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I. Introduction
Kudo nd Amki [4] hve computed the homology ring with coefficients

integers mod 2, of the iterated loop spaces of an n-sphere. Their technique
involved the definition of homology operations in so-called H-spaces. We
give here a new treatment of these homology operations which leads us to a
new operation of two variables, defined for all coefficient domains. This is
done in Sections II and III. In Section IV we apply results of II and III
to calculate the homology ring of the iterated loop spaces of iterated suspen-
sions of a space mod 2, in terms of the homology of the original space mod 2,
with the number of loop spaces less than or equal to the number of suspensions.
The cohomology ring is also computed rood 2, if the number of loop spaces is
less than the number of suspensions.
Some of the results of II and III may be applied to coefficients other than

the integers mod 2. This will be done elsewhere [8].
The definition of loop space employed will be that of Moore (see [2], 22).
I would like to express my warm appreciation to Professor J. C. Moore.

This paper is part of .a dissertation written under his direction, presented to
Princeton University.

II. H-spaces

In Sections II nd III we reformulate the results of Kudo nd Amki [4]
in such a way that the techniques of Steenrod for defining cohomology opera-
tions [6] can be applied to obtain homology operations in H.,-spaces. In
the course of this, besides the operations of one variable mod 2 of Kudo and
Araki, we get a new operation of two variables which is defined for any co-
efficient domain.

Let the symmetric group on two letters. Then if X is any space, r

acts on X X X by permuting the two coordinates. The group also acts
on the n-sphere S by the antipodal map. If r acts on two spaces M and N,
let act on M N by T(x, y) (Tx, Ty), for T e .

DEFINITION. A space X is called an Hn-space if there exists an equivariant
map

(1) (/):n X (X X X)--+ X,

where r acts trivially on the right, such that there is an element e e X such
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that for any Sn, x e X

b(t, (e, x)) --(t, (x, e)) x.

We will call the structure map of X.

Examples. 1. An H-space X is an Ho-space where " S X X X -+ X
is defined by q(1, (x, y) xy nd b(-1, (x, y) yx.

2. Let X be a homotopy-commutative H-space, i.e., h’I X X X X
such that h(0, x, y) xy and h(1, x, y) yx and h(t, e, x) h(t, x, e) x.
Then X is an H-space where (if t.. {e 0 _-< t =< 2} " S X X X X -+ X
is defined by

(O,x,y) h(O,x,y) for 0 -< 0 =< 1,

(0, x,y) h(0- 1, y,x) for 1 =< 0-< 2.

3. If X is a commutative H-space, then it is trivially an Hn-space for every
n, where is defined by the diagram

SX(XXX)

XXX X,
where p= is projection on the second factor and is multiplication.
The space of paths P of a space X is the set of all pairs (f, r) where f is

a map of the positive real numbers R+ into X such that f(t) f(r) if __> r.
X R+We define a map h P -- X (I the unit interval) by h(f, r) (f’, r)

where f"I ---, X is defined by if(t) f(tr), 0 -< =< 1. Topologize P so
that h is a homeomorphism. Define two maps, pl and p2"P X, by p(f, r)
f(0) and p2(f, r) f(r). Then pl and p are fibre maps, and we define E
the space of paths beginning at x0 e X to be pT(x0). Then p p2 E’E -- Xis a fibre map, and we define the space of loops fl of X based at x0 to be the
fibre of p over x0, i.e., p-(Xo).
The importance of Hn-spaces arises from the following theorem due to

Kudo and Araki.

THEOREM 1. Let X be an Hn-space. Then E, the space of paths over X
beginning at the base point e is also an Hn-space such that p :E -- X, the projec-
tion is a map of H,-spaces, and there is a map :En+l )< X E E such that

(1) 1 Sn ’, where ’ is the structure map of E,
(2) (, , ) (, x, ) z

where is the path stationary at e, e En+l,
(3) p(, z, y) p(y).

Finally it follows from (3) that is an Hn+i-space.

(Note. For n 0, this is the familiar theorem that the loops of an H-space
are homotopy-commutative.)
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Proof. The space of paths E is made into an H-space in the obvious way.
Let (f, r), (g, s) e E. Then for each e S define/c (t) R+ -- X by k (t) (r)
b(t, f(r), g(r)), where is the structure map for the H-space X. Then
/(t) isa continuous map,/c(t)(0) ethe base point. If r > u max (r, s),
then ]c (t) (r) =/(t) (u). So (/c (t), u) e E. Further we have

p(lc(t), u) k(t) (u) (t, f(u), g(u)

h(t, p(f, r), p(g, s)) since u max (r, s).

So we define1"S XE XE-Eby
4)’(t, (f, r), (g, s)) (/(t), u).

It is easily verified that ’ is continuous, and E is an H-space under ’ such
that p is a map of H-spaces, i.e., p4) (1 X p X p).
We will denote the upper hemisphere of S by E_, the lower by E_. We

construct a map t:I X E X gt X E -- E.
Define P:I X E X E- E X E as follows:

P(t, (f, r), (g, s)) ((f, r), (h, s + tr))

where
h(r) g(r- tr) if r >__ tr,

e if r -< tr,
where

r eR+, (f,r), (g,s) eE, eI.

Consider E as the flat disk bounding the equator of S. Let p+ be the pro-
jection of E up onto E_, p- that down on E_.

Define’I XE Xt XEEby
(t,,x,y) ’(p+,P(2t, x,y)) if 0 ,

=’(p-$,P(2- 2t, z,y)) if 1,

where x e, y eE, teI, e For we have ’(p+, P(1 x, y)) from
the first definition, ’(p-, P(1, x, y)) from the second. Let x (f, r),
y (g,s). Then

’(p+, P(1, (f, r), (g, s)))(r) ’(p+,f(r), e) f(r) if r r,

’(p+,e,g()) g(r) if r r,

and similarly for ’(p-, P(1, x, y)). Thus the two definitions coincide for. Since each definition is continuous, is continuous in its whole
domain.

It is clear also that

t(t, , , y) y

where is the constant map (e, 0).
I on E and E, respectively.

and (t, , x, ) x,

On 1 X E and 0 X E, t coincides with
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If C is a cell, define bC boundary of C.
We now define a homotopy of on b(I X E’) X X E, i.e., a map

#’I X b(I X E’) X f X E--,E

such that (0, t and

(1, t,,x,y) (t,,x,y) if t= 0,1,

(1 ,x,y) if
Then we have a map

,’ o ’( X b(I X E) X e X E) o (I X E X e X E)E,
but sinceI X b(I X E) (I X E) is an (n+ 1)-cell,

"E+ X XEE.
Further one can divide S", the boundary of E+, into three parts" two n-cells

and such that ’] ’]E and ’[ ’ E, and a set ho-
meomorphic to I X S such that ’(t, )
is constant on each segment I X , ’ defines a map ’E+ X X E E
where E+ is the (n 1)-cell gotten by identifying each segment I
to 1 X in En+. Then S ’ where S is the boundary of E+.

Define ’I X b(I X E) X X E E as follows"

(a, t, , x, y) ’(p+, P((1 a)2t, x, y)) if

’(p-, P((1 a)(2 2t)x, y)) if

It is clear that fulfills the conditions above, and that
and thus for . Hence is constructed, and we have only to verify condition
(3), that p(t, x, y) p(y). But ’(, x, y) (, px, py) and

(p X p)P(t, x, y) (px, py).

Hence P(v, x, y) p(y) since p(x) e.
Now flis an H-space under’ since’(S X X ) . It follows

from (3) that (E+ X X ) . Since S" ’ which is equivariant,
we define 5" S* X X by identifying E+ with E+ and defining

E+(, x, y) (, x, y) e andS(T, x, y)
is an Hn+-space, and the theorem is proved.
The above proof is a modification of a standard proof that the loop space of

an H-space (H0-space) is homotopy-commutative (an H-space). The con-
cept of H-space is a generalization of homotopy-commutative H-space, and
the index n is a measure of how homotopy-commutative the space is. Thus
the theorem states in a sense that the loop space of an H-space is one degree
more homotopy-commutative than the H-space is.

]. Homo]o9y operations
Let X be an H-space, that is, let there be given a map

" S" X (X X X) X which is equivariant with respect to the action of
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(the symmetric group on two letters).
lized singular chains

Let V be the natural map of norma-

v:c(s) (R) c(x) (R) c(x) ---, c(s x x x x).

If is the chain map induced by , then
map b: C(Sn) (R) C(X) (R) C(X) --, C(X).

o V is an equivariant chain
This induces a map

,:H,(Sn) (R) H,(X; A) (R) H,(X; A) --+ H,(X; A),

where A is any coefficient domain. Now we can define a homology operation
h of two variables over any coefficient domain. Choose a generator . of
H,,(S’).

DEFINITION. Let x e H(X; A),
,’n(X, y) H+q+(X; A) by

yells(X; A). Define

,(x, g) .( (R) x (R) y).

If X is an H0-space (see Example 1, Section II), then

0(x, y) x,y (--1)qy,x,

where is the Pontrjagin product (for one choice of /).

We now define the operations of Kudo and Araki. Since the action of
r on the right side of (1) is trivial, we can factor the map # through the col-
lapsed module, i.e., o 7;

c(s’) (R) c(x) (R) c(x) " c(s) (R), (c(x) (R) c(x) c(x).

We have here a situation very similar to Steenrod’s method of defining
cohomology operations [6]. Following Steenrod, if e Hq(X; Zo) (Zo Z),
define an elementary chain complex M(O, q) as follows. The chain group
C.(M) 0 if r q or q- 1, Cq(i) is infinite cyclic with generator
U, Cq-l(i) 0 if 0 0, and Cq_.(i) is infinite cyclic with generator v if

0. Define Ou Or. Then every chain map f:M -- C(X) defines a
homology class {f(ui} e Hq(X; Z0), and conversely, for every, e Uq(X; Z), one can choose a chain representative of ’which gives rise
to a map f:M(q, O) C(X). Hence we have a map

f#:C(S’) (R) i (R) i---+ C(S") @ C(X) (R) C(X)
which is equivariant and thus leads to a map

]:C(S’) @,, (M (R) M) ---+ C(S’) (R) (C(X) (R) C(X)),

4 f: C(S’) (R),, (M (R) M) ---> C(X),
which induces :H,(C(S’) (R), (M @ M)) ----> H,(X). Since C(S") is a
r-free complex, we can apply the techniques of Steenrod (see [6], Theorem
3.1) to show that any two chain representations of a cycle lead to the same
homomorphism .
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Now the group H.(C(Sn) (R) (M (R) M)) is simply the homology of
pn real n-dimensional projective space, with local coefficients in
H.(M (R) M).
Assume S to be subdivided so as to have two cells in each dimension i

for i =< n, compatible with the antipodal map, i.e., ei and Te.i the antipodal
cell to ei.

DEFINITION. The mth operation of Kudo and Araki

Q,(a) {](e, (R) u (R) u)} +(m),

where m is the generator of H(P; A), where pn is the n-dimensional real
projective space, and A u (R) u (R) Z2, u as above.

If is even-dimensional and 0 0, (i.e., e H2q(X; Z)), we are deal-
ing with the homology of Pn with ordinary coefficients, and then
Q,() e H4q+,(X; Z) for m odd, while if is odd-dimensional and 0 0
(the case of twisted coefficients), then Q() is an integral cycle for m even.

If X is an Hn-space, the following proposition describes the properties of
the operation Q for m -< n and the relation of Qn to bn.

PROPOSITION. (1) Oo(x) x x eH,(X; Z2)

(2) . Q,n(X) Q,_l(x) if m W dim x -: 0 (mod2) form < n,

Q(x) ((m + dim x + 1)On_l(x)) - n(2 X, X) (mod 2),

where . is the Boclstein boundary operator associated with the coecient sequence
0 Z. Z4 ----> Z -- 0.1

(3) Q,(x - y) Q,(x) - Q,(y) if m < n,

q(x + y) q,(x) + Q,(y) + (x, y), x, y H.(X; Z).

The proof of (1) is obvious.
To prove (2), we assume x is represented by a chain c with Oc 2b

(x e Hq(X; Z) so that b represents x. Then Qm(x) is represented by
(e (R) c (R) c). Now

0(e (R) c (R) c) (0(e (R) c (R) c))

Ca(0e (R) c (R) c) + (-1)(e (R) Oc (R) c)
m-q+ (--1) (e, (R) c (R) Oc)

(e-i (R) c (R) c) + (--1)%(Tem_l (R) c (R) c)

+ 2(--1)(e (R) b (R) c) -t- 2(-1)+qO(e (R) c (R) b)

(e_1 (R) c (R) c) + 1) +q%"e_ (R) c (R) c)- 2(-1)m[(e (R) b (R) c) + (-1)q(e (R) c (R) b)].
In [4], Proposition 4.2, part (iv) should have 1 _-< i _-< n 1.
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Hence if m + q" m + q -= 0 (mod 2), then

O(em (R) c (R) c) 2[(em_1 (R) c (R) c) q- (--1)m((e, (R) b (R) c)

+ (--1)q(e (R) c (R) b))],

so that 5,. Q(x) is represented by

(em-l(R) c (R) c) q-(em(R) b (R) c) + (Te, (R) b (R) c) (mod2),

or 2 Q,(x) Q,_l(x) + /,(2 x, x), and since ( 0 identically
if m < n, we have proved (2).

Part (3) is proved similarly, by taking the chain representing Q,(x + y).
Clearly the homology operations Q and Cn are natural in the category of

H-spaces. That is, if X and Y are Hn-spaces, f:X ---+ Y such that the diagram

8’XXXX >X

SN yN y Y

is commutative, then Qi f f’Q andf n(f (R) f).
The importance of these operations for computing homology rings of loop

spaces arises from the following theorem.
Let X be an H-space, E the space of paths over X, ft the loop space of

X, ft p-l(e) where p :E --+ X. Let be the homology suspension associated
with the acyclic fibre space E. That is, is defined by the diagram

H,(ft) H,(E, t)

r p,

g,(x) j* H,(X, e).

The homomorphism 0, comes from the exact sequence of the pair (E,
and is an isomorphism since E is contractible, while j, is the inclusion and
is an isomorphism for dimensions greater than two. Hence jgl P,
is defined on positive-dimensional elements of H,(ft).

THEOREM 2. Let X be an H,-space, E the space of paths of X based at e,
ft the loop space. Then

(1) (-1)a+l(x, y) (ax, ay),

(2) aQ(z) Q_, (r(z),

where x H,(2; A ), y Hq(2; A ), z H(2;
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Proof. (1) Let a e C+ E A) b e C+ E A) be such that Oa} x,
{Ob} y ({...} denotes homology class). Then {p(a)} a(x), {p(b)}
(y), {p .(g @ a (R) b)} (x, y), where g is then-cycle of S, g
e + (-)e e+ oriented upper hemisphere, e oriented lower hemi-
sphere. Let h+ (n + 1)-chain of E+ which is bounded by g. Then
(if is the induced chain map of $ composed Mth V)

O(h+ @ Oa @ b) (O(h+ Oa @ b)

(g @ Oa @ b + (-1)+(-1)h+.@ Oa @ Ob)
n++$(g @ Oa @ b) + (-1) ,+ @ Oa @ Ob).

Similarly,

Now
(g @ Ob @ a) (-1)’(-1)q(+)(g @ a @ Ob).

Set

hU (g @ a @ b) (-1) ( .+ @ Oa @ b)

(- 1)(+)(q+l)$(h.+ @ Ob @ a).
Then

OU (-1)(g @ Oa @ b) + (-1)++(g @ a @ Ob)

1)(g @ Oa @ b) (1)+-(h+ @ Oa @ Ob)

(--1) (g a Ob) (-1)++(h+l @ Ob Oa)

(-1)(5(h+ @ Oa @ Ob) + (-)’+(-)5(h+, @ Ob @ Oa))
(-1)5(g+ Oa Oh) C(e; A),

and its homology class is (- 1)+(x, y). Finally it is clear from Theorem
1 (3) that p(h+ @ u @ c) is degenerate, and thus pU p (g @ a @ b)
and {p U} (ax, ay). Thus (1) is proved.

In this section we work over Z, and signs are ignored.
(2) Q(x) (e @ u @ u) where u is cycle representing x. But

V(e @ u @ u),

where e is the chain represented by the upper hemisphere of S.
Let a eC(E; Z) such that Oa u. Then {pa} a(x). Then

:Now
{p, Q_;(a)} Q_(a(x)).
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since (g/_: (R) a (R) a) 0. But +(e_l (R) a (R) u) (e-_l (R) u (R) a)
and +

e-i -t- e_l g_, which implies oQ_(a) $h(g- (R) u (R) a). But

So
OJO(hi (R) u (R) a) Jp(g_ (R) u (R) a) + Jp(h (R) u (R) u).

o(Qi_(a) + [hq(h (R) u (R) a) (hi (R) u (R) u) Q(u).

Since p (hi (R) u (R) a) is degenerate, we are done.

IV. H,(tns’X; Z.), H*(n-snx; Z2)
Let sX denote the suspension of X; then there is a canonical map

Y,I’X tsX. Similarly there is a map Y,n’X -- t%nx. These maps
have the property that

O’n$ 8n
where 2;, is the induced map in homology and s homology suspension
associated with the pair (cX, X), s:Hq(X; A) -- Hq+(sX; A). Thus 2:n,
is a monomorphism. (See [2], 22).
Now let us assume that H,(X; Z2) is finite in each dimension, and that

X is arcwise connected. Then it is well known that

H,(snX; Z.) T(H,(s’-X; Z), n_>_l,

where T(M) tensor algebra of a graded module M over Z (see, e.g., [2],
22 or [1]). One can write T(M) (R)P(x) as Z.-modules, where the
{x} form a basis of the graded Lie algebra generated by M in T(M) (see
for instance [3]). This is actually a special case of the Poincarti-Birkhoff-
Witt Theorem. Then where M H,(s’-X; Z), n > 1, each x is trans-
gressive. In fact if xi [a, [a, [a, ...],...]], where a e H,(s’-X; Z),
and if a"a a, as e H,(X; Z2) -- H,(’s’X; Z), set

Then zn: X. We may now calculate H,(t%X; Z.) in the manner of
Kudo and Araki. For the set x"} forms a simple system of transgressive
generators for H, 2sX Z
THEOREM 3. H,(12ns’X; Z.) P(Q(H,(X; Z) ), n >= 2, where P(M)

the graded polynomial ring generated over Z by the module M, and
Q(H,(X; Z) submodule of H,(ns’X; Z) generated by all elements_

(),

where is defined above, Qi are the operations of Kudo and Araki (see Section
III), (il in--) is any sequence of nonnegative integers (Q identity).

The proof proceeds by induction on n, and uses repeatedly the following
comparison theorem.

THEOREM. Let E, E, r >- 2 be two spectral sequences over a field K,
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E E0,, (R) E,0, ’E ’E,, (R) ’E,o,
and let r:E -- ’E be a map of spectral sequences, r >- 2. Then

(i)
(ii) "E ’E an isomorphism and

2 E2,,o" E,,o ’E,,o an isomorphism

imply that

is an isomorphism also.

This is a special case of a more general theorem, and will not be proved
here (see [4] and [7]).

Proof of Theorem 3. By Theorem 2 we have- () (Q2 (a ))n--2

By induction, these elements are a simple system of generators of

U,(n-isnx; Z2);
hence a is a monomorphism on Q(H,(X; Z2) ), and in particular the elements
of Q(H,(X; Z.) are linearly independent. Now define a differential graded
filtered algebra

A P(Q(H,(X; Z))) (R) H,(e-snx; z),
--1filtering by degree in the second factor, and setting the boundary d a on

the image of in the second factor, d 0 in the first, and extending the
definition by making d a derivation. Then E(A) A, and we define a map

of Er(A) into ’E spectral sequence of the space of paths over
for r 2, by setting identity on H,(2n-lsX; Z), mapping Q(H,(X;Z2)
by inclusion into H,(%X; Z.), and extending by multiplication.
Thus we have a map of graded filtered algebras over Z2, and it is clear

that is a map of spectral sequences. Both E and ’E are zero, and
e’Er,0 -- ’E,0 is the identity isomorphism. Then by the comparison theo-
rem, (ib’E ’E,,0,, - is an isomorphism, and the theorem is proved

Since the generators of H,(n-lSnX; Z2) are images under a, they are primi-
tive in the Hopf-algebra structure, that is, A,(x) x (R) 1 + 1 (R) x where
A:n-lsX (n-lsx) X (-IsX) is the diagonal map, A(v) (7, 7),

.-.n--1 Z2) For if zy x,v e s ., and where x is a generator of H.(2-snX
y e U,(nsnx; Z2), and if we represent the singular cycle y as the image of
cycle on a polyhedron under a continuous map, then x is the image of suspen-
sion of the cycle on the suspension of the polyhedron, and since all cycles
on a suspension are primitive, x is primitive. Then since H.(gt-snx; Z) is
the tensor product of polynomial rings with primitive generators, the dual
algebra, H*(’n-t S A;Z) is simply the tensor product of the dual algebra of
a polynomial ring. If A P(x) over Z, eHom(A, Z) A*, with
(y) 1, y e A, then A* E(, , , the graded exterior algebra
generated by the dual elements to the (2) powers of x (see [5]).
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