TWO-ELEMENT GENERATION OF THE PROJECTIVE
UNIMODULAR GROUP!

BY
A. A. ALBERT AND JoHN THOMPSON

1. Introduction

Let § = §, be the field of ¢ = p™ elements, M = IM(n, ¢) the mul-
tiplicative group of all n-rowed square matrices with elements in  and deter-
minant 1, and N = N(n, ¢) the subgroup of I consisting of its scalar
matrices p/ with p” = 1. We assume, of course, that n > 1. Then N
is a normal subgroup of M, and the quotient group

(€9) © = &(n, q) = M/N

is a well-known simple group called the projective unimodular group.

In 1930 H. R. Brahana’ gave a list of simple groups of orders less than
1,000,000. An examination of his list reveals the fact that every group there
is generated by two elements, one of which has period (group order) two.
The purpose of this paper is to prove the corresponding result for a general
class of simple groups. We shall derive the following property.’

TueoreM. The projective unimodular group is generated by two elements
AN and BN, where the coset At has period two.

The nature of our proof is such that it is necessary to consider a number of
special cases for small matrix orders n. We shall begin with a treatment of
the general case » = 5, and shall then handle these special cases, the most
difficult being the case n = 2.

2. The group ® for n = 5

The nonzero elements of , form a cyclic group Fa of order ¢ — 1, and the
set of all elements p of ., such that p" = 1, is a subgroup of , isomorphic
to M = N(n, ¢). This is a cyclic group generated by an element N whose
period divides both n and ¢ — 1, and we observe that, when n = 2, the group
N is the identity group if p = 2, and is generated by —I when p is odd.

Our theorem is clearly equivalent to the property that I (n, ¢q) is generated
by A, B, and NI. We let e;; be the n-rowed square matrix with 1 in its ¢t®
row and j** column and zeros elsewhere, and I the n-rowed identity matrix.
Then the theory of the reduction of a matiix to diagonal form by elementary
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unpublished note. It was later proved by L. J. Paige in the cases where ¢ = 4and ¢ = 8.
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transformations implies that the group MM (n, ¢) is generated by the matrices
(2) I+xeij (i?éj;i’j=l’"'7n)7

where z ranges over all nonzero elements of §,. Thus our technique will
consist of a study of the subgroup 9 of M(n, ¢) generated by A, B, and N,
and a proof of the property that  contains all of the matrices in (2).

We note that

(I + zeij)(I + yei;) = I + (x + y)ess,

(3)
(I + ze;;))™ = (I — zeiy),
and that
(4) (I + zei;)' = I + twe;,
for all 2 52 7, all z and y in §,, and all integers ¢. Also
(5) (I + zei;) (I + yers) = I + wes; + yeus (t#j,j#Er;r#=s),
and
(6) (I + zei; + yern)' = I + twei; + tyers
for all integers ¢, and all 2 % j, j £ r, r % s, and s 5 ¢. In particular,
(7) (I + weij + yer) " =1 — eij — Yers .
Finally, let 7, j, k be distinct, let  and y be in §,, and let
(8) A =1+ ze;j, B =1+ yeu.

Then AB = I + ze;; + yep + zyen, A7'B™ = I — xe;; — yen + xyen’
so that the commutator of 4 and B is

(9) ABA7'B™ = I + ayes .
We shall use the convention
(10) €i,j4n = Citn,j = €ij

forallZ,j = 1, --- , n, and shall begin with a derivation of the following key
lemma.

LemMA 1. Let a be a primitive element of Fq, n = 5, and
(11) C =1+ atpa2+ €m, D = (—1)"(ere — ez + D iz eiip1).
Then the cosets CN and DR generate &(n, q).

We observe that D is unimodular for all » = 1, and that
(12) D7 = (—1)"(en — e + D is€itni).

Then a direct computation shows that



GENERATION OF THE PROJECTIVE UNIMODULAR GROUP 423

(13) D7';; D = €i41,541 (1#2;§#2;i=3=2),
while
(14) D—Ieng = 63,541 D‘lei‘zD = Tei41,3 (7' #= z;j # 2)7

for all n > 3. It follows from (13), (14), and (3) that, if a subgroup $
of M(n, ¢q) contains I + xe;; and I + yeju with 4, j, k distinet, then $
also contains I + zyes .

We now make the assumption that » = 5 and that 9, is the subgroup of
M (n, g) generated by C, D, and the scalar matrices of determinant one.
Then $, contains

(15) Ci=D7'CD =1 — aeus + e,
as well as
CCLOTCT = (I + atuaz + em)(I — aew + €)CCT'
= [I 4 (cttn-12 + €m1 — cens + €12) + e€nol
[ — (ctln-12 + n1 — alnz + €13) + n2] = I + 2en0 — €n2.

Thus $o contains

(16) Ep=1+ e.
Assume next that o contains
(17) Enk=1+6nk (2§k._<_n—2)

Then $, contains
(18) Cir = D'7°CD*™ = T + perjsr + o0er142 (0 =o' =1),
and thus contains
B Cocs Enp Citi = (I + eu) (I + perpis + oaer-1ie2) Eni Cea
= (I + ewr + perrs1 + cor1kt2 + penis1)
s (I — ens — Perj+1 — Q€K1 k42 T+ PEn k+1)
= I 4+ 2penr41 — plnyr = I + péniy1 .

By (3) we see that £, contains I 4+ e, %41 . This completes an inductive
proof of the fact that $, contains

(19) I+ ewm (m=2--+,n—1).

But then we apply (13), (14), (3), and (9) to see that $, contains every
I+ ejfori —j*0,n— 1. Itfollowsthat Do contains I + ene, I + ez,
and (9) implies that o contains I + e,;. We have shown that £, contains

(20) I+ e (#5465 =1-,n).
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We use (15) to see that $, contains
(I - 312) (I + e — Olen3) =] — aens 5

o contains I 4+ ae,s ; Ho contains I + ae, by (9) for all k£ = 3, n. Since
Do has been shown to contain I + w«e.;, we have proved that I + aen is
in 9o for every k # n. Using (13), (14), and (9) we see that I 4+ ae;; is
in o for all ¢ == j.

If I + xe;; and I + ye; are in §o for x and y in §F, we use (9) to see that
I 4 zyes is in Oo. But if 7 and k are distinet, there is an integer j # ¢, k,
and the fact that I + ae;; and I + aej are in §, implies that I + o’es is
in Oo for all 4= k. If I + a'e;; is in §o, then we use (9) with

A=1 + ateij s
B =1 + aejr to see that I 4+ o'tey is in $o. It follows that I + a'e;;
is in o for every ¢ % j and every integer {. Since « is a primitive element of

Tq, it follows that o contains every I + we;;, Ho= M(n, ¢). This com-
pletes a proof of our basic lemma.

Lemma 1 provides a proof of our theorem for p = 2 and n = 5, since it
should be obvious from (6) that C has period p. Assume then that

(21) p =2k + 1.
We shall then derive the following result.

LEMMA 2. Let p = 2k + 1, n = 5, a be a primitive element of §,, and

8 = —ka, so that 26 = a. Then the unimodular matrix

(22) A= —(en+ en) + 2 isei+ atirz + em
has period two,

(23) B = (—1)"(e1r — ex + 2 iseiim1 + 0ens,s + Kens)

18 unimodular, and &(n, q) is generated by the cosets AN and BN.
It is trivial to see that A and B are unimodular and that
(24) (—1)"B™" = 8wy — ke + €1 — € + Dors€irri.
Compute
Ay = B7'AB = (en — en + ‘25;3 it1,s — ken =+ Sene)
c(—en — e+ D tgen + atniz + em)(—1)"B
= [—en + ex + Z:Ls eiy1,i + (o — 8)ens + (1 + k)eu]
© (e — e + 2l enin + denrs + ken)
= —en — e+ D iei+en+ (26— a)es+ (2k+1)en.
Since 2k + 1 = p = 0 in §, and 26 = «, we have
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(25) Ay = en — (en + en) + D isei.

But then

(26) ArA = —en + en — e + D iseii + a1z + em,
and

(27) (A4 =T + 20651 .

Assume that § is the subgroup of M (n, ¢) generated by our two matrices
4 and B and the generating matrix NI of . Then (4) implies that $ con-
tains

(28) E =14 aep,.
Since 8 = —ka, we see that § contains E* = I — kae, 12 = I + 8412
as well as

E*B = (I + ée,_12)B

=B 4+ 56n—1,2(€12 — e + Z?=3 €;,iv1 + 0€n13 + kenz)(—l)n
=B — (=1)"%epa5 = (—1)"(e1r — €5 + Dot e + kens).

Define

(29) L= (—1)"(exr — e + 2 iseiis1 + ken),
and see that L and

(30) L= (=1)"(—ken + en — es + D img€i41,:)

are in . Also
L7A L = (—ken + en — e + D i eis1i)
- (en — e — e+ D tsen)(—1)"L
= (—keun + en + € — e + D ims €it1,i)

31 n

(31) (e — e + D ig i + keaz)
= —hey + e — 33 — e + D ims i + en + kew
= en + e — €3 — ey + ZLseii = J,

isin 9.

We have now seen that J; = A; and J,arein . Suppose that § contains
(32) Ji= it ew — (o151 + €j5) + Dimjnes (4 =237 <n).
Then a direct computation shows that $ contains
(33) L7J;L =J;p.

Hence $ contains J; for j = 3, -+, n. In particular, § contains
(34) Jn = Z:::f € — (en-—-l,n—l + enn),
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and also contains
JnA. = [I - 2(en—1,n—1 + enn)]A
(35) = A4 — 2(6n—1.n—1 + enn) - 2(0‘6”—1:2 + eﬂl)

n—2
= 25-3 €y — (611 + €2 + en—1n1 + €nn + @2 + enl)-
However,

(Jad) = 2205 e+ (en + €2 + €rtni + un + aCnr2 + em)’
= I + 2((161;-1,2 + enl)’

and it follows from (6) that the matrix C of Lemma 1 is in $. Since
E =1+ aep2isin §, so is

(37) E7C =1+ eu,
and so is (B'C)™" = I — ke, . But then
(E7'C)™L = (I — kem)L
(38) =L — kea(—1)"(e1z — €a5 + O img€s,041 + kens)
=L —k(—1)"es =D

(36)

is in O, where D is the matrix of Lemma 1 By Lemma 1, the group

O = M(n, q) as desired. This completes our proof of the theorem for the
general case n = 5.

3. Thecasen = 4,¢ % 9
We shall assume next that n = 4, and redefine C and D by the formulas

(39) C =1+ aeq, D = e — ey + ex + ea,

so that

(40) D™ = ey — ep + es + .

Then we have

(41) D7%;;D = ei1,jn (1%£2,)#2i=j=2),
while

(42) D7ly; D = —es,i41, D7l%nD = —e; (7 £ 2;5 # 2).

As before, we let o be the subgroup of M (n, ¢) generated by C, D, and the
scalar matrix NI, and see that

Ci = D7'CD = I + aey, C:=D7CD =1 — aey,

(43)
Ca = D—102D =7 + (o127
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are all in §,. Then (9) implies that if I 4 xey and I + ye;; are in o,
so is I 4+ xyes. But then £, contains

I + zyes, DI + zyes)D = I — xyess,

D7Y(I — zyeis)D = I — xyen, D7 (I — zyeu)D = I + xyen .
If I 4 zepisin §o, so is
(45) (I + zew) (I + xyes) (I — zeww) (I — xyen) = I + xyzew
by (9). As above, 9, contains
(46) I+ (wy2dew, I+ (zyzlen, I+ (ay2lem, I+ (wyz)es.

Finally, if $o contains I + xyewr and I 4+ (abc)exn, then (9) implies that
$o contains I + (xy)(abc)ey . Take a = 2 = y = a = b = ¢ to see that
o contains

(44)

(47) I + olaeq .

We next take 2 = o', y = a = b = ¢ = a to see that $o contains
I + o®aeq. But then it should be clear that £, contains I + aa**es , for all
integers k. By (3) we see that §, contains all elements

(48) I + of(a')en
for all elements f(a*) of the field F,le']. When ¢ > 9 it is easy to see that
(49) %p(a4) = Te>

and so 9, contains
(50) I + zey

for all z of §,. By (43), (44), (45), (46) we see that Do contains I -+ wxe;;
for all 7 5 7, and so Ho = M(4, q).

If p = 2, the period of C is two, and our proof of the theorem is complete
in that case. Hence take

(51) p=2k+1, a = 29,
and define
A = ey — e + €53 — ey + aeq,

B = €12 — €3 -+ €34 + en + degn.

(52)

Thus A has period two, and
(53) B = —ben+ e+ en — e+ es.
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Then
A, = B'AB
= (—den + e+ e — e + es) (en — €2 + €3 — ew + aeq)B
= [(a — 8)en — e + en + €3 + eu] (€12 — e + e + ea + dew)

= (o — 8)ers — en — bew + € — €33 + eu,
and we use (51) to see that

(54) J = B_IAB = —en + €23 — €33 + €44

is in the subgroup $ of IM(n, ¢q) generated by A, B, and A. Also
—JA =1 — aey isin H, and so is

(55) (—=JA) " =1 + aeq = C.
Then § contains C* = I + kaey = I — dey , since
2(ka + 8) = (2k + 1)a = 0.

Itu fOHOWS that CkB = B — 6641(612 — €93 + €34 -I— (%) + 8642) = B - 6642 =
€2 — €3 + eu + en = D. Hence $ contains both ¢ and D, and
O = M(n, q). We state this result as follows.

Lemma 3. The group &(4, q) is generated by CRN and DN of (39) of ¢ # 9.
The coset CN has period p and so has period two of p = 2. If p # 2, the
group &(4, q) is generated by AN and BN when q #= 9, where A and B are given
by (52), and A has period two.

4. The group ®(4, 9)
The field §, is generated over §; by an element « such that

(56) o =a+l
Then
(57) d=p=1-q o =af = —1,

so that « is a primitive element of §. We shall derive the following result.

LEmMA 4. Let a be defined by (56). Then &(4, 9) is generated by AN
and BN, where A and B are given by

A = —epn + € — e 1+ eu + aesn + e,

B = e — e + €3 + en + ep + aeg ’
and A has period two.

We let § be the subgroup of (4, 9) generated by 4, B, and N, and com-
pute

(59) B = —er + ey — e + e + e + aep.

(58)
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Then a direct computation, for this case of characteristic three, yields

(60) J = B_IAB = €11 — €2 + €33 — €44 .
Also, it is clear that
(61) C = '—JA = J — (4727 + €41 .

Since C is in §, so is
C‘]B = (I + alzy — €41)B

=B+ (Cwaz - 641) (612 — e + €3 + ea + € + aeas) =B — aep — €42 ,
that is, © contains

(62) D=C_1B=612'—623+634+e41.

It should now be clear that D" is given by (40), and that the conjugating
relations (41) and (42) hold. Hence $ contains

Cl = D_ICD =71 + Q43 + €12, 02 = D—lch = (I + ably — 623),

(63) .
Ci=D CoD =144 aen + e,

as well as
CiCCT'C™ = (I + aew + en)(I — aen + ea)C7'C

= (I + aes + en — aep + eq — o’es)

c (I — ot — ez + aep — eq — a’es)

=1 — 2% + oless — es = T — (1 + o’)es

=1 — (a4 2)ew =1 + Bes .
By conjugating by D and taking inverses we see that $ contains

L =Lo=1+ Bew, L, = I + Bes,
L, = I + Bexu, L; = I + Bes .
As next element we compute the commutator

Ll-lca L, 0;1 = (I - 5613) (I + cen + e)ln CZI

(64)

= (I 4+ aen + e — PBes — Bew)(I — aen — ey + Bers — Bews)
= I — 2Beu + afess — afews + Bewn = I — Bews — es3 + €2
by (57). Then
R=LIC L C5' - C7'= (I — Bews — exs + eu)(I — aew + ex)
=1 — Bewu — €3+ ey — ctrs + es =1 — (a + B)ews + exn
=1 — ey + ex
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isin §, and so is

JR = (611 — en + 5 — 644)(I — e+ 624) =€y —€6p+ 63— 6u — €14 — €.
But

100-1\/100—1 1000
. [0-10-1\[0-10-1| [0102]_
65) R =19 9 10 Jlo o 10 |={oo10]=1T 2
000-1/\000-1/ \ooo1

is in O, and we have shown that § contains I 4+ ey . Using (41) and (42),
and taking inverses when necessary, we see that

(66) I+ ey, I+ e, I+ ey, I+ es

are allin ©. Also (I —eu)R =1 — e+ ey — € =1 — ey is in §, and
so O contains

(67) I+el4, I+921, I+832, I 4 eq.

By (9) we see that  contains (I + ew) (I + e) (I + ew) (I + ew)™ =
I+ ey. Hence I + e, I + €3, I + €34, I + ey, are all in O, and we
have shown that $ contains I 4 e;; for all 7 % j. Clearly (I — eq)C =
I — aexisin O, and thus § contains I + aegp, I + ces, I + aenn, I + aey .
Using (9) we show readily that  contains I + ae;;, for all 7 > j. But
(9) implies that if  contains I + a'e;; for all ¢ # 7, then $ contains

(I 4 a'e;)(I + aep)(I + o'ei;)) (I + aep)™ =1 + o' e

for all 4, j, k distinet. It follows immediately that § contains I + we,; for
all z in § , and the proof of our lemma is complete.

5. Generation of §(3, q)
The principal result for the case where n = 3 may be stated as follows.
LemmA 5. Let q #= 4, let a be a primitive element of §F,, and let
(68) C=I+a031, D = ep + ex + ea.

Then CN and DN generate &(3, q), and C has period p. If p = 2k + 1, the
group &(3, q) is generated by AN and BN, where

(69) A = ey — en — en — aey, B = D — kaey,
and A has period two.
It is clear that
(70) D™ = e+ ea + e, D7'%:;; D = eiy1,5m (4,5 =1,2,3).

We let 9o be the subgroup of (3, q) generated by C, D, and N, and see
that o contains

0=I+a€31, 01=D~ICD=I+¢!€12,
Cz = Dﬁlch =71 + «ea3 .

(71)
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Assume then that I + xey, I + yewn, I + zes are in o for z, y, z in F, .
Then we use (9) to see that I -+ xyes is in $o, and (70) implies that
I + (zy)esisin Oo. We use (9) again to obtain I + (xyz)er , and see that
I 4 (zyz)es and I + (ayz)en arein Oo. Takex = y = a, and use the results
just stated to see that £, contains I + aey , I + o’en, I + a'e;. We can
then take z = o', y = a, 2z = o and see that I + a’ey is in ©,. Thus
the values z = o®**, y = @, 2 = o’ may be used to complete an inductive
argument implying that I + o** ey is in o, for all nonnegative integers ¢.
It follows immediately from (3) that £, contains

(72) I + of(a’)en

for all elements f(o’) of (). If Fp(a®) is a proper subfield of Fy = Fola)
where p° = ¢, then the degree over &, of F,(¢’) must be a proper divisor
wof v = Au.

The period of a is ¢ — 1, and the period r of o* must divide p* — 1. Thus
r=13%q—1);3r= ¢~ 1 = p° — 1 must divide 3(p" — 1). But then

O‘_l)" + p“’”“ + ... 4+ 1 divides 3, and this can occuronly if p = 2, u = 1,
>\ = 2, 50 that ¢ = 4anda3 =1

We have now shown that the assumption that ¢ # 4 implies that 9o con-
tains I + zey for every x of F,. By (70) we know that £, contains I + yes
for all y of §,, and it follows that o contains all I + ze;; for z in §F, and
7 # j, so that $o = IM(3, ¢) as desired.

This completes the proof of the first part of our lemma, and we now assume
that p = 2k + 1. Compute

-8 0 1\/-1 0 O

A, =B"4B=|1 0 0 0 -1 0]B

0 1 0/\-a« 0 1
5—a 0 1\/O 1 0 1 26—a O
=<-—1 00(001=0 -1 0.
0 -1 0/\1 § O 0 0 -1

But we have taken § = —ka, and 5026 — a = —(2k + 1)a = 0,

1 0 0
4,,=(0 -1 o0},
0 0 -1
(1 0 0> -1 0 0 -1
A1A=0—10<O——10=0
0 O -1 —a 0 1 a

-1 0 O 1 00
0 1 0 ]})=| 0 1 0).
1 a 0 -1 —2a 0 1

(73)

(74)

O = O
l oo
—

SNS——"

and
—1
(75)  (414)" = ( 0

0
0
a -

S = O
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Hence the subgroup $ of MM(3, ¢) generated by the elements in the cosets
AN and BN contains I — 2aey , and also contains
(I - 2a631)k =] — 2’60{631 =17 + ez = C
Also C* = T + kaey = I — ey is in O and so is

1 0 0\/0 10 010
(76) ¢’B=({0 1 0]J{o 0 1]={0 0 1)=D.
-5 0 1/\1 6 0 100

By the proof above, § = IN(3, q), and the proof of our lemma is complete.
There remains the case n = 3 and ¢ = 4. We shall derive the following
result.

LemMMA 6. Let a % 0, 1 be in s, and let

1 00 010
(77) A={1 1 0]}, B={0 0 1]}.
a 0 1 1 0 «

Then A has period two, and the group ®(3, 4) is generated by AN and BN.

For we see easily that A*> = I and

0 o 1
B'=(1 0 0},
010
0 « 1\/1 0 O
(78) B'AB=\|1 0 0oJ{1 1 0}B
01 0/\a 0 1
0 «a 1\/O 1 0 1 00
={1 0 ojJto o 1}={0 1 0}.
11 0/\1l 0 « 011

Thus I + ez is in the subgroup $ of M(3, 4) generated by A, B, and al.
Then $ contains

1 0 0\/1 0 O 1 00
AB7'AB =1 1 o]J{o 1 o)=}1 1 0
(79) « 0 1/\0 1 1 e 1 1

=14 ey + aen + e

as well as

1 0 0\/1 0 O 1 00
(80) (AB'AB)’={1 1 0]J{1 1 0)={0 1 O0})=1+ ex.
a1l 1/\a 11 1 01
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We see also that

BI + ex)B =

O = O
=]
OO~
NS—
P
— O =
SO~ OO
-0 O
N——
(o]

(81)
1 « 1\ /0 0 110
=|1 0 0]{o0 L)=|0 1 0)=1++ e
0 1 0/\1 P 0 01
and
0 « 1\/1 1 0
B'(I+es)B=|1 0 0]{0 1 0])B
0 1.0/\0 01
(82)
0 o« 1\/O 1 O 1 00
={1 1 0J{0 0 1)=[0 1 1)=1++ ey
01 0/\1 0 «a 0 0 1

arein . Hence (I + e) (I + en) = I + e + en + ez isin H, and so is

1 1 1\/1 11 1 01
(83) 01 1J10 1 1})={0 1 O)=1++es.
0 0 1/\0 0 1 001

But this shows that (I + ex)(I + en) = I + ex + en + exnisin P, and so
is

1 0 O0\/1 0 O 1 00
(84) 1 1 11 1 1)={1 1 0)=1+4ex.
1 0 1/\1 0 1 001

Hence I + e;;isin O for all 7 £ j. Moreover

1 0 0\/t 00 1 00
(85) (I+eNd={110){1 1 0)=(0 1 0) =1+ ae
00 1/\a 01 a 01

isin . If I + we;;isin O, then (9) implies that I + ey and I + aey; are
in . It follows that I + aesp and I 4 aey are in O, I + aepisin 9, I + aeg;
and I + aey are in O, and so I + ae;;isin  for all 7 £ 5. By (9) we see
that if 7 + a'e;;is in § for all ¢ 5 j, then I + a'*ey is in § for all ¢ 5 k.
It follows that © contains I + we;; for all 7 # j and all z of §,, and the proof
of our lemma is complete.

6. Preliminary generation of ®(2, q)

As in the previous cases we assume that « is a primitive element of {,,
g = p", so that the period of ais ¢ — 1. Write

86) s=(q—1)/(p—D=1+p+p+ - +p", u=d,
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so that u is a primitive element of the prime subfield §, of §,. When p is
odd, we have

(87) s=m (mod?2),

and so u is an odd power of « if and only if m is odd. When m is even, all
nonzero elements of {, are powers of » and so are even powers of . We
state this elementary property as follows.

LemMa 7. If p is odd, there exists an integer u in §p such that u = o™ if
and only if m s odd.

Observe now that the matrices

(88) B = (g a91>’ C = (_‘_’1 i)

are unimodular. We also observe that 9t is generated by —I, and we shall
derive the following result.

LeMMa 8. The matrices B, — B, and C generate M (2, q).
For

1 e -1 (0 o
(89) O__IO’CB_-al’
so that

1 _ (O aN fa -1 _ a! 0
(90) CBC™ _(—a 1)(1 0)—<1-—a2 a)’
from which

—1
_ -ip _ [ « O\fe O} _ (1 O

o veern- (96 2)-C )
where
(92) E=a(l —d).

Let £ be the subgroup of M(2, q) generated by B, —B, and C. Then
$o contains D and also

— i i 1 0
(93) p, =508 = (4 9),

for all integers j. It follows that the matrices

(94) D‘=(k1t (1’) <Df>‘=(a5‘tk ?)

are in 9, for all integers ¢ and j.
When p is odd and m is odd, we have seen that {, contains an integer
u = o™, Then there exists an integer j such that one of o™k and o*’uk is

equal to . But then (93) implies that o contains I + o**'ey for every
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J, and (94) implies that $, contains I + yex for every y of §,. Thus Ho
also contains

o () e

and

® DD )

It follows that $o = IM(2, ¢q) as desired.

When p = 2 every nonzero element of §, is an even power of , and (93)
alone implies that $, contains I -+ yey for every y of §,. As before, we use
(95) and (96) to see that £ = M(2, ¢). There remains the case where p
is odd but m is even, so that every ¢t # 0 in {, is an even power of a.

Assume first that

(97) k=a(l —a)(l+a)=a",

for an integral exponent ¢. By (93) and (94) we see that £, contains
(1 0 _ piqpi 1 0

(98) S = (_1 1), S; = B7’SB’ = (___ag, 1),

and o also contains

(o) se= (2 D& D-(0 Lty

Also the matrices

10\ _ 1 0\/0 1 0o 1
(100) S“=(1 1)=S’ S°C=(1 1)(—1 a)=<—-1 a+1)

are both in §,. Since —1 is an even power of a and
Ek=al—a)(1l+ a)

is an even power of «, we know that either 1 — « or 1 4 a must be an even
power of a. Hence £, contains a matrix

(101) R- (_01 Oj)

for some integer 7, and we use (98) to see that £, contains

(102) T = (_la (1)) (—(-)1 al) B (—01 tl))

and

(0

But then $, contains all of the matrices B/(CT)B’ = I + (’*)ex, and
we combine this with the fact that §, contains the (S;)™ = I 4+ (a’)ex to
see that §, contains T and I + yey for every y of §,, so that Ho = M(2, g).
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The only case not taken care of is that where
k=a(l —d) =" 1 —o =d".

By (93) we know that £, contains

(104) E = E, = ( 1 0) B, = BYEB = I — (*™Yen,

—a 0/’
and also contains

(105) EC = (_10‘ ‘1)) (-?1 i) N (_01 (1)) - T.

Also 9, contains

(1 o\fo 1\_(0 1
(106) B =(_he D H=(0 1)

where
(107) ki = a(l — o).
If there is an integer ¢ such that 1 — o is an odd power of a, then

ki = a(l — o) = o,
and 9, contains

(108) B(CTT) = <_01 alzv) <(1) _01) = <a12 (1)>

It is then a simple matter to conclude that o = M(2, ¢). However suppose
that 1 — o is an even power of « for every ¢ and thus that 1 4+ o* isan
even power of @. Then

0&21 + OZZJ — a2i(1 + a2p) - a?taZp = a2(p+1).

It follows that the subset & of §, consisting of zero and all even powers of
the element « is a proper subfield of §, containing o’. Hence §, = 2(a) has
degree two over &, m = 2u, the period 7 of o divides p* — 1, and the period
of « must divide 2(p"* — 1). Since « is primitive, we see that

pt—1=(p"—1)(p"+ 1)
divides 2(p* — 1) and p* + 1 divides 2, which is impossible since p > 1.
This completes our proof.

7. The generators of the theorem

We are now ready to construct the generators A and B of our theorem.
We use the matrix B of (88), and propose to determine a matrix

(109) A= (‘c‘ b )

such that
(110) &+ be = —1,
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so that 4 is unimodular. Note that

(111) A% = (Z b )(‘c‘ _ba) = -1,

so that the coset AN has period two as desired. We shall also impose the
requirement,

(112) ABA = ( 0, ”), o 0,

—p P

for a suitable value of j.
Every nonzero element & of {§, is a power

(113) d=a
of . Then

_ iqg _[O b ] 0

D = AB'A = (c _a> (0 6_1)A
_fas b \fa B\ _( 0O
“\es —ad ) \¢ —a) \-p" o)’

where we are requiring (110) and

(114)

(115) a’s + bed™ = (d%6° + be)s ™t = 0.
Use (110) to see that (115) becomes

(116) d=a, d—d=1

We also have

(117) p=ab(d —8"), o=bes+a,

and the condition ac(d — ') = —p " will follow from the fact that A and
B are unimodular.
When p = 2, we assume ¢ > 2 and (116) is satisfied if

a#1l, b6=14+a"'#0, d=a=a(l+a") =a-+1.
Then
c=0bed 4+ " =[(14+ )+ a?) + o6
=(14+d+a+14+d) " =a%" #0.

Alsop = ab(s — &%) = ab(8® — 1)67 = a7 b6 % 0if b % 0. We now
form

z‘_aiO 0 »o\_( O a"p_Ol
o 10§ 2 - (2 )= )
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if we select ' = p ', " = p = a0, so that

(119) =a'c = a"% .

We can take

(120) b=oad%, c=0+d)W", bs=1+a,
for any a # 0, 1 and have

(121) h=a  BD=C.

It follows that the group $ generated by A, —A, B contains C, and so
H = M(2, q). We state this result as follows.

LemMA 9. Let p = 2, q > 2, and take a % 0, 1, and b and-c as in (120).
Then the matrices A and B of (109) and (88) generate M(2, q) and AN has
period two.

The only case that remains is that where p is odd. Then the most general
solution of (115) is given by

(122) a=(w—w/2, = (w+wh/(w—w?),
where w* # 1, —1. But then

be = —a’d, bed + d'6 T = o' — % = &1 — &Y,
and we require that 8' = 1,
(123) & #0,1,—1, abs=0.

Since p = —abd "' (1 — &°) ## 0 if (123) is satisfied, we will have p = o for
some 7 and will again have (118) where

h=po=—abd (1 —)a%"'(1 -8 =a
for

(124) b= a‘saza[(; - =D, c= —=b 1+ ad).

It will then follow that the group $ generated by 4, B, — B contains C and
hence is M(2, ¢). The condition 8 = 1, —1 is equivalent to

(w+w™)? = (w—w")’

and thus to w’ + w™ + 2 # w* + w™> — 2, which is always true when p is
odd, and to w’* + w* % 0. But the relation w’* + w™ = 0 holds only if
w' = —1. The condition w* = —1 is not satisfied for w = « unless ¢ = 9,
p = 3. When ¢ = 3, we have o = 2, o® = 1, and (122) does not yield a
solution since @ = o ' and the denominator of & in (122) vanishes. When
g =5 a=2or3, and (122) gives 8 = 0. Otherwise 8 # 0, 1, —1, if we
take w = a. Thus we have derived the following result.
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LemMma 10. Let p be odd and q # 3, 5, 9, and define the matriz of (109) by
(124) and

(125) a=(a—a")/2, d=(a+a)/(a—a).
Then the cosets AR and BN generate &(2, q).

G2, 2) =2 &;, (2, 3) == Uy, and G(2, 5) = Us, and these three well-
known groups possess two generators, one of order 2. ®(2, 9) has order
360 and is contained in the list of Brahana, so the proof of the theorem is
complete.
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