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RIESZ TRANSFORMS ASSOCIATED TO BESSEL
OPERATORS

MICHAEL VILLANI

ABSTRACT. For v > 0, we consider the Bessel operator S, defined
2

on L*(R*, 2% dx) by S, = —% — i—”%. We prove, in a simple

way, that the Riesz transform associated to S, is bounded on

LP(RY, 2% dzx), 1 < p < oo, with a constant only depending on p.

We also give a weighted version and estimate the constant.

1. Introduction

1.1. Motivation: the classical case. Let A, be the standard Laplacian
n — o?

defined on R by An = 72-] Txf

Then we have the classical result (see [8, Theorem 3]) for the associated Riesz

transforms R; := ainA;lm, (1<j<n):

THEOREM 1. For every p €]|1;00], there exists a constant Cp, >0 only de-
pending on p, such that

1/2
Ml amganay < H (Z IRj(f)|2>
J

< Cpllfllzr@n,ax)-

Lr(R™,dX)
The restriction of A, to radial functions (ic., f(X)= f((3X?)1/?) =
f(@), is
> n-14d
dax? x dx

(1) Sp=—

and Theorem 1 becomes:
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COROLLARY 2. For every p €]1;00], there exists a constant C), >0, such
that

U it ) < H— “172(p) < Ol i anr am).

Lr(Rt,zn—1dz)

¢ Dx AT XHY? Xy

Indeed, noting that g5 = ==53~— = =%, we get
J J

Z|Rj(f) =

2

0

/
o A7)

—Z 2

_‘d

/
. dw V)]

2

-1/
SsA(p)

1.2. Bessel operators S,. Now we do not assume n to be an integer. More
precisely, for v > 0, we define

&2 2u d
Syifro i f - LS,
dx

T dx

Then S, = D*D where D* is the adjoint operator of D = -~ in L?(RT, 2% dx).
Our aim is to show in a simple way that Corollary 2 extendb to operator S,.
From now on, we define the measure dv(x):=z?"dx.

We consider R, := DS, Y2 the Riesz transform associated to S,, which
verifies R} R, = Id on L*(RT, dv(z)).

1.3. Results. Our two main results are the following theorems.

THEOREM 3. For every p €|1;00[, there exists a constant K, >0 only
depending on p, such that, for v >0,

K Fll oo daviay) < IR (P)llLe @+ av(a)) < Kpll Fll Lo @+ doa))-

THEOREM 4. Let p €]1;00[ and v >0, then for a €] —2v; 2v(p —1)], there
s a constant K, , o >0 such that:

K ol flle@t oo av@)) < I1Rw(F)llr @+ 20 av(e)) < Kpwal Flle@+ oo due))-

These results are due to Muckenhoupt and Stein (see [5]) with a non-
explicit constant. Indeed, their definition of the conjugate function (using
harmonic extensions) coincides in L? with the definition of R,. However, the
proof offered here is simpler and proves the independence of constants on the
parameter v. This proof is based on a method due to Pisier (see [6]), using
transference of the Hilbert transform on R.
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Here, the idea is that R, (f) = %% J5" exp(—t28,)(f)dt appears as the
restriction to radial functions on R? of an operator defined for F € S(R?) by
F s 5% Jo (JJEY)¢u (Y — ) dY)dt (see (13)).

In our setting, we do not need Muckenhoupt’s weight’s theory.

REMARK 1. Theorem 4 implies a result of [1] given in part 5, related to

Q. d? viu
Sy i=—gm + 7

We can give a quantitative version of Theorem 4.

PROPOSITION 5. Let p €|1;00[ and a € R, then with the notation of The-
orem 4,

(i) if <0,
Ky~ Lo [y, v— o0,
(i) If a>0,
Ky~ 2 (V) [ HA e, v — 0,
2. Preliminaries
2.1. Notation. If X = (Xj,...,X,) € R", then we denote z := (3 X7)"/2.

2.2. Constants. We define two normalization constants:

o o 1
(2) I, = / e_y2/4y2” dy = / 6_8(48)11_%2(18 =2%7 (1/ + 5),
0 0

Ccy ::/ (sin@)?* ' df.
0
2.3. Riesz transforms. We express R, by the formula:

Q RAN@) = =1 [ exp(-28,) (@)t

2.4. Hilbert transform. Let ¢ € LP(R), we define

Hp(s) := p-v%/mw(s—t)—,

t

1 dt
H —— )=
=o(s) W/€<|t<;s0(s )t,

H*p(s) == sup | H.(s)|.
e>0
Then (see, for example, [3]):

PROPOSITION 6. (i) Vp €]1;00[, H is a bounded operator on LP(R).
(ii) Vp €]l;00[, there is a constant C, > 0 such that:

I H*pllLem) < CpllollLrm) Vo € LP(R).
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We denote || Hl||p—p := || Hl| Lo (r)—Lr(R)-

2.5. Although we will not use this result, we give an inspiring expression of
exp(—t25,,) [see (21) part 6]. The usual heat kernel on R™ has a well-known
expression giving for f € S(RT),

exp(—t%S,) C/ / f(|lz — yte|)e - (sin®)" 25"t df ds,

in such a way that the right-hand side equals 1 when f=1.

Proof. Making successively (for Y € R" and y = |Y|) the changes of vari-
ables:

(%) Y =yY',  dY =y" ldydo(Y')
X - - ~

(k) Y' = COSQ; +sinfY, where |Y|=1 and (X,Y)=

whence do(Y') = (sin0)"2d0 do(Y) and | X — yY’| = |z — ye'|
Y

4k -y

(**%) S=7
we get

exp(~128,)(f)() = CFOX = vDe i ay

1
@/
(Mrt)" / /g IRIC )

73,2

x ey Ldydo(Y') (%)

:W/m/oﬂ/snzf('x_yew')

><e*ziy?y"_l(sinﬁ)”_2dU(N)dady (%)
VOl S 2 7,0
o 2\/_t /w/f'z_ye D

X e_mynfl(sin 0)" 2 df dy
Vol ST 2 i0
— e | [ fte =)

X e_'Ty"_l(sinQ)”_2 dody (***). O

3. Tools for the proof
Eigenvectors of S,. Let T be the bounded function defined on R by

Ju—1/2($)

T(z):=2Z, e yoa
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where J,,_1 is a Bessel function and Z, a constant such that T(0)=1. Then T
has the followmg properties (see [2, pages 27-29, 35] and [7, pages 34-37]):

VEeRT
(9) @ T(Ex) =Te(z) is an eigenvector of S, for the eigenvalue &2,

" ilwﬂwedeﬁeﬁ
(1) E@ﬂﬂw—é;[}HzWMMmmblw.

4. Proof of Theorem 3
4.1.
Proof. Let f € S(RT).
Step 1: expression of exp(—t2S,)(f). Let x >0, y >0 and 6 € [0;7].
Let (X) be the change of variable defined by X = (z,0) and Y = (Y1,Y3) =
(ycosf,ysinf), so that |z —ey| =|X - Y.

By (9), the kernel pi;’) of exp(—t2S,) w.r. to dv can be expressed by (see
[4, page 1335]):
22V+1

(12 P =2 [ L)
So, taking F(X) = f(|X]) and T5(X) =Ts(| X]), we get
(13) exp(—t*S,)(f)(x)

= [ 1ol vty

:%/w /Oo F)e " Ty(x) Tu(y) du(s)dv(y) by (12)
22V+1
_ / / /(f Je T (e — y))
(31110 V2=tdhdy(s)dv(y) by (11)
221/+1
- / / (X =YY  du(s)dY by (N)
RxR+

- / (ﬂe“
Cl/ ! II/ RxR+

1 |X/f v |2 2 1
= F(tY)e™ YT dY
CI/ ) IIJ /]R><R+ ( )

=lgy by (10)

F(tY)é, (Y - %) dy,

RxR+
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Iv12/ay2v—1

where ¢, (Y)dY = Cily dY7 dY3 is a probability measure.
Step 2: expression of R,.

(14) @Rym(x)

=< / exp(—125,)(f)(x)dt by (3)

3X1/0 [/RW F(tY) ¢, (Y— 5) dY] dt by (13)

_ ain /O - [ /R PX—Y)6,(7) dY] dt (+)(see below)

[ oc-mmmala geses

lim IUR 6—F(X—tY)¢V(Y) dY} dt (feSRY)

e—0t+ /. <R+ 6X1

. g OF dt
— lim / URW@—YI(X"”)WY)CZY]?
. ol dt
=1 F(X -ty Y
ot U X =)y, (4 ]t

o dt 06, .
= lim /RXR+/5 X —tY)— 6Y1( )dY  (Fubini)

e—0+t

=— hm/ / —tY)dta¢U(Y)dY ().
2 e—0" Jrxr+ 5<|t\<1 t oY

Let us verify equalities (*) and (xx). Noting that F is even w.r. to the

second coordinate, ¢, is even w.r. to the first one and then g‘f/’l’ is odd w.r. to

the first one, the change of variable Y = (Y1,Ys) —— W = (§ — Y1,Y5) gives

/O; /OOO F(tY)d, <Y _ %) dYs dv;
/O; /OOOF(tyl,ty;)%(% Yl,Y2> dYs dY,
:/_Z /OOOF(X—tW)qbZ,(W)dW

and the change of variable (Y1,t) — (=Y1,—t) gives

+oo dt a¢>,, : dt o,
X —tY) =222 (V) dY; = X —tY) Y)dy;.
/ / t8Y1 e /m/_a t8Y1() !

1
€
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Step 3: upper bound for |R,(f)(x)|. We denote, for 8 € [0, n]:

dt

(i) HyF(X):=sup /<|t<l F(X - tY)?

e>0

)

0 o dt o1, dt
) sl [ f(lx—te”yl)—‘ sl [ pa— e
e>0]Je<|<2 L] e>olJegp<t t
=Hy f (),
(E) 7p = ”YlHLp(—C_z?Q;M avy)’
2
By definition, ¢, (Y)dY is a probability measure; since %d}ﬁ is also a

—Y22/4Y22u—1

probability measure, so is 2\/7?607] dYs. So, step 2 and Holder in-
equality imply, with % + z% =1,

(1) 2v7[R.(f)(2)]
96,

gz/ﬂwR+ H;;F(X))ay1 (Y)’dY by (14)

- / Hy F(X) Vi (Y) dY
RxR+

< HY1||L,7/(5’Y12/4 avi)
B
o e Y5 /4y 2v—1
X Qﬁ/o Jaryz«“()()xci_;dy2 _visa
g Lp (S5 dY1)

<Y [ Hy F(X) || Lo (g, (v) av)

= Ut G £ @)

= 1 Hg f(@)l] , cimmze-1a0 -

v

Step 4: the method of rotation. Let X,Y € R? and let N € R? be such that:
|IN|=1and (N,Y) = 7, so, denoting |Y'| = y, we get X =z cosf %—i—xsine N,
6 €[0,7] and |X —t%| = |z —te®].

LEMMA 7. Let p €]1;00[. Then (a) for F € S(R?) and fired Y € R?

‘ dt

1
p.v.—/F(X—tY)
™ Jr LP((sinG);:*lde dv(x))

1
:‘p.v.—/F<X—tZ>ﬂ
T Jr y)t

<[ Hllp—p HFHLP(WdV(m)).

Le( (sin 9)62;*1 de dv(z))
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(b) In particular if F is radial (i.e., F(X) = f(x)), we get:

(i) Hpv—/f t’el

< ”HHpﬂPHfHLP(dV(x))
(16) (i) |\H$f(ﬂ7)||Lp(<sine)2:flde aviey < H o=l fll o (i

Lr( (sin e)éifl de dv(z))

Proof. We will use the method of rotation in R? (see, for example, [3]).
Denoting X = zcosf % +xsinf N =s % +w N, noting that x dx df = dwds,
we get

1 Y\ dt
Hp.v.—/F(X—t—)—
T Jr Y t Lp((sin9)2V_1d9 dv(z))
1 Y dt
= Hp.v.—/F((s—t) —l—wN)
™ JR t

Y
= ||||H<pw||Lp(ds)||Lp(wzu51dw) where @, : §— F(sy + wN>

Lp (w2 dw gg)

< [ Hllp—pllowll o (w2rtau o)  (Proposition 6(1))

= WHllp—p - IF p cmorze—ra0 gy ),

If F is radial, then F(X —tY) = f(jx — te"’|) and

HFHLP(W dv(z)) = ”f”LT’(du(z))

if ||1||L1((Sing)2y71d9) is defined, i.e., if and only if v > 0.
(sin0)2v=1 do
Similarly, by using H* and Proposition 6(ii), we prove (16). O

Step 5: conclusion. By steps 3 and 4 (see (16) and (15)),
(17) IR0 ()| Lr(dve)) < Bpll fllLe(du())s

where K, < vy HH*Hp—m@'
Step 6: The lower estimate. As usual, the lower estimate can be deduced
from the upper one by duality. Indeed, since R}, R, = Id, we get

iy = sup { | @R bz du(m}

1l pr (dv(z))

s { [ (@) )

LP (dv(a))

S Kp/”Rl/f”Lp(dy(x)) by Holder and (17) O

lIAll
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4.2.

REMARK 2. Actually, in step 2 we have, dv(zx)-ae.,

x):/OOO/R[p.U./RF( —tY)dt} Z?Z (Y)dY.

We then get K, < w

Proof. Tt suffices to show that we may apply Lebesgue theorem at the end
of step 2 (for almost every x). Hence, it suffices to show that

E(z) = HH;F(X)&ZS” (Y) <oo, dv(x)-ae.
o1 L1(dY)
Since
* + Y +y
z) < ||Hy F(X)e™ e Y2 |\L2 anlle™ o Y1Y2 v

it suffices to show that |Hy F'(X )||L2(Yzz)y,le,(Y12+,,,22)/8 4v)
This in turn follows from step 3 and (16) since

HHYF” Y2V 1
07

v

< 00, du(;v)—ae.

~OPHYH /39y du(z))

= ||1||L2(e*y2/8 dl/(y)) ||H9f||L2((sin9)é:—1 do dl/(:v))

< ||1||L2(e—y2/8 dy(y))||H*||2"2 Il 22 dv(a))- O
5. Weighted norm inequalities

5.1. Theorem 4.

THEOREM. Let p €]1;00[ and v > 0; then for every a € | — 2v;2v(p — 1)|,
there is a constant K, , o >0 such that

K et oo du@)) < IRo(F)lle @+ 20 dv(a)) < Kpwall FllLe @+ oo duo))-
Proof. We will proceed as in the proof of Theorem 3, except for step 3.
VR, (f)(2)]
§/ H{‘/F(X)’a(by (Y)’dY (step 3)
RxR+ 8Yl

=Yl s vz /a avon [|HG £ (2) cos Ol gnorzerany (0 €[0,7])

Cy

< ||y||L1(e—y2/4 delu) [ COSQ(SiHQ)T ||Lp/( (sin0)2 =1 d0 )

v

X | Hp f(2)(sind)? || moyzo—1ae, (Holder)
L (02 =1do,

v

L. —a
<l et 03017 (5100) 51 s

v
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x HHgf(l')(Slne)% HLP( (sin6)2v—1d6

P

. o
= K;l/J,I/70¢ HHgf(l') (Slne) P IlLP( (sin 9)62"’*1 a6

v

.
Let us note that K/ , ., is finite if and only if

v,

L. —a
||| cos 6] 7” (sin ) » ||Lp,((sme>gv—1 a ) < 00,

v

which holds if and only if _an’ +2v—1>—-11ie a<2v(p—1). We then get

2\/E||Ru(f)||L:ﬂ(za du(m))
<K}, H;f(x)(sind) 7 ||

Lo( (siDS)é:*I 0 dv(z))

Cz/+oz/2 % *
= Kzl),u,a ( Oy HHG f(x)”Lp( (sin9)2v—1ta de zo dy(z))

Cota/2

1
Cquoz 2 »
<K ||H*||p—>p77< Cu/ ) I £l e (2 du()) -

Indeed, in the last inequality, we apply Lemma 7 with 2v + « instead of 2v,
which is allowed if and only if C, 1 ¢ is finite i.e., @ > —2v. Theorem 4 follows.
O

REMARK 3. Step (&) is not necessary, but it will allow to estimate easily
the constant K, , o in the next paragraph.

REMARK 4. When « is negative there is a simpler proof which gives a
simpler constant K, , : indeed, modifying step 3 in the proof of Theorem 3

2V Ry ()l v 2o dv(a))
< ’V;D’HHgf(x)HLp((sine)é:—l 99 o () (step 3)
=y ||Hp in 6 5 sin 0)2v—1+o
N6 |y e gy

< 'yp/||Hgf(gc)||Lp((sing)zg_wa 40 o () (because —a positive)

CV+Q % .
<y ||H*pﬂp7r<c_2) I fllr(ze dvz)) (Lemma 7 with 2v + «).

5.2. Application: the operator of [1]. In this article, the operator gy is
defined on L?(R*, dx) by
~ d2 [y
Svim gt T

Let 6, : L>(R*, dz) — L?(R*, dv(x)) be the multiplication by x~. Then
(18) S, =6,'5,0,.

=AA,, where A, =a" {i] V.
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So, Theorem 4 immediately implies the following theorem.

THEOREM 8. Let R, be the Riesz transform associated to §,,, namely R, :=

Al,g,,_l/z. Then for every p €|1;+0c[, there exists a constant K, , >0 such
that

Kl;}u”fHL"(RﬂdI) < Héu(f)HLP(thz) <K, ﬂ/”fHLP(R‘F,dz)-
Proof. Theorem 4 with oo =v(p —2) €] — 2v;2v(p — 1)[ implies
Hél/(f)”LP(RJr,dz) = 2" Ry (z™" f)llLr(m+,dz) Dy (18)
= R (z™" )o@+ wrv dz)
< Kpuup-2)llz7" fllLe @+ zvv da)
= Kpvwp—2) 1|l Lr @+, do)-

The left inequality follows from the right one as in step 6. g

5.3. Another version of Theorem 4. In Theorem 4, v is fixed and the
weight « varies. Taking the converse point of view, we will get Proposition 5.

Proof of Theorem 4. We have to estimate the constants appearing in The-

orem 4.
The Gamma function. For every x,y > 0, let

oo 1
I'(z) ::/ e 't*"tdt and B(x,y) ::/ "1 — )yt at;
0 0

we then have

(19) [(z+1)=al(x), F(w—l—%) ~+zl(z), x— 00
(20) Blaw) = 1. r(%) — /&

Computation of C,.
(o :/ (sin)*~*do
0

1
:2/ (1—u*)""'du (u=-cosh)
0

_ (L)) _tOrM _ varw) [z N
_B( ) v+3) T+1d) \/; by (19) and (20).



88 M. VILLANI

FEstimations.
. 1 o0 o .
(1) ||y||L1(efy2/4 dll,(y)) = _/ e Y /4y2 +1 dy
- _/ e s ds (s=y/4)

_ 2w+ LT+1)
I, S Tw+1)

by (19) and (20).

L. —a p’
H|COSQ\P (sinf)» HLP,((Sing)éifldg)
1 " : 7ap—/+21/71
=& |cosf|(sinf)~*» de
v Jo

P
:—/ w2y (u=sin#f)

21
C, p_T“l + 2v
(ili) Kpu,a

1. —a
= Hy||L1(e—y2/47d"Iij>)|||COS@W (sinf)» ||Lp'(<sine>éiflde)

ﬁ Cu+a/2 v
2 C,

X [ H|p—p

1
14

:2p/ % H* ~ p’
VA=) (7o
(i) and (i)

~ 29 () ¥ | H¥|p—pr®, v—o0 by (19) and (20).

NG

. ~ CV+3 v
) Ry = G, ()

~ g%/ |H*|p—p, v—o0 (by the estimation of C,). O

6. One last remark

It can be useful to see (e‘t2S“)t>0 as the compression of a one parameter
group of isometries of an LP space, more precisely: using the change of variable
Y +— W as in step 2, (13) can be rewritten as
(21)

exp(—128,)(f) () = Cf, T / ) / " fllz — teyl)e % (sin0)* 1 dodv(y).
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Noting that |(X; —ty, Xo)| = |z — te?y|, we have
2
e () = IS UTA(S),

where J; is the canonical embedding

n n (sin@)?v—1
Jl . E1 :LP(R ,dl/(l’)) ‘—>E2:Lp R™ x [O,’IT],dV(Z’) ® Cid@ s

1

2v—
E, is identified to E3 = LP(R x R*,dX; ® X2C, dX>s) via polar coordinates

(x,0) — (X1,X2) = (xcosf,xsind), J is the canonical embedding

x2v-1 e—v>/4
J:ng—>E4:Lp(R><R+><]R+,dX1® 20 dXs® 7 du(y)),
and, for real t, U; : G(X1,Xo,y) — G(X1 — ty, X2,y). Indeed, U; is an isom-
etry of 4 and Jf (resp. J*) is the integration w.r. to 6 (resp. y).

Acknowledgment. I thank Francoise Lust-Piquard for suggesting this topic
and for fruitful discussions.
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