the
full matrix ring » X rS8 over the skew-field Sy, then V is K-isomorphic to
r X 1180, for some 7 , and the action of A on V is given by the usual matrix
multiplication. On tensoring with K, we get the desired result.

We shall now prove a formula which, in some cases, allows us to compute
»(My, My). Let Msbe a given open linearly compact subspace of ¥; suppose
furthermore that M, is an o-module, which implies in particular that it is the
direct sum of its P-components. Then the same properties hold for the sub-
space My = a M, b, where a and b are regular elements of A and B, respec-
tively. We shall compute v(My, M,).

First assume M; D M,. Then v(M,, M) = dimy M;/M,, and it will
suffice to compute the I-dimension pp of the P-component M1p/M,p ; for then
v(My, My) = 2 rpr.

LevmMA 3.2. Let the subspace My of 1712 be an open, linearly compact op-
module. Then there exists a basis {w;} of Vp/Kp such that Mp = D opwj.

Proof. The lemma follows immediately from part 1 of [13, §108] when we
observe that the openness of M p implies that M contains a basis of Vy/Kp .
We can now proceed to compute pp, on the assumption that Mir =
(a7'Myb)p D Myp. Tet wy, ---, w, be the basis of Vp/Kp contained in
My described in Lemma 3.2. With respect to this basis, the operation at
P of ¢ ' and b leads to a nonsingular n X n matrix («,;) over Kp as follows:
ar wibp = 2ty w;, a;eKp, 1=1,---, m.

Then

M]p = Zq, op(aFI w; I)p) = { Z,] ;o Wj 5 Qg € Dp}.

If we express M, p as a set of n-tuples, the coefficients with respect to the basis
wy, +-, W, we find

Myp = (op, -+ -, 0p) (eij) = (1 X nop) (ai;).
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In the same way M,p becomes simply 1 X nop. Thus
pp = dimp(l X nop)(olij)/(l X nDP).

In order to calculate ppr, we represent (ay;) according to (2.2) as (ai;) =
u(8;; 7°*)v, where % and v are unitary n X n matrices over K» and vp(7) = 1.
Now since (1 X mnop)u = (1 X nop), our above factor-space is
(1 X nop)(8:57°)v/(1 X nop), which is isomorphic over F to (1 X nop).

(64«']'7'62.)/(1 X nDP) = (pq, Ty pen)/<0P7 Ty DP) -%*@P @ - D @P

with —(e; + -+ +e,) summands (the e; being all nonpositive because of
the assumption that M; D M,). Therefore the desired dimension pp is
—np(e; + -+ + e,). And this in turn may be written

pr = np ve(det(ai) ™).

To find the relation between det(a.;) and the norms of a and b, we use the
structure theorem [2, p. 46] quoted in the proof of Lemma 3.1. Here it is easy
to see that the matrix (8;;) for a e A arising out of av;, = > Bivj, with
B:; e K, {v;} a basis of V/K, is the ri-fold repetition of the matrix obtained
when one replaces each Se-entry of ¢ with its matrix in the regular representa-
tion of Sy/K. (The positive integer 7, is the number of columns in the iso-
morph of V given by the structure theorem.) Since the matrix of @ in the
regular representation of A over K is the r-fold repetition of the same matrix,
it follows immediately that det(8:;) = N(a)™*"". When we pass to the local
situation, both r; and r are multiplied by s, leaving the exponent unchanged.

Similarly, the analogous matrix (v:;) for b e B satisfies det(y:;) = N’(b)"*"
for some positive integer 7» (the number of rows in the appropriate isomorph
of V, when B is isomorphic to 7’ X 8o, So a normal skew-field over K).
N’ denotes the norm of the regular representation of B/K. It can be extended
uniquely to B/R.

Returning now to the provocation for all this, we see that there exist rational
numbers p; = r/r and p, = /7" depending only on the module structure of
(A, V, B) such that

det(ai;) ™ = Np(ap)” Np(bp) .

Therefore pp = np(py ve Np(ap) — p2vp Np(bp)). And now we can assert

Lemma 3.3. If M, is an open, linearly compact L);module contained in V,
and if M = a *Mb contains M, , for reqular a e A, b e B, then there exist
positive rational numbers py and py depending only on the module structure of
(A, V, B) such that

v(M, My) = dime(M/Mo) = n(N(a)™ N'(b)""),

where n(c) denotes the degree of the regular element c in R.

Proof. We need only recall that dimz M /M, = > pr and that the degree
of a regular element ¢ of R is > np ve(cr).
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Now we need to consider how to compute »(M, M,) in the general case,
when M may not contain M,. Westill assume that M = a "M, b for regular
aed, beB, however, and that M, is an open, linearly compact o-module.
We simply define »(M, My) = n(N(a)”N'(b)"**); the verification that
property (i) of (3.2) holds for this »-function is routine, and we have just
proved that (ii) holds. Therefore we have proved

TuroreM 3.3. Let A and B act faithfully on V, and let the subspace My of V
be an open, linearly compact o-module. Then for all subspaces of the form
M = o 'Myb, with a regular in A, b regular in B, the v-function (3.2) satisfies

v(M, My) = n(N(a)"N(b)"")

for certain positive rational numbers p, and py depending only on the structure
of the module (A, V, B) and not on My or M.

Under the notations of Theorem 3.3, let us define the degree of M with
respect to M, as

(3.5) n(M) = n(N(a)”N'(b)™™).

These subspaces M will play the role of divisors in our generalization of the
Riemann-Roch theorem to the module V.
Let the annihilator of o in R with respect to x be d o for a regular d ¢ R.

Foragiven P ¢ M, let Mop = 0pw; 4+ - -+ + 0pw, inaccordance with Lemma
3.2. Then the P-component of the annihilator of M, is M or = dpopwy +
-+ 4 d3" opwy,, where wy, - -, w, is the dual basis to wy, -+, w,. And

that for M is M» = d7'os(b3wt ar) + -+ - + dp'op(bs'ws, ap). Thus Lemma
3.2 and Theorem 3.3 allow us to state Theorem 3.2 in a more explicit form,
which we call our generalization of the Riemann-Roch Theorem to V:

TuroreM 3.4. Under the hypotheses and notations of Theorem 3.3, we have
(M) = U(M") 4+ n(M) — ((Mo) — U My)),

where n(M) s the degree of M with respect to My as defined in (3.5). Here the
quantity (M o) — L(My) depends only on My , not on the module structure.

Remark. The functions I and n appearing here are ‘“class-functions”;
that is, if @ and b are regular elements of A and B, respectively, then [(aMb) =
(M) and n(aMb) = n(M), for any open, linearly compact o-module M.

This theorem contains the classical Riemann-Roch theorem: We take
A=V =B=K, My, =0, M= a0 for aregular element a of R; then
(o) = 1,1(0") = g, the genus of K, and the degree of M = a”'o with respect
to My = pisn(a"'0) = n(a) in our definition. IFor the classical theorem we
define *(a) = 1(a"'0) and obtain from our theorem the classical form of the
Riemann-Roch theorem, namely,

F(a) = *(a’) + n(a) — g+ 1,
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where by o’ we understand any regular b e R such that (¢ '0)’ = bo; it is
well known that b = a~'d, when o = d 0.

In the classical case, divisors are defined as the set of all ao, a regular in R;
they can be characterized as the set of all open, linearly compact o-modules.
For the module V considered in this paper we have taken for divisors the set
of all subspaces of V which are open, linearly compact o-modules. In the
general Theorem 3.2 the algebras A and B play no role, nor is the assumption
that the subspaces be o-modules needed there. The use of the algebras A and
B and the assumption of closure under o-multiplication is that they enable
us to find a nice formula for the »-function, provided one of the two divisors
can be obtained from the other via multiplication by regular elements of A
and B. As noted above, this relation holds between any two divisors in the
classical case; it does not hold in general for our module V, however. But in
one example where this relation fails to be universal, V is not irreducible as a
double module; in another such example, B is not normal as a simple algebra
over K; but in these examples divisors are further restricted to be modules
with respect to the actions of maximal open linearly compact subrings of A
and B. Whether the reasonable assumptions of faithfulness, irreducibility as
a double module, and normality imply that any (reasonably defined) divisor
can be obtained from any other divisor via multiplication by regular elements
of A and B is an open question. This relation between pairs of divisors is an
equivalence relation, and Theorem 3.4 holds for divisors taken from any one
class.

We now turn to a situation where, when the notion of divisor is suitably
restricted, the relation in question holds between any two divisors.

4. Simple algebras over K

Let A = V = B be a simple algebra over the center K, with the action
being multiplication in A. Letting 7" denote the reduced trace from 4 to K,
we pair A to itself by setting (¢, ¢')o = T(cc’), fore, ¢’ e A. Then {ach, ¢’)o =
(e, bc'a)o for alla, b € A. Our dual pairing of A to itself becomes

(4.1) le, '] = xT(cc’), e, ¢ ed.

In order to determine the numbers p; and p, appearing in the formula (3.5),
we need only recall that if A is isomorphic to r X 7S, So being a skew-field
with center K, then p, = r/r, where r; is the number of columns of » X S0,
the isomorph of V. Thusr = r and p, = 1. Similarly p» = 1. Therefore,
if M, is a divisor of A and if M = a "M, b, for regular elements a, b € 4, then

(4.2) n(M) = v(M, My) = n(N(ab™)),

where N denotes the norm (of the regular representation) from A to R.
(N is the “direct product” of the local norms from A, to Kp .)

Divisors. Tor convenience we shall denote the set of all maximal open
linearly compact subrings of A as £(4) = £. In the present situation we
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restrict our divisors to be open, linearly compact subspaces M of A such that
there exist H, J e £ for which HMJ = M. For this divisor we shall occa-
sionally denote H by M, and J by M, .

We can easily prove that all divisors are equivalent in the sense discussed
at the end of §3 by using the isomorphism of §2 between A and the appropriate
space of matrices §: The members of £(8§) are of the form C™'IC, where ¢
is a regular element of S and I is the subring of “integral” matrices defined
near the end of §2. If C7'IC; and C3'IC, are two such subrings equalling
My, and My, for a divisor M, , then Cy M, Cy' = M, is a two-sided I-module;
it is easy to prove that M, must then be of the form ¢/, where ¢ is a regular
element of S of the form

(4.3) Cp = (3“’ ap), ap € Sp ,

for cach P e M. Thus M; = Cy'elC, . Conversely, if C; and C, are regular
elements of §, then CTH(C, s a divisor of S.  If we transfer these results back
to A by means of our isomorphism, we can now assert

LemMa 4.1.  Hach divisor of A is of the form o “Hb for regular a, b ¢ A and
for a fived subring H € £. Conversely, every such subspace of A is a divisor of A.

TFor later use, we shall now discuss the element ¢ mentioned above. First
we state a criterion for equality between divisors, the proof of which follows
rapidly from the decomposition (2.2):

Lemma 4.2, The divisors C'ICy and C"ICY of S are equal if and only if
there is an element a e S locally of the form (4.2) such that both aC'C™ and
aCy C5" are unitary.

In our proof of Lemma 4.1 we saw that any divisor M; of S which is a
two-sided 7-module has the form M, = ¢I, where each P-component of ¢ is in
Sp, i.c., is a diagonal matrix. The above lemma implies that ¢ is uniquely
determined up to a unitary factor. Turthermore, ¢/ = Ic; and ¢ belongs to
Sy, the image of Syin S. If H € £, let us define an H-unit as a regular element
bof A such that b e H and b™" € H.

Then we have proved

LuMmMA 4.3, If the divisor M of A is a two-sided H-module, for H € £, then
M is of the form cH = He, where ¢ is a regular element of Sy uniquely deter-
mined wp to an H-unit factor.

This lemma assumes that one selects a particular Sy C A.
The degree of a given divisor M satisfies, when H € £,

(M, H) = (M, a"*Ha)

for all regular a e 4; or, in other words, since all H ¢ £ are conjugate to each
other, the degree of a divisor is invariant with respect to the members of this
class £. From now on in this section we restrict our definition of the degree
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(3.5) of .a divisor by requiring that M, belong to £. (It is true that the
degree of a divisor is invariant with respect to the members of any conjugacy-
class of divisors, but £ is a naturally distinguished such class.)

Let Ho and H be any two members of £. As divisors, these have degree 0,
so that if we apply Theorem 3.2 to H and H,, we find that [(H') — I(H) =
I(Hy) — I(H,), which proves that this quantity is an invariant of A. We
denote it by

(4.4) $A) = I(H") — I(H), Heg.
If A isisomorphic tor X Sy, as before, then we can prove
Prorostrion 4.1. £(4) = r£(Sy).

Proof. We use the isomorphism of 4 with S: Since I € £(8), it suffices
to consider I(I') — I(I);now I = r X r0, and 0 e £(Sp); I' = r X r¢’;
therefore £(A) = r£(8)) = r(1(©") — 1(0)). We shall discuss some ques-
tions related to this invariant farther on.

Canonical divisors. In the classical case A = K, the canonical divisor corre-
sponding to a given admissible character x is defined as the inverse of the
annihilator of o with respect to the dual pairing [c, b] = x(cb), ¢, b e R. That
is, the annihilator o’ equals d "o for some regular d e R; and do is the corre-
sponding canonical divisor. As @ runs through the nonzero elements of K,
all admissible characters of R are obtained as x, , where x,( ) = x(a( ));
the corresponding canonical divisor is ado. Here the divisors form an abelian
group and the principal divisors (namely, ao, 0 % a ¢ K) a subgroup II
Thus, modulo II, the set of all canonical divisors is precisely a coset. Anal-
ogous conditions hold in the general case.

Let M = & “Hb be a divisor of A. By the dnverse of M we simply mean the
divisor M~ = b"'Ha. The relations MM~ = M, and MM = M, hold.

In the present case, “the” ring of integers in A is determined only up to
inner automorphism. Each H ¢ £ will have a collection of canonical divisors;
those of @ "Ha will be the conjugates under a of those of H.

Let H € £, and consider the annihilator H' of H with respect to (4.1). H’
is an open, linearly compact, two-sided H-module; in other words H’ is a
divisor of A. We call H'™" the canonical divisor for H corresponding to x.
By Lemma 4.3, H' is of the form b 'H, for some regular b ¢ Sy such that
bH = Hb; and b is uniquely determined up to an H-unit factor. If @ is a
regular clement of A, then the canonical divisor for a ‘Ha with respect to x
is ¢ '0Ha, or @ "da-a 'Ha. Therefore we need only determine the canonical
divisors for H.

By Theorem 3.1, the annihilator of 4 is A itself; therefore we obtain all
characters of 4 which vanish on 4 as x, = [@, ], @ e A. Among these, the
ones which give rise to dual pairings of A with itself are those with a regular.
Tor such a, the pairing is [c1, ¢2]. = xT(acic:). When a ¢ K, this pairing is
not symmetric, so we must speak of left- and right-hand annihilators and
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canonical divisors. For example, the left-hand annihilator A;(H) of H is the
set of all ¢, such that [¢;, H], = 0;0r A;(H) = ¢ "H' = ¢ 0 'H. (We have
now A,(A,(H)) = H,but A;(A,(H)) = ¢ ‘Ha.) The corresponding canoni-
cal divisor is bHa, which we shall call the right-hand canonical divisor.

We now define, by analogy with the case A = K, equivalence relations
~, ~, on the set of all divisors of A. If M; and M, are divisors of 4, we
say

M; ~y My (M, ~, M5) if and only if there exists a regular a ¢ A such that
M1 = G,Mz (M1 = Mza).

We see that the set of left-hand canonical divisors for H is precisely the
equivalence-class containing dH under ~;, and correspondingly for the right-
hand ones. If a and ¢ are regular elements of A and 4, respectively, then the
right-hand canonical divisor for ¢ ‘He corresponding to [ , 1., is ¢ ‘0Hea.

If M = o 'Hb, H € £, is an arbitrary divisor of A, then M’ = b 'H'a =
b '0'Ha. If we (inadequately) denote b™'db by by, then M’ = b3 M.
We can also say that M’ = (b™"0 "Hb) M, the first factor being the inverse
of the canonical divisor for b"Hb. The left-annihilator of M with respect to
[, e, cregularin 4, is ¢ 'b "o "'Ha.

We can now assert our generalization of the Riemann-Roch theorem for A4 :

TuroreM 4.1. If M is any divisor of A, then
(M) = 1% M) + (M) — PE(S).
CoroLLARY 4.1.  All canonical divisors have degree
—2°8(8) = n(N(D)™) = —n(H'), H' eg.

Proof. That they all have the same degree n(N(d)™") follows from the
construction of them in the preceding paragraphs and the fact that K-elements
have degree 0 in R. We obtain the corollary by putting M = H’, H ¢ £, in
the theorem.

We can also derive as a corollary the generalization of Riemann’s theorem
in the special case A = S, .

COROLLARY 4.2. If M is a divisor of So with degree n(M) > 2 £(S,), then
UM) = n(M) — £(S).

Proof. We first notice that for any divisor M, ¢ ¢ M n A implies n(N¢c) =
—n(M). Therefore, n(M) < 0 implies (M) = 0. Now if our given M
is of the form ¢ 'Hb, then we see, from M’ = b "0 'Ha, that n(M’') =
n(Nd) —n(M) < 0. Therefore, I((M') = 0.

Remark 4.1. Theorem 4.1 is usually stated in terms of the functions I*
and n* where (M) = (M) and n*(M) = n(M™") for divisors M of 4.



A GENERALIZATION OF THE RIEMANN-ROCH THEOREM 369

The theorem then reads
(4.5) (M) = U*(ba M) + n*(M) — r"£(S0).

Of course, we could have simply reasserted Theorem 3.4 for V = 4, but
the advantages of restricting our divisors are important: The invariant £(A4) =
7"£(,Sp) arises, and the existence of inverse and canonical divisors allows a
nice expression for the annihilator.

Before comparing this theorem with the Riemann-Roch theorem of Witt
[16], we shall need to discuss the different, which will lead to some other points
of interest. Accordingly we shall defer the comparison to the next section,
where we shall also state a generalization of the theorem of Weil [15].

The different. Define the subspace M of S as

(4.6) M = {a;ae8, T(al) C o},

where T is the reduced trace from S to R obtained by extending that from
r X rSp to K. M is obviously an open two-sided /-module and is contained
in b™'I’ for a regular b e R satisfying bo C kernel x; therefore M is linearly
compact. By the proof of Lemma 4.1, M has the form M = DI for some
regular element D of S of the form (4.3); by Lemma 1.2, each P-component
of D in the form (4.3) has ap € O . The divisor DI is called the different of
I/K. If C'IC is any maximal open linearly compact subring of S, then its
different (over K) is defined analogously and turns out to be C'DIC. The
different D, of K/F(x) is defined similarly by the relation

{a; aekR, TK/F(1)<(ID) C Do} = D;ID,

where 0y is the ring of integers of By. The different D* of I/F(z) is defined
similarly, and the result that D*I = DD, I follows immediately from the
factorability of the reduced trace.

Now let x be any admissible character of B, and let do and d/ be the corre-
sponding canonical divisors of R and I, respectively. We shall prove

Lemma 4.4. dI = Ddl.

Proof. Taking M asin (4.6), we have (dD) '] = d'M and xT'(d'MI) =
x(d'T(MI)) = x(d'o) = 0. Therefore 8/ < dDI. Since T is open,
T(D7'I) is a divisor of R, which must then be 0. Therefore T(d D7) =o'
Now xT(v'I) = 0 implies T(v™'I) < o/, or T(dd™'I) < . Thus dd I C
DI, or dI D dDI, Q.E.D.

We can apply this result to the separable extension K/F(z), achieving the
result that do = D, dy 0, where d, 0o is the canonical divisor of F'(z) correspond-
ing to the admissible character xo of Ro, and do is the canonical divisor of R
arising from x = xo T, T being the reduced trace from K to F(x). IFurther-
more, we can easily construct a xo such that dy = %, where u is the denomina-
tor of . (To carry out this construction, one needs the facts that Ry =

10 Here we need to assume, with Witt, that K/F (x) is separable.
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F(2) + wuoo, a topological direct sum, and that o n F(z) has F-dimension
equal to the genus of F(z), which is 0, [9, 10].) Thus we have proved rather
simply the well-known result [6, p. 374] that d = D,/ i.e., that (D,/u’)o
is a canonical divisor of R. From this result it follows that (D*/u*)I is a
canonical divisor for I.

Thus there is an admissible character of R such that if M = C™'IC is a
divisor of S, then the annihilator of M is the space Cy'(D*/u*) ' IC = M.
We have proved

LemMa 4.5. There exists an admissible character xi of R such that if M is a
divisor of A with M, = H, then the annihilator M’ corresponding to x, is that
dwisor satisfying

(4.7) (MM = w%(H),
where 8(H) s the different of H/F(x).

Since the various differents of 4/K are determined up to conjugation, and
multiplication by units, and since D» € Sp for each P, the integer 6, = vp(D5)
is an invariant of Ap ; in fact, 87 depends only on Sy, so that we may as well
take A = S when investigating this differential exponent 65 .

We do so now; our first result will be a relation between the reduced traces
Ty and Tip of Sp/Kp and @p/.@p , respectlvely Let [Sp:Kp] = mp =
er fr ; thus if [S:K] = m’, then m® = = mpup. Toreach a e Op let a* denote
the residue class of a modulo PBop .

Lemma 4.6.  For each P € IR, the reduced traces satisfy
Tp((l)* = ap Tlp(a*), a e Op 5
where ap = ep Mp/myp is a positive rational integer.

Proof. The matrix of the regular representation of a generic element of
Sr (with respect to the integral basis of Lemma 1.2), on reduction modulo
PBr breaks naturally into submatrices of size f» X f» ; below the diagonal block
these matrices are zero; the diagonal block is an ep-fold repetition of the
matrix of the regular representation of a generic element of ©»/&p. There-
fore the characteristic polynomial ¢(X) of Sp/Kp is related to that, ¢;(X*), of
&r/fRp by the formula

(4.8) c(X)* = c(X*)°*.

Let f(X) be the minimal polynomial of Sp/Kp and f;(X*) that of ©»/8s .
We know that in general [1, p. 17] the characteristic polynomial of a skew-
field is a power of the minimal polynomial, and that, when the center is
separable over the base field, this power is the index of the skew-field [1, p.
123]. Therefore (4.8) becomes

(4.9) FX)EE = fy(X*)"PeF,
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where mp = 1 is the index of &, whenever the center of &5 is separable over
R . But fi(X*) is irreducible over &z(£;) (the £; being indeterminates used
to make the generic element); therefore f* is a power of f; : There is a
rational integer ap such that f(X)* = fi(X*)*?, which gives our desired
formula. Tt follows from (4.9) that ar = er mp/mp .

Using Lemma 4.6, the formula of which is analogous to the one for fields,
in which ep replaces our ap , one proves easily, exactly as in [17, p. 70],

ProrositioN 4.2. The differential exponent 8p is at least e — 1 for all
P e M, and 6 = ep — 1 1f and only of both (1) and (ii) hold:

(1)  The center of ©p is separable over K5 .

(ii)  The characteristic of F does not divide ap

As we shall see in a moment, the condition (i) implies condition (ii) in the
noncommutative case, whereas (ii) is necessary for field extensions of K.
But the relative simplicity of the proof here and the interesting corollaries
which obtain at this point may justify the redundancy.

COROLLARY 4.3. ep = 1 for almost all P ¢ IN.
Proof. 6p = 0 for almost all P, and 6, = ¢ — 1 = 0.

CoRroLLARY 4.4 If the constant field F has characteristic zero or s finite,
then op = ep — 1 for all P e M. When F is finite, then ep = fo = mp , and
ap = 1, both for all P € I, so that K p splits S for almost all P.

Proof. The result in characteristic zero is immediate. When F is finite,
then Sp is a finite skew-field and is therefore a field, by a famous theorem of
Wedderburn. Then mp = 1 for all P, so that ap = ep/mp. Butep|mp
in general, by Lemma 1.3; therefore e, = mp , or ap = 1 for all P. From
er fr = mp” follows now ep = fp = mp .

We now prove that the assumption on ap in the proposition is unnecessary.
The proof is taken essentially from [12, p. 148].

Tarorem 4.2. The center of the residue-class skew-field ©Sp vs separable over
e if and only of the differential exponent dp is ep — 1.

Proof. We need only prove that separability implies 6, = e, — 1. It
suffices to prove the existence of some b e O such that T»(b) is a unit in Kp .
To this end let K; be a separable, unramified, maximal subfield of Sz/Kp
with separable residue-class field ®; over ®» (18, p. 12], [12, p. 148]. Then
our formula of Lemma 4.6 for the unramified field extension K;/K» becomes
Ty(a)* = Tou(a*), a e Op 0 Ky, where T is the trace of Ki/Kp and T that
of R;/8. The separability of the last named extension implies that for
some b e Opn K;, Ta(b) is a unit of Kp. But Tp, when restricted to the
maximal subfield K, , equals T>, Q.E.D.

Note. The existence of K; can be proved directly as follows: Let L,
be a separable maximal subfield of ©» over the center C» of &5 [1, p. 57].
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Then L; = f-(a*) for some a € O, by the separability of C»/®, . Consider
now Kp(a), which has L, as residue-class field. Let

JX)=X"+a X7+ -+

be a polynomial over o, such that f(X)* is the (irreducible) minimal poly-
nomial of a* over . Then f(X) is irreducible over K. By Hensel’s
lemma, f(X) has a zero b in Kp(a) n Op such that b* = a*. Therefore
K:(b) has Rr(a*) as residue-class field, which implies that Kz(b)/Kp is
unramified, being of degree equal to that of s(a*)/&,. Now we prove that
K:(b) is a maximal subfield of S; and therefore that Kr(a) = Kp(b). If
K»(b) were not maximal, then its commutator algebra K’ in S, would not
be a field [1, p. 53]. Then we would have f(K’/Kz(b)) > 1, by Lemma 1.3.
This would imply the existence of a proper field extension of L;, in contra-
diction to the maximality of L .

The Riemann-Hurwitz formula. We shall give the analogue of the Riemann-
Hurwitz (? or Zeuthen-Halphen) formula relating, in our case, £(So) to the
genus g of K. If 50 is a canonical divisor of Sy, we know that n(N (b)) =
26(80) = n(N(D)) + n(N(d)), the latter from Lemma 4.4. Since d ¢ R,
N(d) = d™,where[So:K] = m’. If Dp = (3;;ar), ar ¢ Sp , the matrix being
of sizeup X pp ,then,at P, N (D) = Nspxp(ar)*?. Thusv N(D) = u} fr6r,
where 65 is the differential exponent. Our above equation now becomes

26(S) = m2(2g —2) + ZPesm Mg’fpnp op .
Since m* = up erfp, we can put this as

TurorEM 4.3. Let S be a skew-field with finite rank m’ over the center K.
Then the invariants £(So) and £(K) = g — 1 are related by the formula

26(Ss) = m*(29 — 2 + Dpem mp 6p/ep),

where 8p 18 the differential exponent at P, discussed in the preceding section.

I

The invariant £(So). An interesting question concerning £(.So) is whether
the two terms defining it are themselves invariants. That is, does I(H;)
equal I(H,) for all H,, Hy e £(8,)? The equivalent question, of course, is
whether the same holds with Hy , H, in place of H, , H,. Some partial results
in the affirmative are contained in the following two lemmas. They are
phrased in the matrix terminology.

Lemma 4.7. Let So be a skew-field extension of K with no “constant part”;
that is, assume that F is (relatively) algebraically closed in Sy.  Then (b~ 0b) = 1
for all regular b e S, .

Proof. Let a €Sy and a eb'0b. We wish to prove a ¢ F. The charac-
teristic polynomial ¢(X; u) of Sy/K is the same as that of Kr ® x So/Kp .
When specialized to the element a, this polynomial has coefficients in K. As
an element of bs'(ur X ur Or)bs, @ has the same characteristic polynomial
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as bp abp' e up X up Op has; this one has coefficients in or , however, since,
with respect to the usual integral basis {w;t’- (matrix units)}, br abs" has
coordinates in 0p . Therefore, the coefficients of ¢(X; a) arein K no = F.
By assumption, a ¢ /', Q.E.D.

CoroLrLARY (of the proof). If wy, -, U, 28 a basis of So/K and
U = Ty U + - + Xy Us @ generic element of Sy, then the characteristic poly-
nomial of So/K has coefficients in Flxy, « -+ , X

Our next result shows that in some skew-field extensions obtained entirely
by extensions of the constant field, the quantities in question are also invari-
ants.

Lemma 4.8.  Let K be a function field of genus 0, and let So be a normal skew-
field of finite rank m* over K.  If the different DO of S, satisfies n(N (D)) < 2m’,
then 1(a™'0’a) = 0 for all regular a €Sy .

Proof. The relation yeSy n ¢ 0a implies N(y) e N(d")o, where
o = 0. Using Lemma 4.4, we find that N(b™") = d ™N(D™). Now
n(N(™)) = 2m* — n(N(D)) > 0under our assumptions. Thereforey = 0.

This condition holds, for example, in the case K = F(x), F the field of real
numbers, Sy = K(4, 7, k), where © = ;> = k* = —1, 4 = k, jk = 4, and
ki = j. Here all 6 = 0. It may be of interest to observe that when P has
degree np = 1, then fr = 4, ep = 1 (hence 6 = 0), and Sp = Kx(¢, 7, k).
And when np = 2, then ¢p = fp = 1 (again 6 = 0), and Sp = K. Thus
when F is infinite, it can happen that splitting occurs at infinitely many P,
and nonsplitting occurs at infinitely many P.

5. The theorems of Witt and Weil

In comparing Theorem 4.1 with the Riemann-Roch theorem of Witt
[16, p. 22] we shall first show that Witt’s class of divisors is the same as ours.
Witt defines divisors as follows: For a separating element x of K, first con-
sider an ideal M, in A with respect to F[z]. A finite prime divisor P being
one for which vx(z) = 0, consider the closure Mp of M, in Ap for finite P.
(Mp is shown to be the P-component of one of our divisors in Theorem 2.4.)
At the (finite number of ) nonfinite P ¢ I, introduce ‘“components” formally
in any possible way. These “components” and the M, define a Witt-divisor.
Although Witt does not explicitly define these ‘“‘components”, they can only
be normal ideals (i.e., those belonging to maximal orders) in 4, with respect
to op , P nonfinite; otherwise his Satz 3, which says that his class of divisors is
independent of z, would be false. But our Lemmas 2.4 and 4.1 (local form),
plus the obvious fact that a local ideal is open and linearly compact, show
that such ideals are P-components of our divisors. Therefore, the set of
P-components M , one for each P ¢ I, defining a Witt-divisor M, is precisely
the set of P-components of one of our divisors, and conversely.

Witt defines the degree of a divisor M as the degree in By of No(M ), where
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Ny is the norm from A to R,. Putting aside the question whether at P this
norm maps local maximal orders onto 0q, let us take the Witt-degree of M as
the degree in Ry of No(M)o,. If ais a regular element of R, then the degree
n(a) of a in R is the degree no(Nx(a)) of the norm (from R to Ro) of a.
Therefore, by our definition in §4 and our formula (4.2), the Witt-degree of
M, which we shall denote as n*(M), is the negative of our degree n(M).

Witt defines the quantity { M}, for a divisor M, as (M), or I*(M), in the
notation of our Remark 4.1.

The “complementary” divisor M* to the divisor M " is defined by Witt" as
that satisfying M*M ™ = w °6(M,), in the notation of (4.7). By Lemma
4.5, M*" is what we call M’.

Witt defines a genus G of A by the formula 2G — 2 = n*(uw8(M;)). By
Corollary 4.1, n*(u "s(M;)) = 2r°£(S).

Finally, Witt states his Riemann-Roch theorem as

(M) = (M*) + n*(M) — G + 1,

which agrees with our (4.5) when we determine the b, there by means of the
admissible character x; of Lemma 4.5.

We shall now sketch the proof of a theorem which includes that of Weil
[15, Ch. I, 3] (with trivial signature). Let V = r X 'Sy be the space of all
matrices of r rows and 7’ columns over Sy , a skew-field of finite rank over the
center K. As A and B we take r X 7Sy and ' X 'Sy, the actions being the
usual matrix multiplication. Let 7' denote the reduced trace from S, to K
and Tr the ordinary matrix trace. Then for V' we take »* X 7S, and we
set 0, ') = TTr(w'),veV,v" eV’. Our dual pairing of V and V' to F is
then [, 0'] = xT Tr(o0), for 5 e V, v e V'.

The numbers p; and p; of Lemma 3.3 are r'/r and r/7’, respectively.

Letting H denote a member of £(8y), we take for V-divisors subspaces of
V of the form M = a~"(r X r'H)b, a regular in A, b regular in B (V'-divisors
have the form b~ (+ X rH)a). Our annihilator M’ is b™'(+' X v 'H)a.
The degree (3.5) of a divisor M is invariant with respect to all divisors of the
form ¢ '(r X r'H)ec, ¢ regular in Sy . We define the degree of M as

y(M,r X r'H) = n(N(a)""N'(b)""),

where N is the norm from A to R and N’ that from B to R.

The quantity (¢ (r X r"H')c) — (¢ (r X 1"H)e¢) is the same for all
regular ¢ e Sy ; it equals r7'£(Sp).

Our generalization of the Riemann-Roch theorem to V is

Turorem 5.1.  If M is a V-divisor, then
M) = UM) + n(M) — r'£(So).

11 The different appearing in Witt’s definition is misprinted as that of K/F (x) instead
of M,/F (x).
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This theorem agrees with that of Weil when his signature is identically 1
if we take So to be K and F the field of complex numbers. To verify this
agreement, one uses the one-one correspondence between canonical divisors
and differentials of K (see [9]).

We could derive Theorem 4.1 from Theorem 5.1 if we used the isomorphism
of Theorem 2.3.
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