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1. Introduction

It is known that a normal quaternion matrix (and hence a unitary qua-
ternion matrix) is unitarily similar to a diagonal matrix with complex elements
[2]. It is also known that a quaternion matrix is unitarily equivalent to a
diagonal matrix with nonnegative real elements [4]. Also, the transpose of
a unitary quaternion matrix is not necessarily unitary; a necessary and suffi-
cient condition that the transpose, Vr, of a unitary quaternion matrix V be
unitary is that there exist real orthogonal matrices U and W such that UVW
D is a diagonal quaternion matrix [5].

In the present work two theorems are obtained concerning the structure
of unitary and orthogonal quaternion matrices, respectively. An orthogonal
quaternion matrix, P, is defined to be a matrix such that ppr I (= prp),
where pr denotes the transpose of P. In each ease the essential "quaternion
character" of the matrix is clearly revealed by the form obtained; and in the
unitary case the form obtained gives more meaning to the above quoted
theorem concerning the transpose of a unitary matrix.

2. The structure of a unitary matrix

The following theorem will be obtained:

THEOREM 1. Every qualernion unitary matrix P can be written in the form
P UDW, where U and W are complex unitary matrices and D is a quaternion
diagonal unitary matrix; conversely, every matrix of this form is a quaternion
unitary matrix.

Let P P1 jP. (where P1 and P. have complex elements) be unitary
quaternion matrix. Then, since ppCr I pCrp (per pr 3P" r

denotes the quaternion-coniugate transpose of P), the following hold:

PlPr + pp I PrPl + prp.,
ppr c r r rPIP. 0 PP.-- PP1.

By a known theorem [1] for the complex matrix P there exist two complex
unitary matrices U and W such that Ux P1 W D is a real diagonal matrix
with nonnegative elements along the diagonal. There is no loss in generality
in assuming that like diagonal elements are arranged together so that
D Dx @ D. @ - D where D c I where c is nonnegtive and real,
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where c c if i j, and where ck 0 if zeros are present on the diagonal.
From P2 P P1 P2 and P1 P2 P2 P there follow

U1 P2 W1 W P2 Ur,
T T T TWP UVl P2W WP2 UrUP

Set U P. W1 M; then the above become MD DMr and DM MrD.
Therefore MD MDD DMrD DDM D2M, so that since
D= D 4 D 4"" 4 D, it follows that M M 4 M2 4"" 4 Mk,
where M has the same order as D. Because of the nature of D, it follows

Cthat MD DM where U(P -F jP.)W UI PI W -F 3 U1P. W D -F jM.
Since MD DMr, M(c I) (c I)M so that Ms M" for i 1, 2,

k 1 where each M is a complex matrix. Also, from the above
c r D -ac- I,V(PPr + P2 P2 VT MCMr

CT D MCrMWT(pTp1 + P2 P2)Wl

so that MCrM I D MCMr is a real diagonal matrix and hence sym-
metric. Therefore MCrM MCMr (MCMr)r MMCr, and so MrMi
MMr for i 1, 2,..., k 1, k, where MrMk I. Therefore, for
i 1, 2, k 1, M is a complex, normal, and symmetric matrix such that
MMr I c I.

Let A A- iB be a complex matrix with these properties (where A and B
are real matrices). Then A -4- iB A A- iB implies that A A v and
B B. Since

(A + iB)(A r iB) (A + iB)(A iB)

A +B2+i(BA AB) (1 c:)I
is a real scalar matrix, AB BA. Two commutative real symmetric matrices
can be diagonalized by the same real orthogonal matrix S, and so

S(A + iB)Sr Da + iD

where De and D are real diagonal matrices. Therefore, for M, i 1, 2,
k 1, there exists a real orthogonal S such that SM S" D is complex
diagonal. Since M is unitary and since D 0, there exists a complex uni-
tary matrix S. such that SkM Sr D is complex diagonal. Form

& 4 & 4-... 4 4
&-i 4- &

V and V,. are complex unitary matrices tuch that V, U,(P, -4- jP,.)W, V2
V,(D q-jM)V,. D q- VjMV2 D -f- jD’, where D’ D 4- D’,. 4- 4-
D’ is complex diagonal, and V, U, and W, V= are complex unitary matrices.

It should be noted that in the above if P 0, then U, P, W D I
(and P is complex unitary), so that the above is essentially concerned with
the case where P2 0. The converse follows immediately.
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3. The structure of an orthogonal matrix
For this case the following holds"

THEORE 2. Every orthogonal quaternion matrix P can be written in the
form U(I - C)W where U and W are real orthogonal matrices, where I is an
identity matrix, and where C is a direct sum of 2 X 2 matrices of the form

where b is real and nonzero and q is a nonzero quaternion of the form
ai q- aj q- aij

where a a and a are real, and q + b 1; conversely, eery matrix of this
form is a quaternion orthogonal matrix.

Let P P + jP be n orthogonl quaternion mtrix so tMt

(P + jP) (P +2P) I (P +3 ) (P + jP),

where P and P re complex mtrices. As result,

pp c rPP I PP- prp,
T TPP + PP 0 prPP P.

Let P T iT where the T re rel mtrices.
Since c rPP PP I, c rPP is complex mtrix which is hermitin nd

PP is rel mtrix.symmetric so that c r

C T TPP (T- iTs)(T[ + T) T T[ + TT[ + i(T T[ Tr[)
is rel nd so T T Te T 0 Since pC T TT TT.P2 is Iso rel,

Consider P first. According to the bove-mentioned result due to Eckert
nd Young [i] if U is unitary mtrix which digonlizes AAcr (where ll
mtrices re complex), there exists unitary mtrix V such that UAV D
is digonl mtrix with nonnegtive rel elements. If A is itself rel, U nd
V my be tken to be rel orthogon]. (U cn be rel since AAT is rel sym-
metric;if V V + iVe ndif UAV D, then UA DV[ iDV so
DV[ 0, nd if the first r digonl elements of D re not zero while the lst
n r digonl elements re zero, only the lst n r rows of V[ my be non-
zero so that the first r rows of VcT re rel. Using these rows s the first r
rows, new rel orthogonl mtrix W cn be constructed so that UA DW.)
Let U nd W be rel orthogonl mtrices such that

UTW D cI cI ... cI
where c re rel, c ci for i j nd c 0 if zero ppers
on the digonl. From the relations bove involving T nd T it
follows that UT rUWW T UT WWrT[U nd WrT[UrUT W

T TW T UrUT W or, if UT W M, MD DM nd MrD DM. As
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before, this means MD DM and also MD1 DIM where UP,. W
M+iD1. Again, as before, ifM M1 q-M24- 4-Mk,M=Mfor
i 1, 2, .-., k 1. Let U be a real orthogonal matrix which diagonalizes
M, i 1, 2, ..-, h- 1, and let Uk and U be real orthogonal matrices
such that UM U is diagonal with nonnegative real elements. Let

4 4-.-. q- 4-
4- 4 q- U,_ +

Then V1 UP2 WV. VI(M + iD1)V V1MV + iD1 D + iD1 where
V1 U and WV2 are real orthogonl matrices and D D + iD1 is a complex
diagonal matrix.

If d nd d. are two diagonal elements of D such that d d,
then (d d)(d + d.) 0 and either d di or d d. If d nd
d appear in D, any of the latter can be changed into d by multiplying D

(on the right, say) by (real orthogonM) diagonal matrix with + 1 and -1
properly placed along the diagonal. Also, like diagonal elements may be
grouped together so there exist real orthogonM matrices V and V such that
VPV D d111 dI. 4- d,I,, d complex, d # difor i # j,
d # d for i # j, and d 0 if present.
Next consider P1. From the relations P2P PlcPr and prp1

TT-TD’ TT,Tprp. there follow VP V4 -1 V3PV4 V4rPrV and
T T T ’ CT rV3 V3 V4 P1 VP V4.V4P P1 V V

LetVP1V N;thenDNr NCD andDN NCrD. From the
former ND DNor and so D’N DDN DNCrD ND. There-
foreN N1 4- N. 4- 4- N, whereNhas the same order asI from
the nature olD andD,sothatDN ND. Since P1P PP I

P P2, V3 P1 V -1 , V P,. V ,,. I and

T T T T CT TVPVP1 VV P1 V V V,P V I

orNNr DCD I and NrN DCrD I and so NNr NrN I +
DCD is a real diagonal matrix (and N and P1 are therefore always nonsingular,
incidentally) For i 1, 2, t, NN""’, NN I + d3I r
where r is a positive reM number. From this relation it follows that if
N A + iBm, where A and B are real, the matrix coefficient of i in the
products NN" and r Br r BANNardzerosothatA BA and
ABfori 1,2, ,t. Note Msothat A.A" BB ArA BBr
diagonal matrix with positive reM elements along the diagonM.
Consider the two cases"

(a) N, for i 1, 2, 1, is such thatdIN NrdI (since
TDN NCrD) sothatN Nr A + iB (Ar B) from

which Ai A and B B". In this case (dropping subscripts
momentarily) AB BA. If R is a real orthogonM matrix such that RBR
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bl I - b2 I. 27 - b8 18, b real, b bj for i j, and b8 0 (if zeros are
present along the diagonal), then RARr A1 27 A2 A8 where A
and 14 are of the same order. For each A there exists (see [3], Theorem 9.27,
for example) a real orthogonal matrix S such that SA S" is a direct sum of
zero elements and 2 X 2 matrices of the form

(i)
-b 0

where b is real. If S S + S. + $8, then Q SR is a real orthog-
onal matrix such that Q(A iB)Qr S. A. S - $8 A,, St, iRBRr.
For each N there exists such a real orthogonal matrix Q, i 1, 2,

1. (It will be seen below that each SA here must be a direct sum of
2 2 matrices of the form (i).)

NN. NN I and, asabove, AB B,Ar(b) N is such that
and rB At At Bt. As before, it can be shown that there exist real
orthogonal matrices W and W. such that W. B W h. I.
h,I,, h real, h h. for i
CC CwhereC= -Cfori= 1,2,..-,p-landCisreal
where Cz,C, I. Cz, is then real orthogonally equivalent to an identity
matrix, and each C for i p can be brought under a real orthogonal simi-
larity transformation into a direct sum of 2 X 2 matrices of type (i) and zero
elements. There exist, then, real orthogonal matrices Qt and Q such that
Qt Nt Q D, + iDa, where D is real and diagonal and D is a direct sum of
matrices of form (i), of zero elements, and of + l’s.
Now V(P. + jP)V, N + jD. Set

V5 Q 4 Q 4 - Qt-1 - Qt,

V6 Q - Q - Qr-1 27 Q

then V5 V(P + jP:)V4 V6 Z + jD where V Va and V4 V are real orthogo-
nal matrices, D is complex diagonal, and Z is a direct sum of 2 X 2 matrices
of the form

ai b
(ii)

--b ai

(where a and b are real), of + l’s, and of elements ci, c real. But the ltter
cannotapper. ForNNr I + DCD and VNNrV ZZr I+ DCD
which would mean that (ci) c 1 + 3d, which is not possible. The
diagonal elements of D which correspond to any matrix (ii) are alike and the
form as described in the theorem is now obtainable. If P is real, the form
obtained is the identity matrix I. If P is complex, the form is a direct sum
of +l’s and matrices of the form (ii).
The converse follows immediately.
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