
A CANONICAL FORM FOR ANTIDERIVATIVES

BY

E. J. McSH.kNE

1. Introduction

In several recent studies of devices equivalent to Schwartz distributions,
an essential part is played by sequences of functions fl, f., such that on
every interval J there are antiderivatives F1, F2, of f, f2, of some
fixed order convergent uniformly on J. The degree of arbitrariness of the
/cth antiderivative of fn for/c > 1 is somewhat inconvenient in 1-space and
decidedly troublesome in spaces of higher dimension, and it is desirable to have
a "canonical" expression for antiderivatives that will eliminate the arbitrari-
ness without injuring the convergence. Such an expression does in fact exist,
and is exhibited in Section 5 below. However, in the process of deriving the
expression some auxiliary results were obtained that led to a new proof of
the "fundamental lemma of the calculus of variations’’3 with more generality
and simplicity than previous proofs. This seemed worth writing up in its
own right; it appears in Section 7 of this note. It also has an application,
quite apart from the calculus of variations, to "weak solutions" of differential
equations as devised by Bochner.

2. Notation and definitions
Points in N-dimensional space R will be denoted by N-tuples such as

(x1, xN), or for brevity by single letters such us x. The superfix indicates
the coordinate, and is usually omitted if N 1. A subset H of RN is a closed
half space if there exist an integer j (1 -<- j __< N) and a real number r such
that H {x:x >- r} or H {x:x _-< r}; it is an open half space if for some
jandrwehaveeitherH {x:x > r} orH x:x < r/. Aset J will
be called an intersection of half spaces if it is nonempty and is either R itself
or else the intersection of finitely many half spaces, without restriction as to
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being open or closed. In particular, all intervals in R are intersections of
half spaces.
The letters p und q will be reserved for ordered N-tuples of nonnega-

rive integers (p, ..., p), (q, ..., q), and q __< p shall mean qi <-_ p,
i 1,--., N. The sum p A- A- p is denoted by P I, and the differ-
entition operator

(Ox)1. (Ox)
is denoted byD. In particular, if p (0,.-., 0), thenDf ffor all
functions f on subsets of R. A (real-valued) function f defined on a subset
X of R is of class C on X if Dqf exists and is continuous on X whenever
q -< p; it is of class C on X if it is of class C on X for every p.

N NGiven N finite sets of realnumbers {x, ", xpl}, {x0 xpN},
we use the symbol {x0, x} to denote their cartesian product, consisting

xfN) with 0 <ji < p (i 1, N). If forof all the points (x3-1 ,.
each j (j 1, N) the numbers x, x, x are all distinct, we say
that {x0, x} "satisfies the distinctness condition." Then {x0, x}
consists of (pl - 1)... (p-{- 1)points.

If f is defined on a subset X of the real numbers, we define A(xo)f to be
f(xo) for all x0 in X, and by recursion, if x0, xp are distinct points of X,
we define

A(x0,-.., x,)f [A(xl,..., x)f A(x0,.-., X_)f]/(x Xo).

If x0, x are distinct numbers and j is any one of the numbers 0, p,
we define

II(x3-- x) l(x3-- Xo) (x- x3-_)(x3-- x3-+) (x3-- x),

the factors following the 1 being simply omitted if p 0; in this case,
II(x0- x) 1.
An easy induction on p establishes the following lemma.

LEMMA 1. If f is defined on a set X of real numbers and Xo, x are
distinct points of X, then

A(x0, x ,’", x,)f "_,3-of(x3-)/II(xj xk).

It follows that A(x0, ..., x,)f is invariant under permutation of
Xo Xl Xp.

Let Xl, xp be distinct real numbers. To the familiar Lagrange inter-
polation coefficients we adjoin one nontraditional coefficient, L0

L3-(x) L3-(x; xi xv)

(x- (x- (x-
j= 1,...,p;

Lo(x) L0(x; x, xv) --1.
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In space of N (> 1) dimensions it is convenient to use a "place-marker"
Greek letter to indicate the coordinate on which a difference operator acts;
thus

while

A(1, 2)f(, y) f(2, y) f(1, y),

A(1, 2)f(x, ) f(x, 2) f(x, 1).

If f is defined on a subset X of R, and the set {x0, x} satisfies the dis-
tinctness condition and is contained in X, we define

(xo, x)f

=A(x, .", x,)A(x, ,x) A(Xo, "", x)f(, "’’, ).
By N applications of Lemma I we obtain

(x0, ..-, x)f
N N NPl PN XjN)/I(XI Xl) kN(Xj

Hence A(x0, x) is invariant under change of order of application of the
N difference operators A(xg, x).
The Lagrange interpolation coefficients have a corresponding extension to

N dimensions. If the set {x, x} satisfies the distinctness condition, for
each q p we define

i,(x) i,(x; xi, x,) -_ [-/(x; xl, x)].
(Recall that L0 -1.) This is a polynomial of degree at most p 1 in
x (j 1, N), and for each j, if q 0, then Lq(x) is independent of
x. If we divide both members of the next to the last equation by the CO-

Nefficient of f(x, xo ), we obtain, for all sets {x0, x} satisfying the
distinctness condition,

f(xo) ’ L,(xo x x)f(x,,

() + (x- xl)... (z- z,)(z- x)... (x- x[)
x)a(xo, ..., x)L

the summation extending over all q p except q (0, 0, 0).

3. A mea-va[e

TEOnEM 1. Let J [a, b] be a nondegenerate closed interval in R, and
let p, p be positive integers. Assume that f is continuous on J, and
that Dqf exists on the interior of J whenever q p. If {x0, x} are points
of J that satisfy the distinctness condition, there exists a point interior to J at
which

Df()/(p!) (-y!) A(xo ,..., x)f.
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First we consider the case N 1. By the remark after Lemma 1, there is
(For simplicity weno loss of generality in assuming x0

drop the affix "1" which labels the coordinate.) Define

g(x) --f(x) L(x)f(x) (a <- x <- b).

This vanishes at x0, xl, x, so by Rolle’s theorem there are p distinct.
points (one in each of the open intervals (x0, x), (x_l, x)) at which
g’ vanishes. By applying Rolle’s theorem again, there are p 1 distinct
points at which g vanishes, and so on; finally, there is a point at which
g() vanishes. But then by Lemma 1 and the definition of L

0 g()()/p! f(’)()/p! "f(xl)/H(x x)

f(’)()/p! h(Xo, x)f.

This completes the proof for N 1.
For general N we proceed by induction. Assume the theorem proved for

be distinct points of [a, b’] (j 1, M).N=M- 1, and letx,-..,x
For x in [a, b] define

)f(x

By the proof completed, there is an in the open interval (a, b) such that

M.,
D(,,.0,"’,0)f(, , ..., )/(p!).

The left member is h(x0, x,)f; applying the formula to the (M 1)-
fold difference in the numerator of the right member yields the desired con-
clusion.

COnOLLARY 1. Let f be continuous on a nondegenerate closed interval J
in R and of class C interior to J, where p p are positive integers. If
x x, are points of J satisfying the distinctness condition and x is in J,
there exists a point interior to J such that

f(x) Z Lq(x; x xq)f(x, ,..., xq)

+
(x

the summation r extending over all q such that q

_
p and q (0, O, 0).

This holds at first only if {x, xl, x} satisfies the distinctness con-
dition. If f is of class C on J, it extends by a simple continuity argument
to the case in which for some j (j 1, N), x coincides with some xq.
In this case the coefficient of Df() is 0. So even if Df exists only interior
to J, we can apply the theorem as already proved to any C function co-
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inciding with f at the points x, xl, x and obtain the desired conclusion
with x an arbitrary interior point of J.

4. Pseudopolynomials

We can now characterize those functions on N-space for which the divided
differences of an assigned order vanish identically.

Let J be any set in RN, and let pl, pN be positive integers. A func-
tion f on J is a pseudomonomial of degrees less than p pN if there are
an integer j (1 =< j =< N) and a nonnegative integer ]c such that/c < p. and

f(x) (x)g(x) (x in J),

g being independent of x. A function f on J is a pseudopolynomial of degrees
less than p,..., p if it is the sum of finitely many pseudomonomials of
degrees less than p,..., p.

LEMMA 2. Let p, p be positive integers, and let {x, xN} be a
set in R that satisfies the distinctness condition. Let fo be a real-valued function
defined on the Pi " "- pv hyperplanes

:k ) X X
1 xl N

X Xpl X Xl XpN.

Then there exists a pseudopolynomial f of degrees less than p pN defined
on all of R, and coinciding with fo on the hyperplanes (*).

Proof. We first define fl to be the function on R which for fixed
X
N(x2, is a polynomial of degree pl 1 in x and coincides

with f0(x1, xN) whenever x has any of the values x, xl. Spe-
cifically,

Nfi(x, X) ZiP_I L(x.; x x)f(xi x, x ).

Next we define f2 to be the function on R which for fixed x, x, x is
a polynomial of degree p I in x and coincides with the difference g f0 fi
whenever x has any of the values x, x.. Specifically,

f2(x1, ,x L(x2;x, ,xv.)g(x,x,x, ,x ).

When x has any of the values x, xl the last factor in each term of
the right member has value 0, so f2 also vanishes. Thus f0 f f2 vanishes
on the p - p. hyperplanes

X XX Xpl X Xl X Xp2.

We repeat this process until we finally reach an f which is a polynomial in
x for fixed x, x-X, coincides with f0 fl f_ on the hyper-

N and vanishes on the other hyperplanesplanes x x, x x,
(*). Now we definer- f + +f. This is easily seen to have the
desired properties.
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THEOREM 2. Let J be a nondegenerate intersection of half spaces in RN.
Let pl pv be positive integers. Let f be defined on J. Then the following
three statements are equivalent"

f is a pseudopolynomial o degrees less than pl p on J.
(ii) If the set {x0, Xl, xp} is contained in J and satisfies the distinctness

condition, then A(Xo, xp)f O.
(iii) There exists a set of points x, x} in J satisfying the distinctness

condition and such that whenever Xo is in J and Xo, x x} satis-

fies the distinctness condition, A (Xo x)f O.

Proof. (i) (ii). Let g be a pseudomonomial of degrees less than
p, p. Then for some integer j (1 =< j __< N) and some integer/ such
that 0 -< k < p. the equation

g(x) (x)kg*(x) (x in J)

holds, g* being independent of x’. To this we apply the differencing operator
x) 0.A.(x, xp.) the result is 0, by Theorem 1. Hence A(x0 g

Since f is a finite sum of pseudomonomials of degrees less than p, p,
it follows that A(x0, x)f O.

(ii) (iii), obviously.
(iii) (i). Let xl, x be the set of points specified in condition

(iii). By Lemma 2, there is a pseudopolynomial g of degrees less than
p, pN which coincides with f on the hyperplanes

(**) X
h h h N

Xl X Xpl X Xl X Xp2v

By the part of the proof iust completed, whenever {x0, x} satisfies the
distinctness condition, the difference A(x0, x)g vanishes, and hence
so does A(x0, xp)h, where we write h for f g. By equation (1), h(Xo)
has value 0 whenever x0, x satisfies the distinctness condition. But
when this set does not satisfy the distinctness condition, x0 must belong to
one of the hyperplanes in the list (**), so in this case too we have h(x0) 0.
Hence f(x) g (x) for all x in R.
COROLLARY 2. The pseudopolynomial f of Lemma 2 is uniquely determined.

For if f, f2 both satisfy the requirements of Lemma 2, their difference g is
a pseudopolynomial vanishing on the hyperplane (*). By Theorem 2,
A(Xl, Xl, x)g 0 whenever x0, x satisfy the distinctness con-
dition, so by equation (1) g(xo) 0 for such x0. Every other x0 is on one
of the hyperplanes (*), which implies g (x0) 0. Sof f is zero everywhere.

It follows immediately from Theorem 2 that if f, f., is a sequence of
pseudopolynomials on J of degrees less than pl, p, and for each x in J
the sequence f(x) (n 1, 2, has a limit f0(x) as n increases, then
f0 is a pseudopolynomial of degrees less than p,..., p. This extends
easily from sequences to Moore-Smith "nets" of pseudopolynomials. A



340 . $. McSHANE

corresponding result will now be proved for sequences (or nets) converging
almost everywhere; it is not quite so superficial.

THEOREM 3. Let J be an open intersection of half spaces in RN, and let
pl pv be positive integers. If fl f2 is a sequence of functions on J
such that for each closed interval Jo interior to J all but finitely many of the
are pseudopolynomials of degrees less than p, pN on Jo, and fo is real-
valued on J, and

(2) limekiln(x) fo(x)

for almost all x in J, then fo is equivalent to a pseudopolynomial of degrees less
than p pv on J. If (2) holds at all points of J, fo is itself a pseudo-
polynomial of degrees less than p p on J.

Let E be a set of measure zero such that (2) holds on J E. We shall
reserve the letter a for nonempty proper subsets of the set {1, 2, N},
and shall use (a) to mean the number of elements in a. Also, a’ shall mean
the complementary set/1, N} a. For each such a there is a projec-
tion P of RN into R() obtained by discarding the coordinates x with j not
in a; that is, if (a, b,..., h) witha < b <... < h, thenPx
(xa, xb, xh). Each point (x "s e a) in R() has an inverse image under
P which is a (a’)-dimensional flat surface in R, defined by the equations
x x (s e a). By Fubini’s theorem, for each a there is a set E in R()

with (a)-dimensional measure zero, such that for all x0 in R() E, the
flat surface P- x0 meets E in a set of (a’)-dimensional measure zero. Let
E0 be the union of E and the sets PTIE, for all nonempty proper subsets
a of {1, 2, N}. This has N-dimensional measure zero.
Now, with the integers p, p of the hypothesis, we choose any set

z, z} of points interior to J .and satisfying the distinctness condition.
By rigid translation of this set by an amount (y, y) we obtain another
congruent set {z - y, z y}; if the yl are small, these points are
also interior to J. For almost all choices of (yl, y) in R, all points
of the translated set {z - y, z W y} will be in the complement of E0.
Therefore we can and do choose and fix a y (y, yN) such that all
the points of the translated set {z y, z y} are interior to J and in
the complement of E0. These points we rename {x, x}. Now when-
ever a is a nonempty proper subset of {1, 2, N} and c (c"s ) is
point of R) such that each c is one of the numbers {x, ..., x,}, the

set P-[Ic is a flat surface of dimension N (a). Since c P x for some
x in the set {x, xl, and this x is not in E0, hence not in P-E, it follows
that c is not in E. Therefore P-[c meets E in a set of (a’)-dimensional
measure zero, which we call E(c). Then the set PPP, E(c) has N-dimen-
sional measure zero. All these sets P-,P,, E(c), for all c such as described,
we adjoin to E0, thus forming a set E1 of N-dimensional measure zero. If
(2) holds at all points of J, the sets E, E0, E can all be taken to be empty.
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Let x0 be any point of J El. Ifxisinthe set {x0,xl,...,x},for
each j in {1, N} there is a number i(j) in the set {0, 1, p.} such
that x xj). If all the i(j) are different from 0, x is in {x, ..., x},
hence not in E0. If all i(j) are 0, x x0 ;hence x is not in E1 and not in E0.
Otherwise, let be the set of integers j such that i(j) O, and for each j in

let c be x). Since P,, x P,, x0, x0 is in P-[,IP, x. But x0 is not in
E, so x is not in E(c). It is in P-c, so it must be in the complement of E.
Thus in all cases, x is not in E, and (2) holds at x whenever x is
in {x0, x, x}.

Let x0 be any point in J E such that Ix0, x, x} satisfies the dis-
tinctness condition; and let J0 be a closed interval contained in J and con-
taining the set {x0, x}. Except for finitely many values of n, f is a
pseudopolynomial of degrees less than p, pN on J0, so by Theorem 2
we have

a(xo, Xl x,)A O.

If x0 is in J El, (2) holds at each x in {x0, x, x}; this implies that
A(x0, x, x,)fo 0 for almost all x0. Now (1) expresses f0 as the
sum of a pseudopolynomial of degrees less than p, p and a function
which vanishes almost everywhere, and the proof is complete.

5. A class of auxiliary functions
For each positive integer ]c we define the function Y by

0 if x__<O
Y(x)

x-l/(]c 1)! if x>0.

Then for k 2, 3, the function Y is of class C-2, and Y+ Y.
For each set of distinct real numbers {x, ..., x} we define for all real

x and y

W(x, y) W(x, y; x x,)

Y,(x y) " L(x; x x) Y,(x y).

This is of class C-2 in both variables. By equation (1), if

x x (j 1,...
then

W(x, y) (x- xl) (x- xv)/(x, xl, xv)Yv(li-- y).

,p),

On each half line {x :x < 0} and {x: x > 0} the functions Y are of class C",
and D’Y, O. So by Theorem 1, if y is above the greatest or below the
least of the numbers x, x, x, the difference A(x, x, x)Y( y)
vanishes, and so does W(x, y). (Alternatively, for fixed y the value of
W(x, y) is the error at x of Lagrange interpolation for (Y,(x y):x real).
Except for y between the least and greatest of x, x, x, this function
is a polynomial of degree at most p 1, and the error is 0.)
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To extend this to N dimensions, let pl,’", p be positive integers and
let {xl, xp} be a set of points of R satisfying the distinctness condition.
For each x and y in RN we define

W(x, y) W(x, y; Xl Xp) Hj__--I W(x"i, y; xl x,).
If each p is greater than 1, and p 2 means (pl 2, p2 2, pN 2),
then W is of class Cp-2 ia both x aad y. If J is any interval containing
(x,x,...,x,),W(x,y) 0 for y outside of J.
Given any ordered N-tuple p (p, pN) of nonnegative integers,

we define P to be the set of all functions of class C on RN such that Dq,
is bounded for each q =< p, and for each q in we define the norm

sup ([ Dqc,(x) I’q <= P, x in R).
with this norm is a familiar complete normed linear space. For every

closed interval J in R we define to be the set of all q in that vanish
outside of J. This too is a complete normed linear space. If {x, x}
is u set of points of J satisfying the distinctness condition, and each p. is
greater than 1, the mapping which to each x in J assigns the function

Rhr(W(x y; x, x,) y is mppingof J into -. Also, if q p 2,
for ech fixed x in J we have for all y in J

DqW(x, y) (-1)’q’H [Y-q (x Y)
(3)

L(x’; x ..., x) Y_q(x y)].
The x enter only in the Lipschitzian functions Y_q(x y) and
L(x, x, x), which have bounded coefficients, so the mapping from
J into -: is Lipschitzian.
We wish to investigate the growth of W(x, y) as x departs from the origin.

We may assume Xl < x < < x. If N 1, the greatest absolute value
of W(x, y) is assumed for some y in the interval (Xl, x), for if x x x,
then W(x, y) vanishes outside this interval, and otherwise, on the interval
between x and the nearer (say x) of x and x, the function W(x, y) is a
multiple of (x y)- and reaches its maximum absolute value on this interval
at x. In equation (3) the coefficients Y_q(x y) are bounded for
x y x, so the derivative is majorized by a polynomial in x of degree
at most p 1. If N > 1, we apply this to each factor in the definition of
W and find that all derivatives D W(x, y) (q p) are majorized by poly-
nomials of degree at most p 1 in x (j 1, N). Hence there exists
a constant lc such that the norm of (W(x, y)’y in R) in D- does not exceed

k(1 + Ix p1-1) (1 + [XN p-I).

6. A "canonical" antiderivative

The next lemma is related to the theorem of mean value with integral form
of the remainder, which is in fact a limiting case of it.
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LEMMA 3. Let x0, xl x, be distinct points of a closed interval [a, b] in
R1, and let t be an integer such that 1 <= k <= p. If f is of class Ck on [a, b],
(or, more generally, if f is of class C-1 and f(-) is absolutely continuous on
[a, b]), then

A(X0, Xl, xp)f [i(x0, x x,) Y( y)]f()(y) dy.

As observed in the previous section, the integrand vanishes for all y not
in [a, b]. By repeated integration by parts,

fb A(xo, x) Y( y)f(k)(y) dy

A(Xo, x,)Y( y)f’(y) dy

A(xo x,,) f’(y) dy

A(X0, x)[f() f(a)]
=/(xo, ..., x)f()

THEOREM 4. Let f be continuous on RN. Let p, p be positive in-
tegers, and let the set of points {x, ..., xp} satisfy the distinctness condition.
Then there exists a unique function F on Rv which satisfies D’F f and vanishes
on the hyperplanes

X X 21X Xl Xpl X X Xp2
N N N N

X Xl X XpN.

This F is continuous and is determined by the formula

F(x) f W(x, y; xl, ..., x)f(y) dy

,y ;x,...,xv)
.f(y, "", yN) dx dyer.

First consider the case N 1, and omit the superfix 1 on x, etc. Let G
be any continuous function such that D’G(x) f(x) for example, G may be
obtained by p-fold integration from some point c. Let be a polynomial of
degree less than p which coincides with G at x, x, and let F G .
Then F is continuous and vanishes at xl, x, and DF D’G f. By
Lemma 3 and equation (1), if x x, x,

F(x) (x xl).. .(x x)A(x, x, "", x)F

I W(x,y;x, "",x)DF(y)dy.
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By continuity F(x) is equal to this integral for all x. For N > 1 we apply
this to the coordinates successively; the function F defined by (4) satisfies
DPF f. To prove uniqueness, note that if F1 and F. both have the re-
quired properties, then for F F1 F2 we have DPF O. By Corollary l,
F vanishes identically, and F1 F2.
COnOLLARY 3. Let J be an intersection of half spaces in RN; let f be con-

tinuous on J; let pl, pN be positive integers, and let {xl, x} be a
set of points in J that satisfies the distinctness condition. Then there exists a
unique function F on J which satisfies D’F f and vanishes on the intersection
of J with the hyperplanes listed in Theorem 4. This F is continuous, and is
determined by equation (4).

For each x in J, let J be the smallest closed interval containing the set
{x, xl, x }. There is a function fl continuous on RN and coinciding with
f on J. We apply Theorem 4 to

Theorem 4 has an analogue in which f is assumed only to be summable
over every interval, but in order to state this theorem it is convenient to
introduce a definition. A function F on RN is of class AC(1’’’’’1) (where the
superscript is an N-tuple of l’s) provided that it is continuous, and there is
a function f on RN summable over every interval in RN such that whenever
a < b (j 1, ..., N), the equation

bl

A(a, b)f f f(x) (b a

holds. (The integral is an N-tuple integral.) In this case F is said to be
an indefinite N-tuple integral of f. If N 1, f is AC(1) if and only if it is
absolutely continuous on every interval. By use of the Radon-Nikodym
theorem it can be shown that a continuous function F is AC(1’’’’’1) if and
only if the associated interval function AF(J), defined for each interval
J--{x’a =< x _< b1,...,aN =< xN =< bN} to be II._(b- a)A(a,b)F,
has the following property: to each interval J* and each positive there
corresponds a positive ti such that if J,..., Jk are subintervals of J*
whose interiors are disjoint, and whose total volume is less thaa , then
’=IAF(J)I < e. It is also easy to see that if F is the indefinite
N-tuple integral of f, then for almost all x

0__ 0 AF(a, x) f(x)
Ox Ox

the equation remaining valid if the order of the differentiation in the left
member is permuted in any way.

If pl, p are positive integers, a function F on RN is of class AC(-1)

if it is of class C(-1) and the partial derivative D-IF is of class AC
If pl, p are positive integers and f is a function summable over

every interval in RN, a function F will be called an ACp-1 solution of the equation

(5) D’F(x) f(x)
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provided that F is of class AC-1 and D-IF is an indefinite N-tuple inte-
gral of f.
We now state our extension of Theorem 4.

THEOREM 5. Let f be Lebesgue-measurable on R51 and summable over every
interval in RN. Let p p be positive integers and xl x a set of
points in R satisfying the distinctness condition. Then there is a unique
AC1 solution F of equation (5) which vanishes on the hyperplanes

X Xl X, 2pl X Xl X XpN.

This solution is determined by equation (4).

To prove uniqueness, let F and F both satisfy the requirements of the
aN < xN < b} weconclusion. For every interval {x a < x < b1,

then have
N

D-F f f(x) dx / II (b a),A(a, b)D-F1 A(a, bj
N /

so /(a, b)D’-[F F] 0. This is still true if we relax the condition
a < b (j 1, N) and ask only that {a, b} satisfy the distinctness con-
dition, since interchange of a and b leaves the divided difference unchanged.
Suppose first that p (1, 1). We choose a xl and recall that F F.

and findthat if {xl, b}vanishes on the hyperplanes x x, x xl
satisfies the distinctness condition, then F(b) F(b) 0. If {x, b}
does not satisfy the distinctness condition, then b is on one of the listed hypero
planes, soFa(b) F.(b) 0. Thus ifp (1,..., 1),wehaveF-- F.
Second, suppose that at least two of the numbers pl, pN are greater
than 1. Since F1 and F vanish on the hyperplanes named in the theorem,
Dp-I[F F.] vanishes on each of the hyperplanes. As before, we find that
D-[F1 F] vanishes identically. By Corollary 1, F F vanishes identi-
cally. This leaves only the case in which exactly one of the numbers
p, p exceeds 1, say p 1, p. p 1. Then the operator
D- is O-/(Ox)’-, and so D-[F F] vanishes on the hyperplanes
x x, xN xl. If {x, x} satisfies the distinctness condition,

0 A(x, x)D-[FI F],
whence

0 D-[F F:](x, c51) D-I[F F](x, x, x51).
So for fixed x, x51 the function F F is a polynomial in x of degree
at most pl 1. Since it vanishes at x, x, it is identically zero, and
the proof of uniqueness is complete.

Since f is summable over every interval, there exists a sequence f, f.,
of functions continuous on R51 and having

f,,(x) f(x) dx 0
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for every interval J in RN. (The integral is an N-tuple Lebesgue integral.)
Define F by equation (4), and define Fn to be the function obtained by sub-
stituting fn for f in the right member of (4). Suppose now that ql, q
are nonnegative integers such that q. < p (j 1, N). By standard
convergence theorems we can prove that DqF can be computed from (4) by
differentiating with respect to x under the integral sign; thus

DqF(x) f DqW(x, y; xl, ..., x,)f(y) dy,

where the differentiation in the integrand is with respect to the variables
Nx, x A similar equation holds with F, f in place of F, f respec-

tively. If J* is any interval contMning the set {x, x }, whenever x is
in J* the function DqW(x, y; x, Xp) vanishes for all x outside J*, and
for y in J* it is bounded uniformly for M1 x in J*. From this and the choice
of the fn we find

lim DqF(x) DqF(x),

the convergence being uniform on every interval in R. This implies that
DqF is continuous whenever 0 q p, j 1, N.

a < x < b}. SinceNow let J be an interval {x a < x < b,
DPFn is everywhere equal to the continuous function fn, we hve readily

N

(a, D)Dp-IFn LI Ly fn(x)dx]l n(b’-
By virtue of the limit relation for the DqF this implies

N

b)Dp-IF LI n(b

so D-IF is an indefinite N-tuple integral of f. That is, the function defined
by (4) is an AC- solution of equation (5).

In contrast with Theorem 4, the requirements that F be continuous, vanish
on the specified hyperplanes, and satisfy DF f almost everywhere are
insufficient to determine F uniquely, even if N and p are both 1. For there
are infinitely many continuous functions (f()" - < z < such that
f(0) 0 and Df() 0 Mmost everywhere.
As an indication of a type of use of Theorem 4, suppose that f, f, is a

sequence of continuous functions on an interval J such that for some
(pl, p), there exists a uniformly convergent sequence G, G,
such that DG f. For j 1,..., N, choose distinct numbers

and define for x in JX31 XPi

F,,(x) f W(x, y;

Then D’Fn fi,, so by Theorem 1, h(x0,
cally. By equation (1), applied to F.

", x,)A(y) dy.

x,)[F G,] vanishes identi-
G, we find that the F are also
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uniformly convergent on J. Hence if on J any uniformly convergent se-
quence with DG, fn exists, our sequence F1, F2, has this property.

7. The fundamental lemma of the Calculus of Variations

In establishing our form of the fundamental lemma of the Calculus of
Variations we shall need some elementary remarks on approximation of
Lebesgue-summble functions. Let 1 be a nonnegative function of class
C on RN that vanishes outside the sphere of radius 1 about the origin and
stisfies

l(x) dx

and let M be the maximum value of i. For each positive integer n we
define

n(X) n(nX) (X );
its maximum value is nM.
Now let f be defined on R and summable over every bounded measurable

set. For each x in R we define

f (x u)f(u) du.f(x) f(x)

The integral obviously exists, and it is easy to show that f is of class C
on R.

It is well known that for almost all x (and in particular for each point of
continuity of f), if S is the sphere of radius r and center x, then

Since vol S is c r, where c depends only on ghe dimensionaligy N of ghe

space, we find

N n(X y)f(y) dy f(x) N f(y) f(x) [n(X y)dy

/

so that limn+, f(x) f(x) except on the set of mesure 0 on which (6)
fils to hold.
The next theorem is form of the fundamental lemm of the Clculus of

Vritions.

THEOREM 6. Let J be a closed interval [a, b] in R, and let f be summable
over J. Assume that there exist positive integers p p such that for every
ordered N-tuple ( ) of infinitely differentiable functions of one tariable
with the property that for each j in [1, N}, vanishes on neighborhoods of
a and of b, it is true that

N

:f, fa" [D",(8’)]’" "[D’",(e)]f(8, ") d8 dS"= O.
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Then there exists a pseudopolynomial of degrees less than pl pN that co-
incides with f at almost all points of J; if f is continuous on J, this pseudopoly-
nomial coincides with f on all of J.

Proof. Let be a positive number less than the least of the numbers
(b a)/2 (j 1, N), and for each j in 1, N} let be a function
of class C on R that vanishes outside the interval (a - e, b ). Extend
f to all R by assigning it the value 0 outside J. If y, y are numbers
of absolute value less than , for each j the function

((x- y):- < x < )
is of class C and vanishes near a and near b, so by hypothesis... [DPlI(I yl)]., .[DpNN(N yN)]f(l, ..., )dl dN= 0.

yN yjIf n> 1/e,(--y,.. =0if any] is as great as , so the product
of n(--Y, y by the left member of the above equation vanishes

,’",--y )[D’(- y)]...[D’( y)]

f(,..., ) d... d dy... dy O.

The integrand is 0 except on a bounded subset of R X Ru. We change
variables of integrationfrom (, y) to(, y), where - y (j 1, ,N),
and perform the integration with respect to the ; in view of the definition of
f, this gives us

N[D’()] ...[D()]f.(v, ., )d d 0.

Integration by parts p times with respect to (j 1, N) yields

(7) ()...(y)D ,(, .-., d dn 0.

If there were a point x* in the interval

J {x’a-t" e <= x <= b- e, j 1,..., N}

D , would remain nonzero and of one sign onat which D’f,(x*) were not 0,
some open interval I {x’a < x < , j 1, ..., N} contained in J.
By choosing . to be of class C=, zero outside the interval (a,/) and positive

D f vanishesinside it, we would obtain a contradiction to (7) Hence
everywhere in Je whenever n > 1/. If J0 is any closed interval interior
to J, it is contained in J for some small positive e. Then except for finitely
many n, D n vanishes on J0, and by Corollary 1, f is a pseudopolynomial
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of degrees less than p, p on J0 By Theorem 3, f is equivalent to a
pseudopolynomial on J. If f is continuous on J, so that (6) holds everywhere
in J, by Theorem 3, f is a pseudopolynomial of degrees less than p, p
on the interior of J. By (1) with A(x0, x,)f 0 we express f as a
pseudopolynomial of degrees less than p, p interior to J; by con-
tinuity this remains valid on the boundary of J.

8. Weak solutions

Let no be a positive integer, and for each N-tuple p such that Pl -< no
let a be a real number. Then

Af ll_<_n0aDf
is a linear differential operator. Following Bochner, if n >- no, a function

f on an open set D in RN is a weak solution of class C of the equation Af 0
on D if it is Lebesgue-summable over every compact subset of D, and if for
each x0 in D there exist a neighborhood U of x0 and a sequence fl, f2, of
functions, of class C" on U and satisfying Af 0 on U, such that, for every
function h bounded and measurable in U,

lim f f(x),(x) dx f f(x)C,,(x) dx.(8)
u ,u

We here consider only the very special operator D, where p is un N-tuple
of positive integers. For this we can find the form of all weak solutions of
the differential equation D’f O.

THEOREM 7. Let D be an open set in R, and let p be an N-tuple of positive
integers. The following statements are equivalent"

For some q such that q >= p, f is a weak solution of class Cq of the equa-
tion D’f 0 on D.

(ii) f is a weal solution of class C of Df 0 on D.
(iii) Each point Xo of D has a neighborhood U in D such that f coincides

almost everywhere in U with a pseudopolynomial of degrees less than
pl, ,pN.

Obviously (ii) implies (i). Suppose (i) true, and let x0 be a point of D.
By hypothesis, there are a neighborhood U of x0 and a sequence fl, f, of
functions of class Cq on U such that Dfk 0 on U (] 1, 2, and (8)
holds whenever b vanishes outside U and is of class C. Let J be a closed
interval contained in U and having x0 as interior point. If is of class C
and vanishes with all its derivatives on the boundary of J, by integration
by parts

ff(x)D’(x)dx 1)’"f D’fk(x)b(z) dx 0 (k 1, 2, ...).
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Since (8) holds with D in place of ,
f(x)DC,,(x) dx 0

whenever is of class C and vanishes with all its derivatives on the boundary
of J. By Theorem 6, f coincides almost everywhere on J with a pseudo-
polynomial of degrees less than pl, pN. Hence (i) implies (iii).
Assume finally that (iii) holds. Let x0 be any point of D and U a neigh-

borhood of x0 on which f coincides almost everywhere with a pseudopoly-
nomial g of degrees less than pl, ..., pN. We may assume that U is an
open interval. Let J be a closed interval contained in U, and let be the
distance from J to the complement of U. With the function of the pre-
ceding section we define f . f, that is

f(x) fv (y)f(x- y)dy= fv ((y)g(x y) dy,

for all x in J and all ]c greater than 1/e. By Lemma 1 and Theorem 2, if
{x0, x} is a set of points in J satisfying the distinctness condition
then

A(xo, ..., x,)f f i(y)A(Xo, -.., x,)g( y) dy O.

Now equation (1) exhibits f(xo) as a pseudopolynomial of degrees less than
N Cp,..-, p and with all coefficients f(xl ., xq) of class in

(x x) Hence the differentiation operator D can be applied to f
yielding D )’k 0. It remains to show that (8) holds for every function
bounded and measurable on J. We shall prove more than this; we shall
prove that fk tends to f in the norm of L over J. By definition of f,

If (x) f(x) dx (x y)f(y) dy f(x) dx,

To simplify notation we assume that f vanishes outside U; any of the integrals
can be written as an integral over the whole space, but the integrands vanish
outside some bounded set. We change the variable of integration from
(x, y) to (t, y), where x y, y y; this yields

But f If(Y) f(Y - t) dy is a continuous function of which vanishes at



CANONICAL FORM FOR ANTIDERIVATIYES 351

0, so the right member of the last inequality approaches zero as k in-
creases. This completes the proof.
From the proof it is apparent that when we are dealing with the equation

D’f O, it makes no difference if we change the definition of weak solution
by asking only that (8) hold for functions b of class C, or by making the

apparently stronger requirement that I f. f dx shall converge to zero.
u

UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE VIRGINIA


