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Abstract We show that the height of a variety over a finitely generated field of char-

acteristic zero can be written as an integral of local heights over the set of places of the

field. This allows us to apply our previous work on toric varieties and extend our com-

binatorial formulae for the height to compute some arithmetic intersection numbers of

nontoric arithmetic varieties over the rational numbers.

0. Introduction

Moriwaki [Mo1], [Mo2] introduced a notion of height for cycles over a finitely

generated extension of Q. With this definition, it was possible to extend several

central results about cycles over a number field to cycles over a finitely generated

extension of Q. These results include Northcott’s theorem on the finiteness of

cycles with bounded degree and height, the Manin–Mumford and the Bogomolov

conjectures, Zhang’s theorem on successive algebraic minima, and the equidis-

tribution properties of Galois orbits of points of small height (see [Mo1], [Mo2],

[Mo3], [YZ]).

This notion of height is defined as follows. Let B be an arithmetic variety,

that is, a normal flat projective scheme over Spec(Z), of relative dimension b.

Set K=K(B) for its function field, which is a finitely generated extension of Q

of transcendence degree b. Let Hi, i= 1, . . . , b, be a family of nef Hermitian line

bundles on B.
Let π : X →B be a dominant morphism of arithmetic varieties, and denote

by X the fiber of π over the generic point of B, which is a variety over K. Let

Y be a prime cycle of X of dimension d. Let Y be the closure of Y in X ,

and let Lj , j = 0, . . . , d, be a family of semipositive Hermitian line bundles
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on X . Moriwaki [Mo1], [Mo2] defines the height of Y relative to this data as

the arithmetic intersection number in the sense of Gillet–Soulé given by

(0.1) hπ∗H1,...,π∗Hb,L0,...,Ld
(Y).

It is well known that this arithmetic intersection number can be written as a

sum over the places of Q of local heights of the fiber of Y over the generic point of

Spec(Z) (see, e.g., [BPS, Section 1.5]). However, for points in a projective space

and the canonical metric, Moriwaki [Mo1, Proposition 3.2.2] showed that this

arithmetic intersection number is also equal to an integral of local heights over

a measured set of places of K.

In this paper, we extend Moriwaki’s result to a cycle Y of arbitrary dimen-

sion and general semipositive metrics to show that the height of Y is equal to an

integral of local heights over this set of places of K (Theorem 2.4). This allows us

to apply our previous work on toric varieties in [BPS] and extend our combinato-

rial formulae for the height to some arithmetic intersection numbers of nontoric

arithmetic varieties. More explicitly, let X →B be a dominant morphism of arith-

metic varieties as above such that its generic fiber X is a toric variety over K of

dimension n. For simplicity, suppose that L0 = · · · = Ln = L. The semipositive

Hermitian line bundle L defines a polytope Δ in a linear space of dimension n

and, for each place w of K, a concave function ϑw : Δ→R called the w-adic roof

function (see Section 3 for details and pointers to the literature). By [BPS, The-

orem 5.1.6], the w-adic local height of X is given by (n+ 1)! times the integral

over Δ of this concave function. Combining this with Theorem 2.4, we derive

a formula for the corresponding arithmetic intersection number as an integral

of the function (w,x) �→ ϑw(x) over the product of the polytope and the set of

places of K (Corollary 3.1). Furthermore, we can define a global roof function

ϑ : Δ→R by integrating the local ones over the set of places of K. Then, in this

case, the arithmetic intersection number (0.1) is also equal to (n+ 1)! times the

integral of ϑ over the polytope (Corollary 3.4).

As an application, we give in Section 4 an explicit formula for the case of

translates of subtori of a projective space and canonical metrics (Corollary 4.2).

The obtained integrals reduce, in some instances, to logarithmic Mahler measures

of multivariate polynomials.

1. Fields with product formula from arithmetic varieties

Gubler [G, Example 11.22] observed that, for an arithmetic variety equipped

with a family of nef Hermitian line bundles, one can endow its function field

with a measured set of places satisfying the product formula. In this section,

we explain the details of this construction and, as an example, we explicitly

describe it for the projective space and the universal line bundle equipped with

the canonical metric. We refer to [BPS, Chapter 1] and [BMPS, Section 3] for

the background for this section on metrized line bundles and their associated

measures and heights.
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Let B be an arithmetic variety, which means that B is a normal flat pro-

jective scheme over Spec(Z). We denote by b the relative dimension of B and

by K = K(B) its function field, which is a finitely generated extension of Q of

transcendence degree b. For i= 1, . . . , b, let Hi = (Hi,‖ · ‖i) be a Hermitian line

bundle on B, that is, a line bundle Hi on B equipped with a continuous metric

on the complexification Hi,C over B(C), invariant under complex conjugation.

We will furthermore assume that each Hi is nef in the sense of [Mo1, Section 2]

and [BMPS, Definition 3.18(3)]. This amounts to the following conditions:

(1) the metric ‖ · ‖i is semipositive; namely, it is the uniform limit of a

sequence of smooth semipositive metrics as in [Ma, Definition 4.5.5] and [BPS,

Definition 1.4.1];

(2) the height of every integral one-dimensional subscheme of B with respect

to Hi is nonnegative.

Let B(1) denote the set of hypersurfaces of B, that is, the integral subschemes

of B of codimension 1. Let V ∈ B(1). By [Z, Theorem 1.4(a)] or [Mo1, Proposi-

tion 2.3], the hypothesis that the Hi’s are nef implies that the height of V with

respect to these Hermitian line bundles, denoted by hH1,...,Hb
(V), is nonnegative.

Hence, we associate to V the non-Archimedean absolute value on K given, for

γ ∈K, by

|γ|V = e−hH1,...,Hb
(V)ordV(γ),

where ordV denotes the discrete valuation associated to the local ring OB,V . We

denote by μfin the counting measure of B(1).

We define the set of generic points of B(C) as

B(C)gen = B(C) \
⋃

V∈B(1)

V(C).

By definition, a point p ∈ B(C) belongs to B(C)gen if and only if, for all γ ∈K×,

this point does not lie in the analytification of the support of div(γ). Hence, |γ(p)|
is a well-defined positive real number, and we associate to p the Archimedean

absolute value given, for γ ∈K×, by

(1.1) |γ|p =
∣∣γ(p)∣∣.

On B(C), we consider the measure

μ∞ = c1(H1)∧ · · · ∧ c1(Hb)

associated to the family of semipositive Hermitian line bundles Hi, i= 1, . . . , b,

as in [BPS, Definition 1.4.2]. By [CT, Corollaire 4.2], the measure of each hyper-

surface of B(C) with respect to μ∞ is zero. Since the complement of B(C)gen is

a countable union of hypersurfaces, it has measure zero. We will denote also by

μ∞ the induced measure on B(C)gen.
Put then

(1.2) (M, μ) = (B(1), μfin)�
(
B(C)gen, μ∞

)
.
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The set M is in bijection with a set of absolute values. Moreover, all the non-

Archimedean absolute values in this set are associated to a discrete valuation.

EXAMPLE 1.1

Let B = Pb
Z
with projective coordinates (x0 : · · · : xb), and let Hi =O(1)

can
, i=

1, . . . , b, be the universal line bundle on Pb
Z
equipped with the canonical metric as

in [BPS, Example 1.4.4]. We have that K=K(B)�Q(z1, . . . , zb), with zi = xi/x0.

Consider the compact subtorus of Pb
Z
(C) given by

S=
{
(1 : z1 : · · · : zb) ∈ Pb

Z(C)
∣∣ |zi|= 1 for all i

}
� (S1)b

and the measure μS of Pb(C) given by the current

1

(2πi)b
dz1
z1

∧ · · · ∧ dzb
zb

∧ δS.

Namely, μS is the Haar probability measure on S.

A hypersurface V of Pb
Z
corresponds to an irreducible homogeneous poly-

nomial PV ∈ Z[x0, . . . , xb]. The associated absolute value is given, for γ ∈ K×,

by

log |γ|V =−ordV(γ)m(PV),

where m(PV) is the logarithmic Mahler measure of PV given by

m(PV) =

∫
log

∣∣PV(1, z1, . . . , zb)
∣∣dμS.

If PV is an irreducible polynomial of degree zero, then PV = p ∈ Z, a prime num-

ber. In this case m(PV) = log(p) and V is the fiber over the point corresponding

to p.

The absolute value associated to a point of Pb
Z
(C)gen is given by the Archime-

dean absolute value of the evaluation at this point as in (1.1). In this example,

the measure μfin on (Pb
Z
)(1) is the counting measure, and the measure μ∞ is the

restriction to Pb
Z
(C)gen of μS.

A function on a measured space is integrable (also called summable) if its integral

is a well-defined real number.

PROPOSITION 1.2

For each γ ∈ K×, the function M → R given by w �→ log |γ|w is μ-integrable.

Furthermore, the product formula

(1.3)

∫
M

log |γ|w dμ(w) = 0

holds.

Proof

Given γ ∈K×, the set of hypersurfaces V such that |γ|V 	= 1 is contained in the set

of components of the support of div(γ), when γ is viewed as a rational function
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on B. Hence, this set is finite, and so the function on B(1) given by V �→ log |γ|V is

μfin-integrable. Moreover, by [CT, Théorème 4.1], the function on B(C)gen given

by p �→ log |γ(p)| is μ∞-integrable. By summing up, log |γ|w is μ-integrable, which

proves the first statement.

For the second one, let O be the trivial metrized line bundle on B. Then∫
M

log |γ|w dμ(w) =
∑

V∈B(1)

−ordV(γ)hH1,...,Hb
(V) +

∫
B(C)gen

log
∣∣γ(p)∣∣dμ∞(p)

=−hO,H1,...,Hb
(B)

by the arithmetic Bézout formula (see, e.g., [BGS, (3.2.2)] for the smooth case

or [CT, Théorème 1.4] for an adelic version in the general case). From the mul-

tilinearity of the height, it follows that hO,H1,...,Hb
(B) = 0, which concludes the

proof. �

DEFINITION 1.3

Given γ = (γ0, . . . , γn) ∈ Kn+1 \ {0}, the size of γ with respect to (K,M, μ) is

defined as

(1.4) tK,M,μ(γ) =

∫
M

logmax
(
|γ0|w, . . . , |γn|w

)
dμ(w).

EXAMPLE 1.4

Let K � Q(z1, . . . , zb) with the measured set of places (M, μ) as described in

Example 1.1. Let γ ∈K× given in reduced representation as γ = α/β with coprime

α,β ∈ Z[z1, . . . , zb]. By using the product formula (1.3), the size of γ can be given

in this case by

tK,M,μ(γ) =

∫
M

logmax
(
|α|w, |β|w

)
dμ(w).

Since α and β are coprime, the contribution of the integral over the places of

(Pb
Z
)(1) is zero. Hence,

(1.5) tK,M,μ(γ) =
1

(2πi)b

∫
(S1)b

logmax
(∣∣α(z)∣∣, ∣∣β(z)∣∣)dz1

z1
∧ · · · ∧ dzb

zb
.

By using Jensen’s formula, this size can be alternatively written as the logarith-

mic Mahler measure of the polynomial

(1.6) Pγ = α(z1, . . . , zb)t1 − β(z1, . . . , zb) ∈ Z[t1, z1, . . . , zb],

where t1 denotes an additional variable. The difference between this size and the

logarithm of the maximum of the absolute values of the coefficients of α and β

can be bounded by the maximum of their degrees times a constant depending

only on b.
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2. Relative arithmetic varieties

In this section we prove our main result (Theorem 2.4), showing that the height

of a cycle over the finitely generated extension K can be written as an integral

of the local heights of this cycle over the measured set of places (M, μ).

Let π : X → B be a dominant morphism of arithmetic varieties of relative

dimension n≥ 0, and let L be a Hermitian line bundle on X . We denote by X

the fiber of π over the generic point of B. This is a variety over K of dimension

n, and the line bundle L induces a line bundle on X , denoted by L. There is a

collection of metrics on the analytifications of L for each absolute value of M,

which we now describe.

For each V ∈ B(1), the local ring OB,V is a discrete valuation ring with field

of fractions K. The scheme X and the line bundle L induce a projective model

over Spec(OB,V), denoted (XV ,LV), of the pair (X,L). Following Zhang, we see

that the model (XV ,LV) induces a metric on the analytification Lan
V over Xan

V
(see [Z] or [BPS, Definition 1.3.5] for details).

The map π also induces a map of complex analytic spaces X (C) → B(C),
which we also denote by π. A point p ∈ B(C)gen induces an Archimedean absolute

value | · |p on K, and the analytification of the variety X with respect to | · |p
can be identified with the fiber π−1(p)⊂X (C), with its structure of real analytic

space when the point p is real. The analytification of the line bundle L on X

with respect to | · |p can also be identified with the restriction of LC to π−1(p).

Then the metric on Lan
p is defined as the restriction of the metric on LC to this

fiber. We then denote the obtained M-metrized line bundle on X by

(2.1) L=
(
L,

(
‖ · ‖w

)
w∈M

)
.

Let Y be a d-dimensional cycle on X , and let Li, i= 0, . . . , d, be M-metrized

line bundles on X as in (2.1). We assume that each Li is constructed from a

difference of semipositive (DSP) Hermitian line bundle Li on X . Recall that a

DSP Hermitian line bundle on X is the quotient of two semipositive ones as in

[BPS, Definition 1.4.1].

Given a collection of nonzero rational sections si of Li, i= 0, . . . , d, intersect-

ing properly on Y and w ∈M, we denote by

hL0,w,...,Ld,w
(Y ;s0, . . . , sd)

the local height of Y with respect to the family of w-adic metrized line bundles

Li,w := (Li,‖ · ‖i,w), i= 0, . . . , d. It is defined inductively on the dimension of Y

by the arithmetic Bézout formula (see [BPS, Definition 1.4.11])

hL0,w,...,Ld,w
(Y ;s0, . . . , sd) = hL0,w,...,Ld,w

(Y · div sd;s0, . . . , sd−1)
(2.2)

−
∫
Xan

w

log ‖sd‖d,w
d−1∧
i=0

c1(Li,w)∧ δY .
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We will show in Theorem 2.4 below that the function M→R given, for w ∈M,

by

(2.3) w �−→ h(L0,‖·‖0,w),...,(Ld,‖·‖d,w)(Y ;s0, . . . , sd)

is μ-integrable.

DEFINITION 2.1

With notation as above, the global height of Y with respect to the M-metrized

line bundles Li, i = 0, . . . , d, is defined as the integral of the function in (2.3);

that is,

hL0,...,Ld
(Y ) =

∫
M

h(L0,‖·‖0,w),...,(Ld,‖·‖d,w)(Y ;s0, . . . , sd)dμ(w).

Thanks to the product formula, this notion does not depend on the choice of the

sections si.

EXAMPLE 2.2

Let B be an arithmetic variety as above, and (K,M, μ) the associated finitely

generated field and measured set of places. Let

X = Pn
B �B × Pn

Z and L=�∗OPn
Z
(1)

can
,

where � denotes the projection B×Pn
Z
→ Pn

Z
. Hence, X = Pn

K
and L=OPn

K
(1)

can
.

For a point p= (γ0 : · · · : γn) ∈X(K) = Pn
K
(K), we have

(2.4) hL(p) = tK,M,μ(γ),

where tK,M,μ(γ) denotes the size of the vector γ = (γ0, . . . , γn) as in (1.4). This

is the “naive height” in [Mo1, Section 3.2].

The following projection formula for heights of schemes over Spec(Z) generalizes

[Mo1, Proposition 1.3(1)].

PROPOSITION 2.3

Let π : W →V be a morphism between two finitely generated projective schemes

over Spec(Z) of relative dimensions d+b−1 and b−1, respectively, with b, d≥ 0.

Let Li, i= 1, . . . , d, and Hj , j = 1, . . . , b, be DSP Hermitian line bundles on W
and V , respectively. Then

hπ∗H1,...,π∗Hb,L1,...,Ld
(W) = degL1,...,Ld

(Wη)hH1,...,Hb
(V),

where Wη denotes the fiber of W over the generic point η of V . In particular, if

π is not dominant, then hπ∗H1,...,π∗Hb,L1,...,Ld
(W) = 0.

Proof

By linearity, we can reduce to the case when the Li’s are ample and the metrics

are semipositive. By continuity, we can also reduce to the case when the metrics

in Li and Hj are smooth for all i, j.
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We proceed by induction on d. The case d= 0 is given by [Mo1, Proposition

1.3(2)] in the case when π is dominant and by [BPS, Theorem 1.5.11(2)] in the

general case. Let d≥ 1, and choose a nonzero rational section sd of Ld. Let ‖ · ‖d
denote the metric of Ld. By the arithmetic Bézout formula,

hπ∗H1,...,π∗Hb,L1,...,Ld
(W) = hπ∗H1,...,π∗Hb,L1,...,Ld−1

(
div(sd)

)
(2.5)

−
∫
W(C)

log ‖sd‖d
b∧

i=1

c1(π
∗Hi)∧

d−1∧
j=1

c1(Lj).

Since dim(V(C)) = b− 1, we have that
∧b

i=1 c1(Hi) = 0. Hence, the measure in

the integral on the right-hand side of (2.5) is zero, so this integral is zero too.

Decompose the divisor of sd into its horizontal and vertical components over

Spec(Z) as

div(sd) = div(sd)hor +div(sd)vert.

Write div(sd)vert =
∑

p∈Spec(Z)Zp as a finite sum of schemes over the primes. We

have that degπ∗H1,...,π∗Hb,L1,...,Ld−1
(Zp) = 0 because dim(π(div(sd)vert))≤ b− 1.

It follows that

hπ∗H1,...,π∗Hb,L1,...,Ld−1

(
div(sd)vert

)
=

∑
p∈Spec(Z)

log(p)degπ∗H1,...,π∗Hb,L1,...,Ld−1
(Zp) = 0.

By the inductive hypothesis,

hπ∗H1,...,π∗Hb,L1,...,Ld−1

(
div(sd)hor

)
= degL1,...,Ld−1

(
div(sd)hor,η

)
hH1,...,Hb

(V).

Since degL1,...,Ld−1
(div(sd)hor,η) = degL1,...,Ld

(Wη), we obtain the result. �

THEOREM 2.4

Let B be an arithmetic variety of relative dimension b, and Hi, i= 1, . . . , b, nef

Hermitian line bundles on B. Let K = K(B) be the function field of B, and let

(M, μ) be the associated measured set of places as in (1.2).

Let π : X → B be a dominant morphism of arithmetic varieties of relative

dimension n, and X the fiber of π over the generic point of B. Let Y be a

prime cycle of X of dimension d, and Y its closure in X . Let Lj , j = 0, . . . , d,

be DSP Hermitian line bundles on X , and Lj , j = 0, . . . , d, the associated M-

metrized line bundles as in (2.1). Let s0, . . . , sd be rational sections of L0, . . . ,Ld,

respectively, intersecting properly on Y . Then the function M → R given, for

w ∈M, by

(2.6) w �−→ h(L0,‖·‖0,w),...,(Ld,‖·‖d,w)(Y ;s0, . . . , sd)

is μ-integrable. Moreover,

(2.7) hL0,...,Ld
(Y ) = hπ∗H1,...,π∗Hb,L0,...,Ld

(Y).
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In other words, the integral of the function (2.6) coincides with the height of Y

as defined in (0.1).

Proof

By linearity, we reduce to the case when the line bundles Lj are ample, their

metrics are semipositive, and the sections are global sections. Moreover, since

multiplying one of the metrics on Lj changes both sides of the equality (2.7) by

the same additive constant, we can assume that the sections sj of Lj , j = 0, . . . , d,

are small, in the sense that supp∈X(C) ‖sj(p)‖j ≤ 1.

We proceed by induction on the dimension of Y . If dim(Y ) =−1, then Y = ∅
and so the local heights of Y are zero. Hence, these local heights are μ-integrable

and, by Proposition 2.3, the equality in (2.7) is reduced to 0 = 0.

We now assume that dim(Y ) = d≥ 0. In this case, the restriction π|Y : Y →B
is dominant. Since the height does not change by normalization, by restricting

objects to Y and pulling back to its normalization, we may assume in the com-

putations that follow that Y =X . In particular, Y =X and d= n= dim(X).

Let s0, . . . , sn be global sections of L0, . . . ,Ln, respectively, that meet prop-

erly on X , and denote by ρ : M→R the local height function in (2.6). We have

to show that this function is μ-integrable and that∫
M

ρ(w)dμ(w) = hπ∗H1,...,π∗Hb,L0,...,Ln
(X ).

For each w ∈ M, by the definition of local heights in (2.2), we can write

ρ(w) = ρ1(w)− ρ2(w) with

ρ1(w) = h(L0,‖·‖0,w),...,(Ln−1,‖·‖n−1,w)

(
div(sn);s0, . . . , sn−1

)
,

ρ2(w) =

∫
Xan

w

log ‖sn‖n,w
n−1∧
j=0

c1
(
Lj ,‖ · ‖j,w

)
.

We decompose the cycle div(sn) as

div(sn) = div(sn)hor/B +div(sn)vert/B,

where div(sn)hor/B contains all the components that are dominant over B and

div(sn)vert/B contains the remaining ones. Clearly, div(sn)hor/B is the closure of

div(sn) ·X , and div(sn)vert/B contains all the components of div(sn) that do not

meet X .

By the inductive hypothesis, the function w �→ ρ1(w) is μ-integrable and

(2.8)

∫
M

ρ1(w)dμ(w) = hπ∗H1,...,π∗Hb,L0,...,Ln

(
div(sn)hor/B

)
.

Let now w = V ∈ B(1). The local ring OB,V is a discrete valuation ring. The

scheme X and the line bundle Li induce models XV and Li,V over Spec(OB,V)

of X and Li. Each component of the special fiber of XV is the localization

WV =W ×
V
Spec

(
K(V)

)
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of a hypersurface W ∈X (1) with π(W) = V . Since the metric over w is an alge-

braic metric coming from a model, by [BPS, (1.3.6) and Remark 1.4.14],

(2.9) ρ2(V) =−
∑

W∈X (1)

π(W)=V

hH1,...,Hb
(V)ordW(sn)degL0,...,Ln−1

(WV).

Since the number of components of div(sn) is finite, we deduce from (2.9) that

there are only a finite number of V ∈ B(1) with ρ2(V) 	= 0. Thus, ρ2 is integrable

on B(1) with respect to the counting measure μfin as in (1.2). By Proposition 2.3,

hH1,...,Hb
(V)degL0,...,Ln−1

(WV) = hπ∗H1,...,π∗Hb,L0,...,Ln−1
(W).

The same result implies that if dim(π(W))≤ b− 1, then

hπ∗H1,...,π∗Hb,L0,...,Ln−1
(W) = 0.

Since

div(sn)vert/B =
∑

W∈X (1)

dim(π(W))≤b

ordW(sn)W

=
∑

V∈B(1)

∑
W∈X (1)

π(W)=V

ordW(sn)W +
∑

W∈X (1)

dim(π(W))≤b−1

ordW(sn)W ,

it follows from (2.9) that∫
B(1)

ρ2(w)dμfin(w) =
∑

V∈B(1)

ρ2(V)

=−
∑

V∈B(1)

∑
W∈X (1)

π(W)=V

ordW(sn)hπ∗H1,...,π∗Hb,L0,...,Ln
(W)(2.10)

=−hπ∗H1,...,π∗Hb,L0,...,Ln

(
div(sn)vert/B

)
.

We next consider the places associated to the points p ∈ B(C)gen. In this

case, by the definition of ρ2, we have that

ρ2(p) =

∫
π−1(p)

log ‖sn‖n
n−1∧
j=0

c1(Lj,C|π−1(p)),

where π denotes the projection X →B and ‖ · ‖n the metric in Ln. We have to

show that ρ2 is μ∞-integrable with μ∞ =
∧b

i=1 c1(Hi) and that

(2.11)

∫
B(C)gen

ρ2(p)dμ∞(p) =

∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj)∧
b∧

i=1

c1(π
∗Hi).

We first assume that, for each j = 0, . . . , n, the metric on the line bundle

Lj is smooth, but that the metric on Hi, i= 1, . . . , b, is not necessarily smooth.

By definition, there is a sequence of smooth semipositive metrics (‖ · ‖i,k)k≥0 on

Hi,C that converge to ‖ · ‖i. Set Hi,k = (Hi,‖ · ‖i,k), and let μ∞,k be the measure
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associated to the differential form

c1(H1,k)∧ · · · ∧ c1(Hb,k).

By [CT, Théorème 4.1], the measures μ∞,k converge weakly to μ∞. By the same

result, even if log ‖sn‖n is not bounded, the equality

lim
k→∞

∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj)∧
b∧

i=1

c1(π
∗Hi,k)

=

∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj)∧
b∧

i=1

c1(π
∗Hi)

holds. Let U ⊂ B(C) be a connected Zariski-open subset such that the restric-

tion π |π−1(U) is a proper smooth map. By Ehresmann’s fibration theorem, this

restriction is a locally trivial proper differentiable fibration. Thus, there exist a

compact differentiable manifold F and an analytic open cover {Uα}α of U such

that π−1(Uα) is diffeomorphic to F × Uα for every α. Let {να}α be a partition

of unity subordinated to the open cover {Uα}α.
Fix an α. To avoid burdening the notation, we identify π−1(Uα) with F ×Uα

through the above diffeomorphism. Let λF be a measure of F given by a volume

form. Since the metrics ‖ · ‖j are smooth, there is a smooth function g : F ×Uα →
R such that, for each u ∈ Uα,

n−1∧
j=0

c1(Lj)
∣∣∣
{u}×F

= g(·, u)λF .

By [B, Theorem 3.2], the measures λF ×
∧b

i=1 c1(π
∗Hi,k) converge weakly to the

measure λF ×
∧b

i=1 c1(π
∗Hi). By the unicity of weak limits of measures,

(2.12)
n−1∧
j=0

c1(Lj)∧
b∧

i=1

c1(π
∗Hi)

∣∣∣
F×Uα

= gλF ×
b∧

i=1

c1(π
∗Hi).

Since log ‖sn‖n is integrable with respect to
∧n−1

j=0 c1(Lj) ∧
∧b

i=1 c1(π
∗Hi), by

(2.12) the function (να ◦ π) log ‖sn‖ng is integrable with respect to λF ×∧b
i=1 c1(π

∗Hi). By Fubini’s theorem [F, Theorem 2.6.2], the function∫
F

(να ◦ π) log ‖sn‖ngλF = ναρ2

is μ∞-integrable and∫
Uα

ναρ2(p)dμ∞(p) =

∫
F×Uα

(να ◦ π) log ‖sn‖ngλF ×
b∧

i=1

c1(π
∗Hi)

=

∫
π−1(Uα)

(να ◦ π) log ‖sn‖n
n−1∧
j=0

c1(Lj)∧
b∧

i=1

c1(π
∗Hi),

where the last equality follows from (2.12).
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Since the above holds for every α, Lebesgue’s monotone convergence the-

orem [F, Corollary 2.4.8] and the fact that μ∞(B(C) \ U) = 0, which follows

from [CT, Corollaire 4.2], imply that ρ2 is μ∞-integrable and that (2.11) holds.

Observe that we can apply Lebesgue’s monotone convergence theorem because

we are assuming that the section sn is small, so the function log ‖sn‖n is non-

positive.

We now assume that the metrics on Lj and Hi are not necessarily smooth,

and we choose sequences of smooth semipositive metrics (‖ · ‖j,kj )kj≥0 on Lj that

converge uniformly to ‖ · ‖j . For p ∈ B(C)gen, write

(2.13) ρ2,k0,...,kn(p) =

∫
π−1(p)

log
∥∥sn(p)∥∥n,kn

n−1∧
j=0

c1(Lj,kj ,C|π−1(p)).

From (2.13) when i= n and from (2.13) and Stokes’s theorem when i 	= n, one

can prove that, for each ε > 0, there is a constant Ki that does not depend on p

nor on kj , j 	= i, such that, for all ki, k
′
i ≥Ki,

(2.14)
∣∣ρ2,k0,...,ki,...,kn(p)− ρ2,k0,...,k′

i,...,kn
(p)

∣∣ ≤ ε.

For k ≥ 0, denote by ρ2,k the function in (2.13) for the choice of indices

k0 = · · · = kn = k. We deduce from (2.14) that the diagonal sequence (ρ2,k)k≥0

converges uniformly to ρ2. Since the measure μ∞ has finite total mass and, by

the previous case, the functions ρ2,k are μ∞-integrable, we deduce that ρ2 is

μ∞-integrable and that

lim
k→∞

∫
B(C)

ρ2,k(p)dμ∞(p) =

∫
B(C)

ρ2(p)dμ∞(p).

Therefore, using (2.11) for the functions ρ2,k and [CT, Théorème 4.1], we deduce

that (2.11) also holds in the case when all the metrics are semipositive.

Consequently, ρ= ρ1 − ρ2 is μ-integrable, and using (2.8), (2.10), (2.11), the

arithmetic Bézout theorem in (2.2), and the inductive hypothesis, we have∫
M

ρ(w)dμ(w) = hπ∗H1,...,π∗Hb,L0,...,Ln

(
div(sn)hor/B

)
+hπ∗H1,...,π∗Hb,L0,...,Ln

(
div(sn)vert/B

)
−

∫
X (C)

log ‖sn‖n
n−1∧
j=0

c1(Lj)∧
b∧

i=1

c1(π
∗Hi)

= hπ∗H1,...,π∗Hb,L0,...,Ln
(X ),

which concludes the proof. �

EXAMPLE 2.5

Let K�Q(z1, . . . , zb) with the measured set of places (M, μ) as in Examples 1.1

and 1.4. Let

X = Pb
Z × P1

Z and L=�∗OP1
Z

(1)
can

,
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where � denotes the projection Pb
Z
×P1

Z
→ P1

Z
, and let L=OP1

K

(1)
can

denote the

canonical M-metrized line bundle structure on the universal line bundle of P1
K
as

in Example 2.2.

Let (1 : γ) ∈ P1
Z
(K) with γ ∈ K×. The closure Y of this point in X is the

hypersurface defined by the bihomogenization of the polynomial Pγ in (1.6). In

this case, Theorem 2.4 together with (2.4) and (1.5) gives

hπ∗H1,...,π∗Hb,L(Y) = hL(1 : γ) = tK,M,μ(γ) =m(Pγ),

where m(Pγ) denotes the logarithmic Mahler measure of Pγ .

3. Height of toric varieties over finitely generated fields

Using our previous work on toric varieties in [BPS], we can give a combinato-

rial formula for the mixed height of a toric variety with respect to a family of

M-metrized line bundles. As a consequence of Theorem 2.4, this formula also

expresses an arithmetic intersection number, in the sense of Gillet–Soulé, of a

nontoric arithmetic variety.

Let B be an arithmetic variety of relative dimension b, and Hi = (Hi,‖ · ‖i),
i= 1, . . . , b, a family of nef Hermitian line bundles on B, as at the beginning of

Section 1. Let K=K(B), and let (M, μ) be the associated set of places of K as

in (1.2).

Let T � Gn
m be a split torus of dimension n over K. Let N = Hom(Gm,T)

be the lattice of cocharacters of T, let M =Hom(T,Gm) =N∨ be the lattice of

characters, set NR =N ⊗R and MR =M ⊗R.

Let X be a proper toric variety over K with torus T, described by a complete

fan Σ on NR. A toric divisor on X is a Cartier divisor invariant under the action

of T. Such a divisor D defines a virtual support function, that is, a function

ΨD : NR → R whose restriction to each cone of the fan Σ is an element of M .

The toric divisor D is nef if and only if ΨD is concave. One can also associate to

D the polytope defined as

ΔD = {x ∈MR | x≥ΨD}.

Now let

π : X →B

be a dominant morphism of arithmetic varieties of relative dimension n≥ 0, and

L a Hermitian line bundle on X . We assume that (X,L), the fiber of (X ,L) over
the generic point of B, is a toric variety over K with a line bundle associated to

a toric divisor D on X . We consider the associated M-metrized line bundle L on

X as in (2.1).

For each place w ∈M, we associate to the torus T an analytic space Tan
w and

we denote by Sw its compact subtorus. In the Archimedean case, it is isomorphic

to (S1)n. In the non-Archimedean case, it is a compact analytic group (see [BPS,

Section 4.2] for a description). Then, the M-metrized line bundle L=O(D) on
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X is toric if its w-adic metric ‖ · ‖w is invariant with respect to the action of Sw
for all w.

Assume that L is toric, and let s be the toric section of L with div(s) =D.

For each w ∈M, denote by Xan
0,w the analytification of the open principal subset

X0 ⊂X corresponding to the cone {0}, which is isomorphic to the torus T. Then

the function Xan
0,w → R given by p �→ log ‖s(p)‖w is invariant under the action

of Sw and induces a function ψL,s,w : NR → R as in [BPS, Definition 4.3.5]. For

shorthand, when L and s are fixed, we will denote ψL,s,w by ψw.

We now further assume that the line bundle L is generated by global sections

and that the Hermitian metric on L is semipositive. Hence, the line bundle L is

also generated by global sections, and for each w ∈M, the metric induced on Lan
w

by L is semipositive. In this case, by [BPS, Theorem 4.8.1], for each w ∈M, the

function ψw is concave. We associate to it a concave function on ΔD, denoted by

ϑL,s,w (or ϑw for short) and called the w-adic roof function of the pair (L,s) as

in [BPS, Definition 5.1.4]. This function is defined as the Legendre–Fenchel dual

of ψw, and so it is defined, for x ∈ΔD, as

ϑw(x) = inf
u∈NR

(
〈x,u〉 −ψw(u)

)
.

We denote by volM the measure on ΔD given by the restriction of the Haar

measure on MR normalized so that the lattice M has covolume 1.

COROLLARY 3.1

With notation as above, the function

(3.1) M−→R, w �−→
∫
ΔD

ϑL,s,w(x)dvolM (x)

is μ-integrable. Moreover,

hπ∗H1,...,π∗Hb,L,...,L(X )
(3.2)

= hL(X) = (n+ 1)!

∫
M

∫
ΔD

ϑL,s,w(x)dvolM (x)dμ(w).

Proof

By [BPS, Theorem 5.1.6], the quantity

(n+ 1)!

∫
ΔD

ϑL,s,w(x)dvolM (x)

is equal to the difference of local heights

h(L0,‖·‖0,w),...,(Ln,‖·‖n,w)(Y ;s0, . . . , sn)

− h(L0,‖·‖0,w,can),...,(Ln,‖·‖n,w,can)(Y ;s0, . . . , sn),

where ‖ · ‖i,w,can is the canonical w-adic metric on Li as in [BPS, Proposition-

Definition 4.3.15]. By Theorem 2.4, both local heights are μ-integrable. Hence,

the function in (3.1) is as well, which proves the first statement.
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For the second statement, the first equality follows from Theorem 2.4. By

the discussion above,

(n+ 1)!

∫
M

∫
ΔD

ϑL,s,w(x)dvolM (x)dμ(w) = hL(X)− hLcan(X).

By using the argument in the proof of [BPS, Proposition 5.2.4], it can be shown

that hLcan(X) = 0, which proves the second equality in (3.2). �

THEOREM 3.2

Let the notation be as above.

(a) For each x ∈ΔD, the function

M−→R, w �−→ ϑw(x)

is μ-integrable.

(b) The function

ΔD −→R, x �−→
∫
M

ϑw(x)dμ(w)

is concave and continuous on ΔD.

(c) The function

M×ΔD −→R, (w,x) �−→ ϑw(x)

is (μ× volM )-integrable.

Proof

Let σ ∈ Σn. The closure V (σ) of the orbit of X corresponding to σ is a point.

By [BPS, Proposition 4.8.9], for each w ∈M,

ϑι∗L,ι∗sσ,w
(0) = ϑL,sσ,w

(mσ) = ϑw(mσ),

where ι denotes the inclusion V (σ) ↪→ X . By Corollary 3.1, the function w �→
ϑw(mσ) is μ-integrable, and its integral coincides with the height of V (σ) with

respect to L.

Since ϑw is a concave function, for all x ∈ΔD,

(3.3) min
σ∈Σn

ϑw(mσ) = min
y∈ΔD

ϑw(y)≤ ϑw(x).

On the other hand, using again the concavity of ϑw, we have

ϑw(x)− min
y∈ΔD

ϑw(y)≤ max
y∈ΔD

ϑw(y)− min
y∈ΔD

ϑw(y)

(3.4)

≤ n+ 1

volM (ΔD)

∫
ΔD

(
ϑw(z)− min

y∈ΔD

ϑw(y)
)
dvolM (z).

It follows from (3.3) and (3.4) that, for all x ∈ΔD,

min
σ∈Σn

ϑw(mσ)≤ ϑw(x)≤
n+ 1

volM (ΔD)

∫
ΔD

ϑw(z)dvolM (z)− n min
σ∈Σn

ϑw(mσ).
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By Corollary 3.1 and the fact that ΔD has finite measure, we have that both the

upper and the lower bounds are integrable with respect to the measure μ×volM .

The statements (a) and (c) follow directly from these bounds, while the statement

(b) follows from the same bounds and Lebesgue’s bounded convergence theorem

[F, Theorem 2.4.9]. �

DEFINITION 3.3

With notation as above, the (global) roof function is the continuous concave

function ϑL,s : ΔD →R given by

ϑL,s(x) =

∫
M

ϑw(x)dμ(w).

COROLLARY 3.4

With the previous notation,

hπ∗H1,...,π∗Hb,L,...,L(X ) = hL(X) = (n+ 1)!

∫
ΔD

ϑL,s(x)dvolM (x)

holds.

Proof

This follows from Corollary 3.1 and Theorem 3.2(c) together with Fubini’s the-

orem [F, Theorem 2.6.2]. �

REMARK 3.5

More generally, when we have a family L0, . . . ,Ln of semipositive Hermitian line

bundles on X such that the induced Hermitian line bundles L0, . . . ,Ln on X are

toric, we can express

hπ∗H1,...,π∗Hb,L0,...,Ln
(X ) = hL0,...,Ln

(X)

in terms of mixed integrals, as in [BPS, Theorem 5.2.5].

4. Canonical height of translates of subtori over finitely generated fields

In this section, we particularize the formulae in Section 3 to the case when X is

the normalization of a translate of a subtorus in the projective space.

As before, let B be an arithmetic variety of relative dimension b, and Hi =

(Hi,‖·‖i), i= 1, . . . , b, a family of nef Hermitian line bundles on B. Let K=K(B),
and let (M, μ) be the associated set of places of K as in (1.2).

Let r ≥ 1, and consider the projective space Pr
B over B and the universal line

bundle OPr
B(1) on it. Since Pr

B = Pr
Z

×
Spec(Z)

B and OPr
B(1) is the pullback of OPr

Z
(1)

under the first projection, we can pull back the canonical metric on OPr
Z
(1) to

obtain a metric on OPr
B(1), also called canonical. We denote by O(1) =OPr

B(1)

the obtained Hermitian line bundle.

Choose mj ∈ Zn and fj ∈ K×, j = 0, . . . , r. For simplicity, we assume that

m0 = 0 ∈ Zn and that the collection of vectors mj generates Zn as an abelian
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group. Consider the map

Gn
m,K −→ Pr

K, t �−→ (f0t
m0 : · · · : frtmr),

where fjt
mj denotes the monomial fjt

mj,1

1 · · · tmj,n
n . We then denote by Y the

closure in Pr
K
of the image of this map.

The projective space Pr
K
is the fiber of Pr

B over the generic point of B. We

denote by Y the closure of Y in Pr
B and by π : Y →B the dominant map obtained

by restricting the projection Pr
B →B. In this setting, we want to give a formula

for the arithmetic intersection number

(4.1) hπ∗H,...,π∗H,O(1),...,O(1)(Y).

The subvariety Y is not a toric variety over K because it is not necessarily

normal. Indeed, it is a translated toric subvariety of Pr
K

in the sense of [BPS,

Definition 3.2.6]. Let X be the normalization of Y , and X the corresponding

variety over K. Let L be the pullback of O(1) to X , and L the associated

M-metrized line bundle over X as in (2.1). Therefore, X is a toric variety over

K with torus Gn
m,K, and the M-metrized line bundle L is toric and semipositive.

In this case we can give an explicit description of the corresponding w-adic

roof functions.

PROPOSITION 4.1

With notation as above, let s be the toric section of L determined by the section

x0 of O(1). The polytope associated to the divisor D = div(s) on X is given by

Δ= conv(m0, . . . ,mr),

and for w ∈M, the w-adic roof function ϑw : Δ→ R is the function parameter-

izing the upper envelope of the extended polytope Δ̃w ⊂Rn ×R given by

Δ̃w =

{
conv((mj ,−hH1,...,Hb

(V)ordV(fj))j=0,...,r) if w = V ∈ B(1),

conv((mj , log |fj(p)|)j=0,...,r) if w = p ∈ B(C)gen.

Proof

This follows from [BPS, Example 5.1.16]. �

Combining this result with Corollary 3.1, we obtain a formula for the arithmetic

intersection number in (4.1), which we will particularize to concrete examples.

COROLLARY 4.2

With notation as above, set B = Pb
Z
and Hi =H=OPr

B(1)
can

, i= 1, . . . , b. Then

hπ∗H,...,π∗H,O(1),...,O(1)(Y) is equal to

(n+ 1)!
(∫ (∫

Δ

ϑp(x)dvol(x)
)
dμS +

∑
V∈C

∫
Δ

ϑV(x)dvol(x)
)
,
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where C ⊂ B(1) is the set of irreducible components of the divisors div(fj), j =

0, . . . , r, vol denotes the Lebesgue measure on Rn, and μS is the Haar measure of

the compact torus S as in Example 1.1.

Proof

We have that hπ∗H,...,π∗H,O(1),...,O(1)(Y) = hπ∗H,...,π∗H,L,...,L(X ) by the invari-

ance of the height under normalization. The formula then follows from Corol-

lary 3.1, Proposition 4.1, the description of the measured set of places (M, μ)

of the field K in Example 1.1, and the fact that, for V ∈ B(1) \ C, the local roof

function ϑV vanishes identically. �

EXAMPLE 4.3

Consider the case n = 0. As a result, m� = 0 for all �. Choose a collection

f0, . . . , fr ∈ Z[z1, . . . , zb] of coprime polynomials with integer coefficients. Hence,

Δ = {0} ⊂R0, and for w ∈M, the local roof function is given by

ϑw(0) =

{
max� log |f�(p)| if w = p ∈ Pb

Z
(C)gen,

−h(V)min� ordV(f�) if w = V ∈ (Pb
Z
)(1).

If V is not the hyperplane at infinity of Pb, then by the coprimality of the f�’s,

we have min� ordV(f�) = 0, while if V is the hyperplane at infinity, then h(V) = 0.

Thus the finite contribution vanishes, and from Theorem 2.4 and Proposition 4.1,

we deduce

hπ∗H,...,π∗H,L(Y) =

∫
max

�

(
log

∣∣f�(p)∣∣)dμS.

In particular, if r = 1, then this arithmetic intersection number agrees with

the size of the element γ = f1/f0 given in Example 1.4. For instance, consider

the case when b = 1, f0 = α, and f1 = βz1 + γ with α,β, γ coprime integers.

By using (1.5) and (1.6), the corresponding intersection number is given by the

logarithmic Mahler measure of the affine polynomial αt1 − βz1 − γ. By [Ma,

Proposition 7.3.1], this logarithmic Mahler measure can be computed in terms

of the Bloch–Wigner dilogarithm.

EXAMPLE 4.4

Let n = 1, and consider the case when mi = i, i = 0, . . . , r, and f0, . . . , fr ∈
Z[z1, . . . , zb] is a family of coprime polynomials with integer coefficients with

f0 = fr = 1. We have that Δ = [0, r]. Let w ∈M, and let ϑw : [0, r]→ R be the

corresponding local roof function. By Proposition 4.1, if w = V ∈ (Pb
Z
)(1), then

this function is zero. Also, if w = p ∈ Pb
Z
(C)gen, then this function is the minimal

concave function on [0, r] whose values at the integers are given, for i= 0, . . . , r,

by

ϑw(i) = max
0≤j≤i≤�≤r

j �=�

( �− i

�− j
log

∣∣fj(p)∣∣w +
i− j

�− j
log

∣∣f�(p)∣∣w)
.
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In particular, ϑw(0) = log |f0(p)|w = 0 and ϑw(r) = log |fr(p)|w = 0. It follows

that

(4.2)

∫ r

0

ϑw(x)dx=

δ−1∑
i=1

max
j≤i≤�,j �=�

( �− i

�− j
log

∣∣fj(p)∣∣+ i− j

�− j
log

∣∣f�(p)∣∣).
From Corollary 4.2 and (4.2), we deduce that

hπ∗H,...,π∗H,L(Y) = 2

∫ r−1∑
i=1

max
0≤j≤i≤�≤r

j �=�

( �− i

�− j
log

∣∣fj(p)∣∣+ i− j

�− j
log

∣∣fj(p)∣∣)dμS.

Hence, this arithmetic intersection number can be expressed in terms of integrals

over the compact torus, of maxima of logarithms of absolute values of polynomi-

als.
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positive Green forms, J. Amer. Math. Soc. 7 (1994), 903–1027.

MR 1260106. DOI 10.2307/2152736.

[BMPS] J. I. Burgos Gil, A. Moriwaki, P. Philippon, and M. Sombra, Arithmetic

positivity on toric varieties, to appear in J. Algebraic Geom., preprint,

arXiv:1210.7692v1 [math.AG].

[BPS] J. I. Burgos Gil, P. Philippon, and M. Sombra, Arithmetic Geometry of

Toric Varieties: Metrics, Measures and Heights, Astérisque 360, Soc.
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intégrables, Mém. Soc. Math. Fr. (N.S.) 80, Soc. Math. France, Paris, 2000.

MR 1775582.

http://www.ams.org/mathscinet-getitem?mr=1700749
http://dx.doi.org/10.1002/9780470316962
http://dx.doi.org/10.1002/9780470316962
http://www.ams.org/mathscinet-getitem?mr=1260106
http://dx.doi.org/10.2307/2152736
http://dx.doi.org/10.2307/2152736
http://arxiv.org/abs/arXiv:1210.7692v1
http://www.ams.org/mathscinet-getitem?mr=3222615
http://www.ams.org/mathscinet-getitem?mr=2543659
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.ams.org/mathscinet-getitem?mr=2040641
http://www.ams.org/mathscinet-getitem?mr=1775582


32 Burgos Gil, Philippon, and Sombra

[Mo1] A. Moriwaki, Arithmetic height functions over finitely generated fields,

Invent. Math. 140 (2000), 101–142. MR 1779799.

DOI 10.1007/s002220050358.

[Mo2] , The canonical arithmetic height of subvarieties of an abelian

variety over a finitely generated field, J. Reine Angew. Math. 530 (2001),

33–54. MR 1807267. DOI 10.1515/crll.2001.005.

[Mo3] , A generalization of conjectures of Bogomolov and Lang over

finitely generated fields, Duke Math. J. 107 (2001), 85–102. MR 1815251.

DOI 10.1215/S0012-7094-01-10715-1.

[YZ] X. Yuan and S.-W. Zhang, The arithmetic Hodge index theorem for adelic

line bundles, II: Finitely generated fields, preprint, arXiv:1304.3539v1

[math.NT].

[Z] S. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995),

281–300. MR 1311351.

Burgos Gil: Instituto de Ciencias Matemáticas (CSIC), Madrid, Spain;
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