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Abstract Let G be a finite-dimensional Lie group, and let E be a locally convex topo-

logicalG-module. IfE is sequentially complete, thenE and the spaceE∞ of smooth vec-

tors are C∞
c (G)-modules, but the module multiplication need not be continuous.

The pathology can be ruled out if E is (or embeds into) a projective limit of Banach

G-modules. Moreover, in this caseEω (the space of analytic vectors) is a module for the

algebraA(G) of superdecaying analytic functions introduced byGimperlein,Krötz, and

Schlichtkrull. We prove thatEω is a topological A(G)-module ifE is a Banach space or,

more generally, if every countable set of continuous seminorms onE has anupper bound.

The same conclusion is obtained ifG has a compact Lie algebra. The question of whether

C∞
c (G) andA(G) are topological algebras is also addressed.

Introduction and statement of results

We study continuity properties of algebra actions associated with representations

of a (finite-dimensional, real) Lie group G. Throughout this note, E denotes a

topological G-module, that is, a complex locally convex space endowed with a

continuous left G-action π : G×E →E by linear maps π(g, ·).

Results concerning C∞
c (G) and the space of smooth vectors

Our first results concern the convolution algebra C∞
c (G) of complex-valued test

functions on a Lie group G. As usual, v ∈E is called a smooth vector if the orbit

map πv : G→E, πv(g) := π(g, v) is smooth. The space E∞ is endowed with the

initial topology OE∞ with respect to the map

(1) Φ: E∞ →C∞(G,E), Φ(v) = πv.

Let λG be a left Haar measure on G. If E is sequentially complete or has the

metric convex compactness property (see [41] for information on this concept),∗

then the weak integral

(2) Π(γ, v) :=

∫
G

γ(x)π(x, v)dλG(x)
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exists in E for all v ∈E and γ ∈C∞
c (G) (see [29, Proposition 1.2.3] and [39, The-

orem 3.27]). In this way, E becomes a C∞
c (G)-module. Moreover, Π(γ, v) ∈E∞

for all γ ∈C∞
c (G) and v ∈E, whence E∞ is a C∞

c (G)-submodule in particular (as

we recall in Lemma 1.9). It is natural to ask whether the module multiplication

(3) C∞
c (G)×E →E, (γ, v) �→Π(γ, v),

respectively,

(4) C∞
c (G)×E∞ →E∞, (γ, v) �→Π(γ, v),

is continuous, that is, if E and (E∞,OE∞) are topological C∞
c (G)-modules.

Contrary to a recent assertion (see [14, pp. 667–668]), this can fail even if E is

Fréchet.

PROPOSITION A

If G is a noncompact Lie group and E :=C∞(G) with π : G×C∞(G)→C∞(G),

π(g, γ)(x) := γ(g−1x), then neither E nor E∞ are topological C∞
c (G)-modules,

that is, the maps (3) and (4) are discontinuous.

A continuous seminorm p on E is called G-continuous if π : G× (E,p)→ (E,p)

is continuous (see [4, p. 7]). Varying terminology from [31], we call a topological

G-module E proto-Banach if the topology of E is defined by a set of G-continuous

seminorms.∗ If E is a Fréchet space, then E is proto-Banach if and only if there

is a sequence (pn)n∈N of G-continuous seminorms defining the topology, that is,

if and only if Π is an F-representation as in [4], [14], and [15].

PROPOSITION B

Let G be a Lie group, and let E be a proto-Banach G-module that is sequen-

tially complete or has the metric convex compactness property. Then the map

Π: C∞
c (G) × E → E∞ from (2) is continuous. In particular, E and E∞ are

topological C∞
c (G)-modules.

We mention that C∞
c (G) is a topological algebra if and only if G is σ-compact

(see [6, p. 3]; cf. [30, Proposition 2.3] for the special case G=R
n).

Results concerning A(G) and the space of analytic vectors
Let G be a connected Lie group now. If E is a topological G-module, say that v ∈
E is an analytic vector if the orbit map πv : G→E is real analytic (in the sense

recalled in Section 4). Write Eω ⊆E for the space of all analytic vectors. If G⊆
GC (which we assume henceforth for simplicity of the presentation), let (Vn)n∈N

be a basis of relatively compact, symmetric, connected identity neighborhoods

in GC, such that Vn ⊇ Vn+1 (e.g., we can choose Vn as in [15]). Then v ∈E is an

analytic vector if and only if πv admits a complex analytic extension π̃v : GVn →

∗Namely, E embeds into a projective limit of Banach G-modules (cf. [4, Remark 2.5]).
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E for some n ∈N (see Lemma 4.4). We write En ⊆Eω for the space of all v ∈Eω

such that πv admits a C-analytic extension to GVn, and give En the topology

making

Ψn : En →O(GVn,E), v �→ π̃v,

a topological embedding, using the compact open topology on the space

O(GVn,E) of all E-valued C-analytic maps on GVn. Like [15], we give Eω the

topology making it the direct limit Eω = lim−→En as a locally convex space.∗

We fix a left-invariant Riemannian metric g on G, let d : G×G→ [0,∞[ be

the associated left-invariant distance function, and set

(5) d(g) := d(g,1) for g ∈G.

Following [15] and [14], we let R(G) be the Fréchet space of continuous functions

γ : G→C which are superdecaying in the sense that

(6) ‖γ‖N := sup
{∣∣γ(x)∣∣eNd(x) : x ∈G

}
<∞ for all N ∈N0.

Then R(G) is a topological algebra under convolution (see [15, Proposi-

tion 4.1(ii)]). If E is a sequentially complete proto-Banach G-module, then

Π(γ, v) :=

∫
G

γ(x)π(x, v)dλG(x) for γ ∈R(G), v ∈E

exists in E as an absolutely convergent integral, and Π makes E a topological

R(G)-module (as for F-representations; see [15, Proposition 4.1(iii)]).

As G×R(G)→R(G), π(g, γ)(x) := γ(g−1x) is an F-representation (see [15,

Proposition 4.1(i)]), A(G) :=R(G)ω is the locally convex direct limit of the steps

An(G) := R(G)n. Since C-analytic extensions of orbit maps can be multiplied

pointwise in (R(G),∗), both An(G) and A(G) are subalgebras of R(G).

If E is a sequentially complete proto-Banach G-module, then

(7) Π(γ, v) ∈Eω for all γ ∈A(G), v ∈E;

moreover,

(8) An(G)×E →En, (γ, v) �→Π(γ, v) is continuous for each n ∈N.

This can be shown as in the case of F-representations in [15, Proposition 4.6].

PROBLEM

The following assertions concerning F-representations and the algebras A(G)

(stated in [15, Propositions 4.2(ii), 4.6]) seem to be open in general (in view of

difficulties explained presently, in Remark 2).

∗If G is an arbitrary connected Lie group, let q : G̃ → G be the universal covering group,

and let Vn ⊆ (G̃)C be as above. Then G̃⊆ (G̃)C. Define En now as the space of all v ∈Eω such

that πv ◦ q has a complex analytic extension to G̃Vn ⊆ (G̃)C, and topologize Eω as before. In

this way, we could easily drop the condition that G⊆GC.
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(a) Is Π: A(G) × E → Eω continuous for each F-representation (E,π) (or

even for each sequentially complete proto-Banach G-module)?∗

(b) Is Π: A(G)×Eω →Eω continuous in the situation of (a)?†

(c) Is the convolution A(G)×A(G)→A(G) continuous?

To formulate a solution to these problems in special cases, recall that a preorder

on the set P (E) of all continuous seminorms p on a locally convex space E is

obtained by declaring p
 q if p≤ Cq pointwise for some C > 0. The space E is

said to have the countable neighborhood property if every countable set M ⊆ P (E)

has an upper bound in (P (E),
) (see [8], [11], and the references therein).

PROPOSITION C

Let G be a connected Lie group with G⊆GC, and let E be a sequentially complete,

proto-Banach G-module. If E is normable or E has the countable neighborhood

property, then Π: A(G)×E →Eω is continuous. In particular, Eω is a topolog-

ical A(G)-module.

REMARK 1

Recall that a metrizable locally convex space has the countable neighborhood

property (c.n.p.) if and only if it is normable. Because the c.n.p. is inherited by

countable locally convex direct limits (see [11]), it follows that every

LB-space (i.e., every countable locally convex direct limit of Banach spaces)

has the c.n.p. Also, locally convex spaces E which are kω-spaces have the c.n.p.

(see [21, Corollary 8.1], [20, Example 9.4]; cf. [8]).‡ For example, the dual E′ of

any metrizable topological vector space E is a kω-space, when equipped with the

compact open topology (cf. [3, Corollary 4.7]).

For G a compact, connected Lie group, the convolutionA(G)×A(G)→A(G)

is continuous, and thus A(G) is a topological algebra. In fact, R(G) = C(G) is

normable in this case (as each ‖ · ‖N is equivalent to ‖ · ‖∞ then). Since A(G) =

R(G)ω , Proposition C applies.

The same conclusion can be obtained by an alternative argument, which

shows also that (A(G),∗) is a topological algebra for each abelian connected Lie

group G. In contrast to the setting of Proposition C, quite general spaces E are

allowed now, but conditions are imposed on G. Recall that a real Lie algebra g

is said to be compact if it admits an inner product making ead(x) an isometry for

each x ∈ g (where ad(x) := [x, ·] as usual). If G is compact or abelian, then its

Lie algebra L(G) is compact.

∗By Lemma 4.14, Π: A(G)×E → Eω is always separately continuous, hypocontinuous in
its second argument, and sequentially continuous (hence also the maps in (b) and (c)).

†(b) follows from (a) as the inclusion Eω →E is continuous linear.
‡A topological space X is kω if X = lim−→Kn with compact spaces K1 ⊆ K2 ⊆ · · · (see

[12], [24]).



Continuity of LF-algebra representations 571

PROPOSITION D

Let G be a connected Lie group with G⊆GC, whose Lie algebra L(G) is compact.

Then Eω is a topological A(G)-module for each sequentially complete, proto-

Banach G-module E. In particular, convolution is jointly continuous, and thus

(A(G),∗) is a topological algebra.

REMARK 2

Note that, due to the continuity of the maps (8), the map

Π: A(G)×E →Eω

is continuous with respect to the topology ODL on A(G)×E which makes it the

direct limit lim−→(An(G)×E) as a topological space. On the other hand, there

is the topology Olcx making A(G) × E the direct limit lim−→(An(G) × E) as

a locally convex space. Since locally convex direct limits and two-fold products

commute (see [30, Theorem 3.4]), Olcx coincides with the product topology on

(lim−→An(G))×E =A(G)×E and hence is the topology we are interested in.

Unfortunately, as Π is not linear, it is not possible to deduce continuity of Π on

(A(G)×E,Olcx) from the continuity of the maps (8).∗,†

Of course, whenever ODL =Olcx, we obtain continuity of Π: A(G)×E →Eω

with respect to Olcx. Now Olcx ⊆ ODL always, but equality Olcx = ODL only

occurs in exceptional situations. In the prime case of an F-representation (E,π)

of G, we have ODL �=Olcx in all cases of interest, as we shall presently see. Thus,

Problems (a)–(c) remain open in general (apart from the special cases settled in

Propositions C and D).

The following observation pinpoints the source of these difficulties.

PROPOSITION E

If E is an infinite-dimensional Fréchet space and G a connected Lie group with

G⊆GC and G �= {1}, then ODL �=Olcx on A(G)×E.

Proposition E will be deduced from a new result on direct limits of topological

groups (see Proposition 7.1), which is a variant of Yamasaki’s theorem [42, Theo-

rem 4] for direct sequences which need not be strict but are sequentially compact

regular.

We mention that A(G) also is an algebra under pointwise multiplication

(instead of convolution) and in fact is a topological algebra (see Section 8). Sec-

tions 1–3 are devoted to Propositions A and B; Sections 4–7 are devoted to

the proofs of Propositions C, D, and E (and the respective preliminaries). The

proofs of some auxiliary results have been relegated to the appendix (see also

∗This problem was overlooked in [15, proof of Proposition 4.6].
†Note that, in Proposition A, the convolution C∞

c (R)×C∞(R)→C∞(R) is discontinuous,

although its restriction to C∞
[−n,n](R)×C∞(R)→C∞(R) is continuous for all n ∈ N.
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[35], [36] for recent studies of smooth and analytic vectors, with a view towards

infinite-dimensional groups).

BASIC NOTATION

We write N0 := {0,1,2, . . .}. If E is a vector space and q a seminorm on E, we

set Bq
ε(x) := {y ∈E : q(y − x)< ε} for x ∈E, ε > 0. L(G) is the Lie algebra of a

Lie group G, and im(f) is the image of a map f . If X is a set and f : X → C a

map, as usual ‖f‖∞ := sup{|f(x)| : x ∈X}. If q is a seminorm on a vector space

E and f : X →E, we write ‖f‖q,∞ := sup{q(f(x)) : x ∈X}.

1. Preliminaries for Propositions A and B

We shall use concepts and basic tools from calculus in locally convex spaces.

1.1.
Let E, F be real locally convex spaces, let U ⊆E be open, and let r ∈N0 ∪{∞}.
Call f : U → F a Cr-map if f is continuous; the iterated directional derivatives

d(k)f(x, y1, . . . , yk) := (Dyk
· · ·Dy1f)(x)

exist in E for all k ∈ N0 such that k ≤ r, x ∈ U , and y1, . . . , yk ∈ E; and each

d(k)f : U ×Ek → F is continuous. The C∞-maps are also called smooth.

See [17], [26], [28], [37], and [38]. Since compositions of Cr-maps are Cr, one

can define Cr-manifolds modelled on locally convex spaces as expected.

1.2.
Given a Hausdorff space M and locally convex space E, we endow the space

C0(M,E) of continuous E-valued functions on M with the compact open topol-

ogy. If M is a Cr-manifold modeled on a locally convex space X , we give

Cr(M,E) the compact open Cr-topology, that is, the initial topology with respect

to the maps Cr(M,E)→C0(V ×Xk,E), γ �→ d(k)(γ ◦φ−1) for all charts φ : U →
V of M and k ∈ N0 such that k ≤ r. If M is finite-dimensional and K ⊆M is

compact, as usual we endow Cr
K(M,E) := {γ ∈Cr(M,E) : γ|M\K = 0} with the

topology induced by Cr(M,E), and give Cr
c (M,E) =

⋃
K Cr

K(M,E) the locally

convex direct limit topology. We abbreviate Cr(M) :=Cr(M,C), and so forth.

The following variant is essential for our purposes.

1.3.
Let E1, E2, and F be real locally convex spaces, let U ⊆E1 ×E2 be open, and

let r, s ∈N0 ∪ {∞}. A map f : U → F is called a Cr,s-map if the derivatives

d(k,�)f(x, y, a1, . . . , ak, b1, . . . , b�) := (D(ak,0) · · ·D(a1,0)D(0,b�) · · ·D(0,b1)f)(x, y)

exist for all k, � ∈ N0 such that k ≤ r and � ≤ s, (x, y) ∈ U and a1, . . . , ak ∈ E1,

b1, . . . , b� ∈E2, and d(k,�)f : U ×Ek
1 ×E�

2 → F is continuous.

We refer to [1] for a detailed development of the theory of Cr,s-maps. Notably,

f as in (1.3) is C∞,∞ if and only if it is smooth. If h◦f ◦(g1×g2) is defined, where
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h is Cr+s, f is Cr,s, g1 is Cr, and g2 is Cs, then the map h ◦ f ◦ (g1× g2) is C
r,s.

As a consequence, we can speak of Cr,s-maps f : M1 ×M2 →M if M,M1,M2

are smooth manifolds (likewise for f : U →M on an open set U ⊆M1×M2). See

[1] and [2] for these basic facts, as well as the following aspect of the exponential

law for Cr,s-maps, which is essential for us.∗

LEMMA 1.4

Let r, s ∈ N0 ∪ {∞}, let E be a locally convex space, let M be a Cr-manifold,

and let N be a Cs-manifold (both modeled on some locally convex space). If

f : M ×N →E is a Cr,s-map, then

f∨ : M →Cs(N,E), f∨(x)(y) := f(x, y)

is a Cr-map. Hence, if g : M → Cs(N,E) is a map such that ĝ : M ×N → E,

ĝ(x, y) := g(x)(y) is Cr,s, then g is Cr.

In particular, we encounter C∞,0-maps of the following form.

LEMMA 1.5

Let E1, E2, E3 be real locally convex spaces, let F be a complex locally convex

space, let U1 ⊆ E1 and U2 ⊆ E2 be open, let g : U1 × U2 → C be a smooth map,

let h : U1 →E3 be a smooth map, and let π : U2 ×E3 → F be a continuous map

such that π(y, ·) : E3 → F is real linear for each y ∈ U2. Then the following map

is C∞,0:

f : U1 ×U2 → F, f(x, y) := g(x, y)π
(
y,h(x)

)
.

For the proof of Lemma 1.5 (and those of the next four lemmas), the reader is

referred to Appendix A.

LEMMA 1.6

For each Lie group G, the left translation action

π : G×C∞
c (G)→C∞

c (G), π(g, γ)(x) := γ(g−1x)

is a smooth map.

We mention that G is not assumed to be σ-compact in Lemma 1.6. (Of course,

σ-compact groups are the case of primary interest.)

LEMMA 1.7

Let X be a locally compact space, let E be a comlex locally convex space, and let

f ∈ C0(X,E). Then the multiplication operator mf : C0
c (X) → C0

c (X,E),

mf (γ)(x) := γ(x)f(x) is continuous linear.

∗Exponential laws for smooth functions are basic tools of infinite-dimensional analysis (see,

e.g., [22]; cf. [34] for related bornological results).
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We also need a lemma on the parameter dependence of weak integrals. Note that

the definition of Cr,0-maps does not use the vector space structure on E2 and

makes perfect sense if E2 is merely a topological space.

LEMMA 1.8

Let X, E be locally convex spaces, let P ⊆X be open, let r ∈N0 ∪{∞}, let K be

a compact topological space, let μ be a finite measure on the σ-algebra of Borel

sets of K, and let f : P ×K →E be a Cr,0-map. Assume that the weak integral

g(p) :=
∫
K
f(p,x)dμ(x) exists in E, as well as the weak integrals

(9)

∫
K

d(k,0)f(p,x, q1, . . . , qk)dμ(x),

for all k ∈ N such that k ≤ r, p ∈ P , and q1, . . . , qk ∈ X. Then g : P → E is a

Cr-map, with d(k)g(p, q1, . . . , qk) given by (9).

LEMMA 1.9

Let G be a Lie group, and let π : G × E → E be a topological G-module which

is sequentially complete or has the metric convex compactness property. Then

w := Π(γ, v) ∈ E∞ for all γ ∈ C∞
c (G) and v ∈ E. In particular, E and E∞ are

C∞
c (G)-modules.

2. Proof of Proposition A

The evaluation map ε : C∞(G)×G→C, (γ,x) �→ γ(x) is smooth (see, e.g., [26]

or [22, Proposition 11.1]). In view of Lemma 1.4, the mapping π : G×C∞(G)→
C∞(G), π(g, γ)(x) = γ(g−1x) is smooth, because

π̂ : G×C∞(G)×G→C, (g, γ, x) = γ(g−1x) = ε(γ, g−1x)

is smooth. Hence each γ ∈ C∞(G) is a smooth vector. Using Lemma 1.4 again,

we see that the linear map

Φ: C∞(G)→C∞(
G,C∞(G)

)
, Φ(γ) = πγ

is smooth (and hence continuous) because Φ̂ : C∞(G)×G→ C∞(G), Φ̂(γ, g) =

πγ(g) = π(g, γ) is smooth. As a consequence, C∞(G) and the space C∞(G)∞ of

smooth vectors coincide as locally convex spaces.

Now Π(γ, η) = γ ∗ η for γ ∈C∞
c (G) and η ∈C∞(G). In fact, for each x ∈G,

the point evaluation εx : C
∞(G)→C, θ �→ θ(x) is continuous linear. Hence

Π(γ, η)(x) =
(∫

G

γ(y)η(y−1·)dλG(y)
)
(x) =

∫
G

γ(y)η(y−1x)dλG(y) = (γ ∗ η)(x).

Thus Π is the map C∞
c (G)×C∞(G)→ C∞(G), (γ, η) �→ γ ∗ η, which is discon-

tinuous by [6, Proposition 7.1].

3. Proof of Proposition B

LEMMA 3.1

In the situation of Lemma 1.9, the bilinear mapping Π: C∞
c (G) × E → E∞ is
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separately continuous, hypocontinuous in its second argument, and sequentially

continuous. If E is barreled (e.g., if E is a Fréchet space), then Π is hypocontin-

uous in both arguments.

Proof

We need only show that Π is separately continuous. In fact, C∞
c (G) is barreled,

being a locally convex direct limit of Fréchet spaces (see [40, II.7.1, II.7.2]. Hence,

if Π is separately continuous, it automatically is hypocontinuous in its second

argument (see [40, II.5.2]) and hence sequentially continuous (see [33, Remark

following §40, 1. (5), p. 157]).
Fix γ ∈C∞

c (G), and let K be its support. Let Φ: E∞ →C∞(G,E) be as in

(1). The map Π(γ, ·) will be continuous if we can show that h := Φ◦Π(γ, ·) :E →
C∞(G,E) is continuous. By Lemma 1.4, this will hold if ĥ : E ×G→E,

(10) (v, g) �→ π(g)

∫
G

γ(x)π(x, v)dλG(x) =

∫
G

γ(g−1y)π(y, v)dλG(y)

is C0,∞. It suffices to show that ĥ is C∞. Given g0 ∈G, let U ⊆G be a relatively

compact, open neighborhood of g0. We show that ĥ is smooth on E × U . For

g ∈ U , the domain of integration can be replaced by the compact set UK ⊆ G

without changing the second integral in (10). By Lemma 1.5,

(E ×G)×G→E,
(
(v, g), y

)
�→ γ(g−1y)π(y, v)

is C∞,0. Its restriction to (E × U) × UK therefore satisfies the hypotheses of

Lemma 1.8, and hence the parameter-dependent integral ĥ|E×U is smooth.

Next, fix v ∈ E. For γ ∈ C∞
c (G), define ψ(γ) : G → C0

c (G,E) via

ψ(γ)(g)(y) := γ(g−1y)π(y, v). We claim the following:

(a) ψ(γ) ∈C∞(G,C0
c (G,E)) for each γ ∈C∞

c (G); and

(b) the linear map ψ : C∞
c (G)→C∞(G,C0

c (G,E)) is continuous.

Note that the integration operator I : C0
c (G,E)→E, η �→

∫
G
η(y)dλG(y) is con-

tinuous linear,∗ entailing that also

C∞(G,I) : C∞(
G,C0

c (G,E)
)
→C∞(G,E), f �→ I ◦ f

is continuous linear (see [26] or [22, Lemma 4.13]). If the claim holds, then the

formula Φ ◦Π(·, v) =C∞(G,I) ◦ψ shows that Φ ◦Π(·, v) is continuous, and thus

Π(·, v) is continuous. Hence, it only remains to establish the claim.

To prove (a), fix γ ∈ C∞
c (G), and let K be its support. It suffices to show

that, for each g0 ∈G and relatively compact, open neighborhood U of g0 in G, the

restriction ψ(γ)|U is smooth. As the latter has its image in C0
UK

(G,E), which is

a closed vector subspace of both C0
c (G,E) and C0(G,E) with the same induced

topology, it suffices to show that h := ψ(γ)|U is smooth as a map to C0(G,E)

∗In fact, the restriction of I to C0
K(G,E) is continuous for each compact set K ⊆G, because

q(I(γ))≤ ‖γ‖q,∞λG(K) for each continuous seminorm q on E and γ ∈C0
K(G,E).
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(see [5, Lemma 10.1]). But this is the case (by Lemma 1.4), as

ĥ : U ×G→E, (g, y) �→ γ(g−1y)π(y, v)

is C∞,0 (by Lemma 1.5). By Lemma 1.4, to prove (b) we need to check that

ψ̂ : C∞
c (G)×G→C0

c (G,E), ψ̂(γ, g)(y) = γ(g−1y)π(y, v)

is C0,∞. We show that ψ̂ is C∞. By Lemma 1.7, the map

θ : C∞
c (G)→C0

c (G,E), θ(γ)(y) := γ(y)π(y, v)

is continuous linear. The map τ : G×C∞
c (G)→C∞

c (G), τ(g, γ)(x) = γ(g−1x) is

smooth, by Lemma 1.6. Since ψ̂(γ, g) = θ(τ(g, γ)), also ψ̂ is smooth. �

Proof of Proposition B

As the inclusion map E∞ →E is continuous, the final assertions follow once we

have continuity of Π: C∞
c (G)×E →E∞.

We first assume that E is a Banach space. By Lemma 3.1, Π is hypocontin-

uous in the second argument. As the unit ball B ⊆E is bounded, it follows that

Π|C∞
c (G)×B is continuous (see Proposition 4 in [11, Chapter III, §5, no. 3]). Since

B is a 0-neighborhood, we conclude that Π is continuous.

If E is a proto-Banach G-module, then the topology on E is initial with

respect to a family fj : E →Ej of continuous linear G-equivariant maps to certain

Banach G-modules (Ej , πj). As a consequence, the topology on C∞(G,E) is

initial with respect to the mappings

hj :=C∞(G,fj) : C
∞(G,E)→C∞(G,Ej), γ �→ fj ◦ γ

(see [26]). Therefore, the topology on E∞ is initial with respect to the maps hj ◦Φ
(with Φ as in (1)). Now consider Φj : E

∞
j → C∞(G,Ej), w �→ (πj)w. Since fj ◦

πv = (πj)fj(v), we have fj(E
∞)⊆ (Ej)

∞. Moreover, the topology on E∞ is initial

with respect to the maps hj ◦Φ=Φj ◦ fj . By the Banach case already discussed,

Πj : C
∞
c (G)×Ej → (Ej)

∞, Πj(γ,w) :=
∫
G
γ(y)πj(y,w)dλG(y) is continuous for

each j ∈ J . Since Φj ◦ fj ◦Π=Φj ◦Πj ◦ (idC∞
c (G)×fj) is continuous for each j,

so is Π. �

4. Preliminaries for Propositions C, D, and E

If E is a vector space and (Uj)j∈J a family of subsets Uj ⊆E, we abbreviate∑
j∈J

Uj :=
⋃
F

∑
j∈F

Uj ,

for F ranging through the set of finite subsets of J .

4.1.
If E and F are complex locally convex spaces, then a function f : U → F on an

open set U ⊆E is called complex analytic (or C-analytic) if f is continuous and
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each x ∈ U has a neighborhood Y ⊆ U such that

(11) (∀y ∈ Y ) f(y) =
∞∑

n=0

pn(y− x)

pointwise, for some continuous homogeneous complex polynomials pn : E → F of

degree n (see [7], [17], [26], [38] for further information).

4.2.
If E and F are real locally convex spaces, following [38], [17], and [26] we call

a function f : U → F on an open set U ⊆ E real analytic (or R-analytic) if it

extends to a C-analytic function Ũ → FC on an open set Ũ ⊆EC.

4.3.
Both concepts are chosen in such a way that compositions of K-analytic maps

are K-analytic (for K ∈ {R,C}). They therefore give rise to notions of K-analytic

manifolds modeled on locally convex spaces and K-analytic mappings between

them. If E is finite-dimensional (or Fréchet) and F is sequentially complete (or

Mackey-complete),∗ then a map f : E ⊇ U → F as in Section 4.2 is R-analytic

if and only if it is continuous and admits local expansions (11) into continuous

homogeneous real polynomials (cf. [7, Theorem 7.1] and [25, Lemma 1.1]), that

is, if and only if it is real analytic in the sense of [7].

By the next lemma (proved in Appendix A, like all other lemmas from this

section), our notion of analytic vector coincides with that in [15].

LEMMA 4.4

Let G be a connected Lie group with G⊆GC, let π : G×E →E be a topological

G-module, and let v ∈E. Then v ∈Eω if and only if the orbit map πv admits a

C-analytic extension GV →E for some open identity neighborhood V ⊆GC.

4.5.
The map d : G→ [0,∞[ from (5) has the following elementary properties:

(12) (∀x, y ∈G) d(xy)≤ d(x) + d(y) and d(x−1) = d(x).

It is essential for us that

(13)

∫
G

e−�d(g) dλG(g)<∞

for some � ∈ N0, by [13, Section 1, Lemme 2]. For each G-continuous seminorm

p on a topological G-module π : G×E →E, there exist C, c > 0 such that

(14) (∀g ∈G)(∀v ∈E) p
(
π(g, v)

)
≤Cecd(g)p(v),

as a consequence of [13, Section 2, Lemme 1].

∗In the sense that each Mackey–Cauchy sequence in F converges (see [34]).
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4.6.
Given a connected Lie group G with G ⊆ GC, let Ãn(G) be the space of all

C-analytic functions η : VnG→C such that

(15) ‖η‖K,N := sup
{∣∣η(z−1g)

∣∣eNd(g) : z ∈K,g ∈G
}
<∞

for each N ∈ N0 and compact set K ⊆ Vn (for Vn as in the introduction). Make

Ãn(G) a locally convex space using the norms ‖ · ‖K,N . It is essential for us that

the map

Ãn(G)→An(G), η �→ η|G
is an isomorphism of topological vector spaces. Its inverse is the map γ �→ γ̃

taking γ to its unique C-analytic extension γ̃ : VnG→ C (see [15, Lemma 4.3]).

Given γ ∈An(G) and K,N as before, we abbreviate ‖γ‖K,N := ‖γ̃‖K,N .

The next two lemmas show that the space Ãn(G) and its topology remain

unchanged if, instead, one requires (15) for all compact subsets K ⊆GVn.

LEMMA 4.7

If K ⊆GVn is compact, then there exists a compact set L⊆ Vn such that GK ⊆
GL.

LEMMA 4.8

If K,L ⊆ GVn are compact sets such that GK ⊆ GL, let θ := max{d(h) : h ∈
KL−1}<∞. Then ‖γ‖K,N ≤ eNθ‖γ‖L,N , for all γ ∈An(G) and N ∈N0.

We set up a notation for seminorms on En which define its topology.

4.9.
Let G be a connected Lie group with G ⊆ GC, and let E be a topological

G-module. If K ⊆GVn is compact and p a continuous seminorm on E, set

(16) ‖v‖K,p := sup
{
p
(
π̃v(z)

)
: z ∈K

}
for v ∈En.

We need a variant of Lemma 1.8 ensuring complex analyticity. The C1,0
C

-maps

encountered here are defined as in Section 1.3, except that complex directional

derivatives are used in the first factor.

LEMMA 4.10

Let Z, E be complex locally convex spaces, let U ⊆ Z be open, let Y be a

σ-compact locally compact space, let μ be a Borel measure on Y which is finite

on compact sets, and let f : U ×Y →E be a C1,0
C

-map. Assume that E is sequen-

tially complete, and assume that, for each continuous seminorm q on E, there

exists a μ-integrable function mq : Y → [0,∞] such that q(f(z, y))≤mq(y) for all

(z, y) ∈ U ×Y . Then g(z) :=
∫
Y
f(z, y)dμ(y) exists in E as an absolutely conver-

gent integral, for all z ∈ U , and g : U →E is C-analytic.

Also, the following fact from [15] will be used.



Continuity of LF-algebra representations 579

LEMMA 4.11

Let G be a connected Lie group with G ⊆ GC, and let (E,π) be a sequentially

complete proto-Banach G-module. Let n ∈ N. Then w := Π(γ, v) ∈ En for all

γ ∈ An(G) and v ∈ E. The C-analytic extension of the orbit map πw of w is

given by

(17) π̃w : GVn →E, z �→
∫
G

γ̃(z−1y)π(y, v)dλG(y).

The E-valued integrals in (17) converge absolutely.

The next two lemmas will enable a proof of Proposition D.

LEMMA 4.12

Let G be a connected Lie group such that G ⊆ GC and L(G) is a compact Lie

algebra. Then there exists a basis (Vn)n∈N of open, connected, relatively compact

identity neighborhoods Vn ⊆ GC such that Vn+1 ⊆ Vn and gVng
−1 = Vn for all

n ∈ N and g ∈G. In addition, one can achieve that {gxg−1 : g ∈ G,x ∈K} has

compact closure in Vn, for each n ∈N and each compact subset K ⊆ Vn.

LEMMA 4.13

Let G be a connected Lie group with a compact Lie algebra, and let G⊆GC. If

(E,π) is a sequentially complete proto-Banach G-module, let (Vn)n∈N be as in

Lemma 4.12, and define En using Vn, for each n ∈ N. Then w := Π(γ, v) ∈ En

for all γ ∈A(G) and v ∈En. The C-analytic extension of the orbit map πw of w

is given by

(18) π̃w : GVn →E, z �→
∫
G

γ(y)π̃v(zy)dλG(y).

The E-valued integrals in (18) converge absolutely.

LEMMA 4.14

In Lemma 4.11, the bilinear map Π: A(G)×E → Eω is separately continuous,

hypocontinuous in the second argument, and sequentially continuous. If E is bar-

reled (e.g., if E is a Fréchet space), then Π is hypocontinuous in both arguments.

Recall that a topological space X is said to be sequentially compact if it is Haus-

dorff and every sequence in X has a convergent subsequence (see [10, p. 208]).

LEMMA 4.15

If E is a locally convex space and K ⊆E a sequentially compact subset, then K

is bounded in E.

The following fact has also been used in [15, Appendix B] (without proof).
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LEMMA 4.16

An(G) is a Montel space, for each Lie group G such that G⊆GC and n ∈N.

5. Proof of Proposition C

Let W be a 0-neighborhood in Eω . Then there are 0-neighborhoods Sn ⊆ En

for n ∈ N such that
∑

n∈N
Sn ⊆W . Shrinking Sn if necessary, we may assume

that Sn = {v ∈ En : ‖v‖Kn,pn < 1} for some compact subset Kn ⊆ GVn and G-

continuous seminorm pn on E (with notation as in Section 4.9).

For the intermediate steps of the proof, we can proceed similarly as in

[15, proof of Proposition 4.6]: By 4.5, there exist Cn > 0, mn ∈ N0 such that

pn(π(g, v)) ≤ pn(v)Cne
mnd(g) for all g ∈ G and v ∈ E. Pick � ∈ N0 with C :=∫

G
e−�d(y) dλG(y)<∞ (see (13)), and setNn :=mn+�. For γ ∈An(G) and v ∈E,

we have w := Π(γ, v) ∈ En by Lemma 4.11, and π̃w is given by (17). The inte-

grand in (17) admits the estimate pn(γ̃(z
−1y)π(y, v))≤ pn(v)Cn‖γ‖Kn,Nne

−�d(y)

for all z ∈Kn, y ∈G (cf. (28) with x= 1). Hence

pn
(
π̃w(z)

)
≤ pn(v)CCn‖γ‖Kn,Nn .

By Lemma 4.7, there exists a compact subset Ln ⊆ Vn such that GKn ⊆ GLn.

Let θn := max{d(h) : h ∈KnL
−1
n }. If E has the countable neighborhood property,

then there exists a continuous seminorm p on E and constants an ≥ 0 such that

pn ≤ anp for all n ∈N. Thus, using Lemma 4.8,

pn
(
π̃w(z)

)
≤ anp(v)CCne

θnNn‖γ‖Ln,Nn .

Choose εn > 0 so small that εnanCCne
θnNn < 1, and set Pn := {γ ∈ An(G) :

‖γ‖Ln,Nn < εn}. Then ‖Π(γ, v)‖Kn,pn ≤ εnanCCne
θnNn < 1 for all v ∈Bp

1(0) and

γ ∈ Pn, and thus Π(Pn ×Bp
1(0))⊆ Sn. Then P :=

∑
n∈N

Pn is a 0-neighborhood

in A(G) and

Π
(
P ×Bp

1(0)
)
⊆

∑
n∈N

Π
(
Pn ×Bp

1(0)
)
⊆

∑
n∈N

Sn ⊆W.

Hence Π is continuous at (0,0) and hence continuous (as Π is bilinear).

6. Proof of Proposition D

Choose (Vn)n∈N as in Lemma 4.12. LetW be a 0-neighborhood in Eω . Then there

are 0-neighborhoods Sn ⊆En for n ∈N such that
∑

n∈N
Sn ⊆W . Shrinking Sn if

necessary, we may assume that Sn = {v ∈ En : ‖v‖Kn,pn < 1} for some compact

subset Kn ⊆ GVn and G-continuous seminorm pn on E (with notation as in

Section 4.9). After increasing Kn, we may assume that Kn =AnBn with compact

subsets An ⊆G and Bn ⊆ Vn.

By Section 4.5, there exist Cn > 0, mn ∈N0 such that pn(π(g, v))≤ pn(v)×
Cne

mnd(g) for all g ∈G and v ∈E. Then Rn := sup{emnd(x) : x ∈An}<∞. Pick

� ∈N0 with C :=
∫
G
e−�d(y) dλG(y)<∞ (see (13)).
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For i ∈ N, let Ni be the maximum of m1 + �, . . . ,mi + �. Pick εi ∈ ]0,2−i[

so small that RiCiCεi < 2−i. Set Pi := {γ ∈ Ai(G) : ‖γ‖Bi,Ni < εi}. Then P :=∑
i∈N

Pi is a 0-neighborhood in A(G).

For j ∈N, let qj be the pointwise maximum of p1, . . . , pj . Let Hj be the clo-

sure of {gyg−1 : g ∈G,y ∈Bj} in Vj . Choose δj ∈ ]0,2−j [ so small that CCjRjδj <

2−j . Set Qj := {v ∈Ej : ‖v‖Hj ,qj < δj}. Then Q :=
∑

j∈N
Qj is a 0-neighborhood

in Eω .

We now verify that Π(P × Q) ⊆ W , entailing that the bilinear map Π is

continuous at (0,0) and thus continuous. To this end, let γ ∈ P , v ∈ Q. Then

γ =
∑∞

i=1 γi and v =
∑∞

j=1 vj with suitable γi ∈ Pi and vj ∈Qj , such that γi �= 0

for only finitely many i and vj �= 0 for only finitely many j. Abbreviate wi,j :=

Π(γi, vj).

If j < i, then wi,j ∈Ej by Lemma 4.13. Moreover, (29) shows that

(19) ‖wi,j‖Kj ,pj ≤CCjRj‖γi‖mj+�‖vj‖Hj ,pj <CCjRjεiδj < 2−i2−j .

If i≤ j, then wi,j ∈Ei by Lemma 4.11, and (28) implies that

(20) ‖wi,j‖Ki,pi ≤RiCiC‖γi‖Bi,mi+�pi(vj)≤RiCiCεiδj < 2−i2−j .

For each n ∈N, we have
∑

min{i,j}=nwi,j ∈ Sn, since (by (19) and (20))∥∥∥ ∑
min{i,j}=n

wi,j

∥∥∥
Kn,pn

≤
∑

min{i,j}=n

2−i2−j < 1.

Hence Π(γ, v) =
∑∞

n=1

∑
min{i,j}=nwi,j ∈

∑
n∈N

Sn ⊆W , as required.

7. Proof of Proposition E

We use a variant of [42, Theorem 4], which does not require that the direct

sequence be strict.

PROPOSITION 7.1

Let G1 ⊆ G2 ⊆ · · · be a sequence of metrizable topological groups such that all

inclusion maps Gn → Gn+1 are continuous homomorphisms. Let ODL be the

direct limit topology on G :=
⋃

n∈N
Gn, and let OTG be the topology making G

the direct limit lim−→Gn as a topological group. Assume the following:

(a) for each n ∈N, there is m>n such that the set Gn is not open in Gm;

(b) there exists n ∈ N such that, for all identity neighborhoods U ⊆Gn and

m>n, the closure of U in Gm is not compact; and

(c) there exists a Hausdorff topology T on G making each inclusion map

Gn → G continuous, and such that every sequentially compact subset of (G,T )

is contained in some Gn and compact in there.

Then ODL does not make the group multiplication G×G→G continuous, and

hence ODL �=OTG.
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REMARK 7.2

By definition, a set M ⊆ G is open (resp., closed) in (G,ODL) if and only if

M ∩Gn is open (resp., closed) in Gn for each n ∈N. By contrast, OTG is defined

as the finest among the topologies on G making G a topological group, and

each inclusion map Gn →G continuous (see [20], [24], [30], [42] for comparative

discussions of ODL and OTG).

Proof of Proposition 7.1

If Gn is not open in Gm for some m>n, then Gn also fails to be open in Gk for all

k >m. In fact, let im,k : Gm →Gk be the continuous inclusion map. If Gn were

open in Gk, then Gn = i−1
m,k(Gn) would also be open in Gm, a contradiction.

Similarly, if n is as in (b) and k > n, then also Gk does not have an identity

neighborhood which has compact closure in G� for some � > k. In fact, if U

were such a neighborhood, then i−1
k,n(U) would be an identity neighborhood in

Gn whose closure in G� is contained in U and hence compact, a contradiction.

After passing to a subsequence, we may hence assume that Gn is not open in

Gn+1 (and hence not an identity neighborhood), for each n ∈ N. And we can

assume that, for each n ∈N and identity neighborhood U ⊆Gn, for each m> n

the closure of U in Gm is not compact.

If ODL makes the group multiplication continuous, then for every iden-

tity neighborhood U ⊆ (G,ODL), there exists an identity neighborhood W ⊆
(G,ODL) such that WW ⊆ U . Then

(21) (∀n ∈N) (W ∩G1)(W ∩Gn)⊆ U ∩Gn.

Thus, assuming (a)–(c), ODL will not be a group topology if we can construct

an identity neighborhood U ⊆ (G,ODL) such that (21) fails for each W .

To achieve this, let dn be a metric on Gn defining its topology, for n ∈ N.

Let V1 ⊇ V2 ⊇ · · · be a basis of identity neighborhoods in G1.

Since Gn is metrizable and Gn−1 is not an identity neighborhood in Gn,

for each n ≥ 2 we find a sequence (xn,k)k∈N in Gn \ Gn−1 such that xn,k → 1

in Gn as k →∞. Let K := Vn−1 be the closure of Vn−1 in Gn. Then K cannot

be sequentially compact in (G,T ), as otherwise K would be compact in Gm for

some m ∈N (by (c)), contradicting (b). Hence K contains a sequence (wn,k)k∈N

which does not have a convergent subsequence in (G,T ) and hence does not have

a convergent subsequence in Gm for any m≥ n. Pick zn,k ∈ Vn−1 such that

(22) dn(wn,k, zn,k)<
1

k
.

Then also (zn,k)k∈N does not have a convergent subsequence in Gm for anym≥ n.

(If zn,k�
were convergent, then wn,k�

would converge to the same limit, by (22).)

Moreover, (zn,kxn,k)k∈N does not have a convergent subsequence (zn,k�
xn,k�

)�∈N

in Gm for any m ≥ n (because then zn,k�
= (zn,k�

xn,k�
)x−1

n,k�
would converge, a

contradiction).

As a consequence, the set Cn := {zn,kxn,k : k ∈ N} is closed in Gm for each

m ≥ n. Also note that zn,kxn,k ∈ Gn \Gn−1 and thus Cn ⊆ Gn \Gn−1. Hence
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An :=
⋃n

ν=2Cν is a closed subset of Gn for each n≥ 2, and A :=
⋃

n≥2An is closed

in (G,ODL) because A ∩Gn = An is closed for each n ≥ 2. Thus U := G \A is

open in (G,ODL), and U ∩Gn = Gn \ An. We show that WW �⊆ U for any 0-

neighborhood W ⊆ G. In fact, there is n ≥ 2 such that Vn−1 ⊆ W ∩ G1. Since

xn,k → 0 in Gn as k→∞, there is k0 ∈N such that xn,k ∈W ∩Gn for all k ≥ k0.

Also, zn,k0 ∈ Vn−1. Hence zn,k0xn,k0 ∈ (W ∩G1)(W ∩Gn). But zn,k0xn,k0 ∈An,

and thus zn,k0xn,k0 /∈ U ∩Gn. As a consequence, WW �⊆ U . �

Because the locally convex direct limit topology Olcx on an ascending union of

locally convex spaces coincides with OTG (see [30, Proposition 3.1]), we obtain

the following.

COROLLARY 7.3

Let E1 ⊆E2 ⊆ · · · be metrizable locally convex spaces such that all inclusion maps

En →En+1 are continuous linear. On E :=
⋃

n∈N
En, let ODL be the direct limit

topology, and let Olcx be the locally convex direct limit topology. Then ODL �=Olcx

if (a)–(c) are satisfied.

(a) For each n ∈N, there exists m>n such that Em \En �= ∅.
(b) There exists n ∈N such that, for each 0-neighborhood U ⊆En and m>n,

the closure of U in Em is not compact.

(c) Olcx is Hausdorff, and every sequentially compact subset of (E,Olcx) is

contained in some En and compact in there.

It is convenient to make the special choice of the Vn proposed in [15] now. To this

end, extend g to a left-invariant Riemannian metric on GC, write dC : GC×GC →
[0,∞[ for the associated distance function, and set dC(z) := dC(z,1) for z ∈GC.

For ρ > 0, let

Bρ :=
{
z ∈GC : dC(z)< ρ

}
be the respective open ball around 1. Then the sets Vn :=B1/n, for n ∈N, have

properties as described in the introduction. Notably, Bρ is compact for each ρ > 0

and hence also each Vn (see [13, p. 74]).

LEMMA 7.4

Let G be a connected Lie group with G⊆GC, and let G �= {1}. Then the sequence

A1(G)⊆A2(G)⊆ · · · does not become stationary.

Proof

Step 1. If G is compact, then G is isomorphic to a closed subgroup of some unitary

group. Hence G can be realized as a closed R-analytic submanifold of some R
k

(which is also clear from [27, Theorem 3]), entailing that R-analytic functions

(like restrictions of linear functionals) separate points on G. In particular, there

exists a nonconstant R-analytic function γ : G→R, and the latter then extends

to a C-analytic function γ̃ on some neighborhood of G in GC, which (since G
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is compact) can be assumed to be of the form GVm for some m ∈ N. Then

γ̃ ∈ Ãm(G) (noting that d is bounded).

Step 2. If G is not compact, we recall the regularized distance function: There

exist m ∈N and a C-analytic function d̃ : GVm →C such that

C := sup
{∣∣d̃(gz)− d(g)

∣∣ : g ∈G,z ∈ Vm

}
<∞

(see [14, Lemma 4.3]). Then also θ : VmG → C, θ(z) := d̃(z−1) is C-analytic,

and |θ(zg) − d(g)| = |d̃(g−1z−1) − d(g−1)| ≤ C for all z ∈ Vm and g ∈ G. Since

{x ∈ G : d(g) ≤ R} is compact for each R > 0 (see [13]), for each R > 0 there

exists g ∈G such that d(g)>R and thus |θ(g)|>R−C. Hence θ is not constant,

and hence also θ2 and Re(θ2) are not constant. If N ∈ N0, there is rN > 0 such

that

a2 − 2aC −C2 ≥Na for all a≥ rN .

Since θ(zg)2 = d(g)2 + 2(θ(zg)− d(g))d(g) + (θ(zg)− d(g))2, we deduce that

Re
(
θ(zg)2

)
≥ d(g)2 − 2Cd(g)−C2 ≥Nd(g)

for all z ∈ Vm and all g ∈G such that d(g)≥ rN . We also have

Re
(
θ(zg)2

)
≥−

∣∣θ(zg)2∣∣≥−
(
d(g) +C

)2
for all z ∈ Vm, g ∈G.

Thus γ : VmG→C, γ(z) := e−θ(z)2 is nonconstant, C-analytic, and∣∣γ(zg)∣∣eNd(g) = e−Re(θ(zg)2)eNd(g) ≤ e(rN+C)2+NrN

for all z ∈ Vm, g ∈ G. Hence ‖γ‖K,N < ∞ for each compact set K ⊆ Vm and

N ∈N0. Thus γ ∈ Ãm(G), and hence Ãn(G) �= {0} for all n≥m.

Step 3. In either case, let γ̃ ∈ Ãm(G) be a nonconstant function, and let

n > m. Then also γ := γ̃|G is nonconstant (as G is totally real in GC). If G is

compact, then |γ| attains a maximum a > 0. If G is noncompact, then γ vanishes

at infinity. Hence |γ(G)| ∪ {0} is compact, and hence |γ| attains a maximum

a > 0. In either case, because γ̃ is an open map, there exists z0 ∈ VnG such

that |γ̃(z0)| > a. Set b := γ̃(z0). The set K := {(v, g) ∈ Vn × G : γ̃(vg) = b} is

compact. After replacing z0 with v0g0 for suitable (v0, g0) ∈K, we may assume

that z0 is of the form v0g0 with ρ := dC(v0) = min{dC(v) : (v, g) ∈K}> 0. Then

W := {z ∈ VnG : γ̃(z) �= b} is an open subset of VnG such that G⊆W , and

θ : W →C, θ(z) :=
γ̃(z)

γ̃(z)− b

is a C-analytic function. Set Bρ := {z ∈GC : dC(z)< ρ}. Then BρG⊆W , by the

minimality of dC(v0). Also ρ < 1/n (as z0 ∈ VnG). Let k ∈ N such that 1/k < ρ

(and thus k > n). Then VkG ⊆ W . We show that η := θ|G ∈ Ak(G) but η /∈
An(G). Let K ⊆ Vk be compact. Since |γ̃(z−1g)| ≤ ‖γ̃‖K,1e

−d(g) and d(g)→∞
as g→∞, there exists a compact subset L⊆G such that

(∀z ∈K,g ∈G \L)
∣∣γ̃(z−1g)

∣∣ ≤ a.
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Hence |γ̃(z−1g)− b| ≥ |b| − |γ̃(z−1g)| ≥ |b| − a > 0, and thus, for each N ∈N0,

∣∣θ(z−1g)
∣∣eNd(g) ≤ |γ̃(z−1g)|eNd(g)

|b| − a
≤ ‖γ̃‖K,N

|b| − a

for all z ∈ K and g ∈ G \ L. Since |θ(z−1g)|Nd(g) is bounded for (z, g) in the

compact set K ×L, we deduce that ‖θ‖K,N <∞. Hence η̃ := θ|VkG ∈Ak(G) and

η := η̃|G ∈Ak(G).

We have η /∈ An(G). If η were in An(G), we could find σ ∈ Ãn(G) with

σ|G = η. Then θ|BρG = σ|BρG, as BρG is a connected open set in GC, and θ

coincides with σ on the totally real submanifold G of BρG. Given ε ∈ ]0, ρ[, let

cε : [0,1]→GC be a piecewise C1-path with cε(0) = 1 and cε(1) = v0, of length

< dC(v0) + ε= ρ+ ε. Let tε ∈ [0,1] such that cε|[tε,1] has length ε. Then

(23) dC

(
cε(tε), v0

)
= dC

(
cε(tε), cε(1)

)
≤ ε.

Likewise, dC(cε(tε)) = dC(cε(tε),1) is bounded by the length of cε|[0,tε], and hence

< ρ+ ε− ε= ρ. Hence cε(tε) ∈Bρ, and thus

θ
(
cε(tε)g0

)
= σ

(
cε(tε)g0

)
→ σ(v0g0) = σ(z0)

as ε→ 0 (noting that cε(tε)→ v0 by (23)). But |θ(z)| →∞ as z ∈W tends to z0,

a contradiction. �

Proof of Proposition E

Each step Hn :=An(G)×E is metrizable. For each n ∈ N, there is m> n such

that Hn �=Hm as a set (by Lemma 7.4). Hence condition (a) in Corollary 7.3 is

satisfied. Also (b) is satisfied: Given n and a 0-neighborhood U ⊆Hn, we cannot

find m≥ n such that the closure U of U in Hm is compact, because ({0}×E)∩U

would be a compact 0-neighborhood in {0} ×E ∼=E then, and thus E is finite-

dimensional (contradiction). To verify (c), let K ⊆ A(G)× E be a sequentially

compact set (with respect to the locally convex direct limit topology). Then

the projections K1 and K2 of K to the factors A(G) and E, respectively, are

sequentially compact sets. Since E is metrizable, K2 ⊆ E is compact. Now, the

sequentially compact set K1 ⊆A(G) is bounded (see Lemma 4.15). Because the

locally convex direct limit A(G) = lim−→An(G) is regular (see [15, Theorem

B.1]), it follows that K1 ⊆An(G) for some n ∈N, and K1 is bounded in An(G).

As An(G) is a Montel space (see Lemma 4.16), it follows that K1 has compact

closure K1 in An(G). Now K is a sequentially compact subset of the compact

metrizable set K1×K2 ⊆A(G)×E and hence compact in the induced topology.

As An(G) × E and A(G) × E induce the same topology on the compact set

K1 ×K2, it follows that K is also compact in An(G)×E. Thus all conditions of

Corollary 7.3 are satisfied, and thus ODL �=Olcx. �

8. (A(G), ·) as a topological algebra

If n,m ∈ N, γ ∈An(G), and η ∈Am(G), then the pointwise product γ̃ · η̃ of the

complex analytic extensions is defined on VkG with k := n ∨m := max{n,m}.
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If K ⊆ Vk is a compact subset and N,M ∈ N0, then |γ̃η̃(z−1g)|e(N+M)d(g) =

|γ̃(z−1g)|eNd(g)|η̃(z−1g)|eMd(g) for all z ∈K, g ∈G, and thus

(24) ‖γ̃ · η̃‖K,N+M ≤ ‖γ̃‖K,N‖η̃‖K,M <∞,

whence γ̃ · η̃ ∈ Ãk(G), and hence γ · η ∈ Ak(G). Thus pointwise multiplication

makes A(G) an algebra.

To see that the multiplication is continuous at (0,0), let W ⊆ A(G) be a

0-neighborhood. There are 0-neighborhoods Wn ⊆An(G) such that
∑

n∈N
Wn ⊆

W . We have to find 0-neighborhoods Qn ⊆An(G) such that∑
(n,m)∈N2

Qn ·Qm ⊆W.

This will be the case if we can achieve

(25) (∀k ∈N)
∑

n∨m=k

Qn ·Qm ⊆Wk.

We may assume that Wn = {γ ∈An(G) : ‖γ‖Kn,Nn < εn} for some compact sub-

set Kn ⊆ Vn, Nn ∈ N0 and εn ∈ ]0,1]. After replacing Kn with Kn ∪ Vn+1, we

may assume that Kn ⊇ Vn+1, and thus Kn ⊇Kn+1, for each n ∈N. Thus

K1 ⊇K2 ⊇K3 ⊇ · · · .

Then the 0-neighborhoods

Qn :=
{
γ ∈An(G) : ‖γ‖Kn,Nn <

εn
n2

}
satisfy (25). To see this, let k ∈ N and (n,m) ∈ N2 be such that n ∨m = k. If

n= k, using (24) and Kn ⊆Km we estimate

‖γ · η‖Kk,Nk
= ‖γ · η‖Kn,Nn = ‖γ‖Kn,Nn‖η‖Kn,0 ≤ ‖γ‖Kn,Nn‖η‖Km,0

<
εnεm
n2m2

≤ εn
n2

=
εk
k2

.

Likewise, ‖γ · η‖Kk,Nk
≤ ‖γ‖Kn,0‖η‖Km,Nm < εk/k

2 if m= k. Since there are at

most k2 pairs (n,m) with n∨m= k, for all choices of γn,m ∈Qn, ηn,m ∈Qm the

triangle inequality yields∥∥∥ ∑
n∨m=k

γn,m · ηn,m
∥∥∥
Kk,Nk

< k2
εk
k2

,

and thus
∑

n∨m=k γn,m · ηn,m ∈Wk, verifying (25).

Appendix A: Proofs of the lemmas in Sections 1 and 4

Proof of Lemma 1.5

For fixed y ∈ U2, the map s : U1×U1 → F , s(x1, x2) := g(x1, y)π(y,h(x2)) is C
1,0

and C0,1 and hence C1. By linearity, ds((x1, x2), ·) is the sum of the partial

differentials and hence is given by

ds
(
(x1, x2), (u1, u2)

)
= d(1,0)g(x1, y, u1)π

(
y,h(x2)

)
+ g(x1, y)d

(0,1)π
(
y, dh(x2, u2)

)
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for all x1, x2 ∈ U2 and u1, u2 ∈ E1. Thus d(1,0)f(x, y,u) exists for all (x, y,u) ∈
U1 ×U2 ×E1 and is given by

d(1,0)f(x, y,u) = g1
(
(x,u), y

)
π
(
y,h(x)

)
+ g(x, y)π

(
y, dh(x,u)

)
with g1((x,u), y) := d(1,0)g(x, y,u). Set f1((x,u), y) := d(1,0)f(x, y,u). By induc-

tion, f1 : (U1 × E1) × U2 → F is Ck,0, whence d(j+1,0)f(x, y,u,u1, . . . , uj) =

d(j,0)f1((x,u), y, (u1,0), . . . , (uj ,0)) exists for all j ∈ N0 with j ≤ k and u1, . . . ,

uj ∈E1, and is continuous in (x, y,u,u1, . . . , uj). Thus f is Ck+1,0. �

Direct sums of locally convex spaces are always endowed with the locally convex

direct sum topology in this article (as in [9]; see also [32]). To enable the proof

of Lemma 1.6, we shall need the following fact.

LEMMA A.1

Let E be a locally convex space, let r ∈N0∪{∞}, let M be a paracompact, finite-

dimensional Cr-manifold, and let (Uj)j∈J be a locally finite cover of M by rela-

tively compact, open sets Uj . Then the following map is linear and a topological

embedding:

(26) Ψ: Cr
c (M,E)→

⊕
j∈J

Cr(Uj ,E), Ψ(γ) = (γ|Uj )j∈J .

Proof

The linearity is clear. If K ⊆M is a compact set, then J0 := {j ∈ J : K ∩Uj �= ∅}
is finite. The restriction ΨK of Ψ to Cr

K(M,E) has image in
⊕

j∈J0
Cr(Uj ,

E) ∼=
∏

j∈J0
Cr(Uj ,E) and is continuous as its components Cr

c (M,E) →
Cr(Uj ,E), γ �→ γ|Uj are continuous (cf. [16, Lemma 3.7]). Since Cr

c (M,E) =

lim−→Cr
K(M,E) as a locally convex space, it follows that Ψ is continuous.

Now pick a Cr-partition of unity (hj)j∈J with Kj := supp(hj)⊆ Uj . Then each

mhj : C
r(M,E)→ Cr

Kj
(M,E), γ �→ hj · γ is continuous linear (e.g., as a special

case of [22, Proposition 4.16]), and hence so is the map μ :
⊕

j∈J C
r(Uj ,E)→⊕

j∈J C
r
Kj

(Uj ,E), (γj)j∈J �→ (hjγj)j∈J . Since μ ◦ Ψ is an embedding (see [6,

Lemma 1.3]), also Ψ is a topological embedding. �

We also use a tool from [23], which is a version of [19, Proposition 7.1] with

parameters in a set U (for countable J , see [22, Proposition 6.10]).

LEMMA A.2

Let X be a finite-dimensional vector space, let U ⊆X be open, and let (Ej)j∈J

and (Fj)j∈J be families of locally convex spaces. Let Uj ⊆ Ej be open, let r ∈
N0 ∪ {∞}, and let fj : U × Uj → Fj be a map. Assume that there is a finite set

J0 ⊆ J such that 0 ∈ Uj and fj(x,0) = 0 for all j ∈ J \ J0 and x ∈ U . Then⊕
j∈J Uj := (

⊕
j∈J Ej)∩

∏
j∈J Uj is open in

⊕
j∈J Ej , and we can consider

f : U ×
⊕
j∈J

Uj →
⊕
j∈J

Fj , f
(
x, (xj)j∈J

)
:=

(
fj(x,xj)

)
j∈J

.
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(a) If J is countable and each fj is Cr, then f is Cr.

(b) If J is uncountable and each fj is Cr+1, then f is Cr.

The conclusion of (b) remains valid if each fj is C0,1 and the mappings fj and

d(0,1)fj : U ×Uj ×Ej → Fj are Cr.

Proof of Lemma 1.6

Given g0 ∈G, let U ⊆G be a relatively compact, open neighborhood of g0. We

show that πU : U × C∞
c (G)→ C∞

c (G), (g, γ) �→ π(g, γ) is smooth. To this end,

let (Uj)j∈J be a locally finite cover of G by relatively compact, open sets Uj .

Then also (U−1Uj)j∈J is locally finite.∗ As a consequence, both Ψ: C∞
c (G)→⊕

j∈J C
∞(Uj), Ψ(γ) := (γ|Uj )j∈J and the corresponding restriction map

Θ: C∞
c (G)→

⊕
j∈J C

∞(U−1Uj) are linear topological embeddings (see Lemma

A.1). Since

im(Ψ) =
{
(γj)j∈J : (∀i, j ∈ J)(∀x ∈ Ui ∩Uj)γi(x) = γj(x)

}
is a closed vector subspace of

⊕
j∈J C

∞(Uj), the map πU will be smooth if we can

show that Ψ ◦ πU is smooth (cf. [5, Lemma 10.1]). For each j ∈ J , the evaluation

map εj : C
∞(U−1Uj)× U−1Uj → C, εj(γ,x) := γ(x) is smooth (see [26] or [22,

Proposition 11.1]). Lemma 1.4 shows that

Ξj : U ×C∞(U−1Uj)→C∞(Uj), Ξj(g, γ)(x) := γ(g−1x)

is C∞, as Ξ̂j : U ×C∞(U−1U)×Uj → C, Ξ̂j(g, γ, x) := γ(g−1x) = εj(γ, g
−1x) is

smooth. Then

Ξ: U ×
⊕
j∈J

C∞(UUj)→
⊕
j∈J

C∞(Uj), Ξ
(
x, (γj)j∈J

)
:=

(
Ξj(x,γj)

)
j∈J

is C∞, by Lemma A.2. Hence Ψ ◦ πU =Ξ ◦ (idU ×Θ) (and hence πU ) is C
∞. �

Proof of Lemma 1.7

Since C0
c (M) = lim−→C0

K(M) as a locally convex space, the linear map mf will

be continuous if C0
K(M)→C0

K(M,E), γ �→ γf is continuous. This is the case by

[16, Lemma 3.9]. �

Proof of Lemma 1.8

It suffices to prove the lemma for r ∈N0. By [6, Lemma A.2], g is continuous. If

r > 0, k ∈N0 with k ≤ r, p ∈ P , and q1, . . . , qk ∈X , there is ε > 0 such that

h(t1, . . . , tk) := g
(
p+

k∑
j=1

tkqj

)

is defined for (t1, . . . , tk) in some open 0-neighborhood W ⊆ R
k. By [6, Lemma

A.3], h : W → E is Ck, and d(k,0)g(x, p, q1, . . . , qk) = ∂(1,...,1)h(0, . . . ,0) =∫
K
(D(qk,0) · · ·D(q1,0)f)(p,x)dμ(x) =

∫
K
d(k,0)f(p,x, q1, . . . , qk)dμ(x). By the case

r = 0, the right-hand side is continuous in (p, q1, . . . , qk). So g is Cr. �

∗If K ⊆G is compact, then U−1Uj ∩K 	= ∅ ⇔ Uj ∩UK 	= ∅.
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Proof of Lemma 1.9

Let K := supp(γ) ⊆ G. For g ∈ G, we have πw(g) = π(g,w) =
∫
G
γ(y)π(g,

π(y, v))dλG(y) =
∫
G
γ(y)π(gy, v)dλG(y) =

∫
G
γ(g−1y)π(y, v)dλG(y), using left

invariance of the Haar measure for the last equality. Given g0 ∈ G, let U ⊆ G

be an open, relatively compact neighborhood of g0. As g
−1y ∈K implies y ∈ UK

for g ∈ U and y ∈G, we get

πw(g) =

∫
UK

γ(g−1y)π(y, v)dλG(y) for all g ∈ U .

Since U × UK → E, (g, y) �→ γ(g−1y)π(y, v) is a C∞,0-map, Lemma 1.8 shows

that πw|U is smooth. Hence πw is smooth, and thus w ∈ E∞ indeed. Testing

equality with continuous linear functionals and using Fubini’s theorem and then

left invariance of the Haar measure, one verifies that

Π(γ ∗ η, v) =
∫
G

∫
G

γ(z)η(z−1y)π(y, v)dλG(z)dλG(y)

=

∫
G

γ(z)

∫
G

η(z−1y)π(y, v)dλG(y)dλG(z)

=

∫
G

γ(z)

∫
G

η(y)π(zy, v)dλG(y)dλG(z)

=

∫
G

γ(z)π
(
z,Π(η, v)

)
dλG(z)

= Π
(
γ,Π(η, v)

)
.

Hence E (and E∞) are C∞
c (G)-modules. �

Proof of Lemma 4.4

If πv has a C-analytic extension π̃v to GV for some open identity neighborhood

V ⊆GC, then (like any C-analytic map) π̃v is R-analytic (see [26]). As inclusion

j : G→GC is R-analytic, so is πv = π̃v ◦ j.
Conversely, assume that πv is R-analytic. There is an open 0-neighborhood

W ⊆ L(G)C such that φ := expGC
|W is a C-analytic diffeomorphism onto an

open subset φ(W ) in GC, φ(W ∩ L(G)) = G ∩ φ(W ), and ψ := φ|W∩L(G) is an

R-analytic diffeomorphism onto its image in G. Then πv ◦ ψ is R-analytic and

hence extends to a C-analytic map f : W̃ →E for some open set W̃ ⊆W contain-

ing W ∩ L(G), and thus φ(W̃ )→E, z �→ f(φ−1(z)) is a C-analytic extension of

πv|W∩L(G). We now find n ∈N such that Vn ⊆ φ(W̃ ) and Un ⊆ im(ψ), using the

notation from [15]. Hence v ∈ Ẽn, and hence v ∈E4n, by [15, Lemma 3.2]. �

Proof of Lemma 4.7

For each k ∈K, there are gk ∈G and vk ∈ Vn such that k = gkvk. Let Pk ⊆ Vn be

a compact neighborhood of vk. Then (gkP
0
k )k∈K is an open cover of K, whence

there exists a finite subset F ⊆K such that K ⊆
⋃

k∈F gkPk. Then P :=
⋃

k∈F Pk

is a compact subset of Vn and GK ⊆GP . �
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Proof of Lemma 4.8

If z ∈ K, then z = h� for some h ∈ G and � ∈ L. Then h = z�−1 ∈ KL−1. For

g ∈G, we have∣∣γ(z−1g)
∣∣eNd(g) =

∣∣γ(
�−1(h−1g)

)∣∣eNd(g) ≤ eNd(h)
∣∣γ(

�−1(h−1g)
)∣∣eNd(h−1g)

as d(g) = d(h(h−1g))≤ d(h) + d(h−1g). The assertion follows. �

Proof of Lemma 4.10

Let K1 ⊆ K2 ⊆ · · · be compact subsets of Y such that Y =
⋃

n∈N
Kn. Then

gn(z) :=
∫
Kn

f(z, y)dμ(y) exists for all z ∈ U (see [29, Proposition 1.2.3]). By

Lemma 1.8, the map gn : U →E is C1 with dgn(z,w) =
∫
Kn

d(1,0)f(z, y,w)dμ(y),

which is C-linear in w ∈ Z. As E is sequentially complete, this implies that gn
is C-analytic (see [18, 1.4]). For each continuous seminorm q on E, we have∫
Y
q(f(z, y))dμ(y) ≤

∫
Y
mq(y)dμ(y) < ∞. Since limn→∞

∫
Kn

mq(y)dμ(y) =∫
Y
mq(y)dμ(y), given ε > 0 there exists N ∈N such that

∫
Y \Kn

mq(y)dμ(y)< ε

for all n≥N . Hence

(27) q
(
g�(z)− gn(z)

)
≤

∫
K�\Kn

mq(y)dμ(y)< ε

for all � ≥ n ≥ N , showing that (gn(z))n∈N is a Cauchy sequence in E

and hence convergent to some element g(z) ∈E. For each continuous linear func-

tional λ : E →C, we have |λ(f(z, y))| ≤m|λ|(y), whence the function |λ(f(z, ·))|
is μ-integrable and

∫
Y
λ(f(z, y))dμ(y) = limn→∞

∫
Kn

λ(f(z, y))dμ(y) =

limn→∞ λ(gn(z)) = λ(limn→∞ gn(z)) = λ(g(z)). Hence g(z) is the weak integral∫
Y
f(z, y)dμ(y). As

∫
Y
q(f(z, y))dμ(y) ≤

∫
Y
mq(y)dμ(y) < ∞, the integral∫

Y
f(z, y)dμ(y) is absolutely convergent. Letting � → ∞ in (27), we see that

q(g(z)− gn(z))≤ ε for all z ∈ U and n≥N . Thus gn → g uniformly. Since E is

sequentially complete, the uniform limit g of C-analytic functions is C-analytic

(see [7, Proposition 6.5]), which completes the proof. �

Proof of Lemma 4.11

(See [15, Section 4.3, p. 1592] for an alternative argument.) Given z0 ∈ Vn and x ∈
G, let K ⊆ Vn be a compact neighborhood of z0. If q is a G-continuous seminorm

on E, then there exist Cq ≥ 0 and m ∈ N0 such that q(π(y, v)) ≤ q(v)Cqe
md(y)

(see (14)). Choose � ∈ N0 such that C :=
∫
G
e−�d(y) dλG(y) <∞ (see (13)). For

N ∈N0 with N ≥m+ �, we obtain, using d(y) = d(xx−1y)≤ d(x) + d(x−1y),

q
(
γ̃(z−1y)π(y, v)

)
≤

∣∣γ̃(k−1x−1y)
∣∣q(π(y, v))

≤
∣∣γ̃(k−1x−1y)

∣∣eNd(x−1y)Cqe
(m−N)d(y)eNd(x)q(v)(28)

≤ Cqe
Nd(x)‖γ‖K,Ne−�d(y)q(v)

for all z = xk with k ∈ K, and all y ∈ G. Hence Lemma 4.10 shows that the

integral in (17) converges absolutely for all z ∈ xK0 and defines a C-analytic

function xK0 →E. Since xz0 ∈GVn was arbitrary, the integral in (17) exists for
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all z ∈GVn and defines a C-analytic function η : GVn →E. For x ∈G,

π(x,w) = π(x, ·)
(∫

G

γ(y)π(y, v)dλG(y)
)
=

∫
G

γ(y)π
(
x,π(y, v)

)
dλG(y)

=

∫
G

γ(y)π(xy, v)dλG(y) =

∫
G

γ(x−1y)π(y, v)dλG(y) = η(x)

by left invariance of the Haar measure. Hence η is a C-analytic extension of πw

to GVn, whence w ∈En and π̃w = η. �

Proof of Lemma 4.12

Since L(G) is a compact Lie algebra, there exists a positive definite bilinear

form 〈·, ·〉 : L(G)×L(G)→R making ead(x) =Ad(expG(x)) an isometry for each

x ∈ L(G). Since G is generated by the exponential image, it follows that Ad(g) is

an isometry for each g ∈ G. Now use the same symbol, 〈·, ·〉, for the unique

extension to a Hermitian form L(G)C × L(G)C → C. Write Br ⊆ L(G)C for

the open ball of radius r around zero. After replacing the form by a posi-

tive multiple if necessary, we may assume that expGC
restricts to a homeo-

morphism φ from B1 onto a relatively compact, open subset of GC. Then the

sets Vn := expGC
(B1/n) form a basis of relatively compact, connected open iden-

tity neighborhoods, such that Vn+1 ⊆ Vn and gVng
−1 = expGC

(Ad(g)(B1/n)) =

expGC
(B1/n) = Vn. If K ⊆ Vn is compact, then A := φ−1(K) is a compact sub-

set of B1/n, and thus r := max{
√
〈x,x〉 : x ∈ A} < 1/n. Then expGC

(Br) is a

compact, conjugation-invariant subset of G which contains K, and thus

{gxg−1 : g ∈G,x ∈K} ⊆ expGC
(Br)⊆ Vn. �

Proof of Lemma 4.13

Let x0 ∈G, z0 ∈ Vn and K ⊆ Vn be a compact neighborhood of y0. Then K1 :=

{gzg−1 : g ∈G,z ∈K} ⊆ Vn is compact, by choice of Vn. If q is a G-continuous

seminorm on E, then there exist Cq ≥ 0 and m ∈ N0 such that q(π(y, v)) ≤
q(v)Cqe

md(y) (see (14)). Then ‖v‖K1,q := sup q(π̃v(K1))<∞. Choose � ∈N0 such

that C :=
∫
G
e−�d(y) dλG(y)<∞ (see (13)). Note that π̃v(xzy) = π̃v(xyy

−1zy) =

π(xy, π̃v(y
−1zy)) for all x ∈G, z ∈K, and y ∈G, where y−1zy ∈K1. Thus

q
(
γ(y)π̃v(xzy)

)
=

∣∣γ(y)∣∣q(π(
xy, π̃v(y

−1zy)
))

=
∣∣γ(y)∣∣Cqe

md(xy)q
(
π̃v(y

−1zy)
)

(29)
≤ Cq‖v‖K1,q

∣∣γ(y)∣∣emd(y)emd(x)

≤ Cq‖v‖K1,qe
md(x)‖γ‖m+�e

−�d(y),

using the notation from (6). Hence Lemma 4.10 shows that the integral in (18)

converges absolutely for all z ∈ xK0 and defines a C-analytic function xK0 →E.

Notably, this holds for x = x0. Since x0z0 ∈ GVn was arbitrary, the integral in

(18) exists for all z ∈GVn and defines a C-analytic map η : GVn →E. For x ∈G,

we have π(x,w) =
∫
G
γ(y)π(x,π(y, v))dλG(y) = η(x). Hence η is a C-analytic

extension of πw to GVn, and thus w ∈En and π̃w = η. �
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Proof of Lemma 4.14

We need only show that Π is separately continuous. In fact, A(G) is barreled,

being a locally convex direct limit of the Fréchet spaces An(G) (see [40, II.7.1,

II.7.2]). Hence, if Π is separately continuous, it automatically is hypocontinuous

in its second argument (see [40, II5.2]) and hence sequentially continuous (see

[33, p. 157, Remark following §40.1(5)]).
Let Πn : An(G)×E → Eω be the restriction of Π to An(G)×E. Then Πn

is continuous (see (8)). For γ ∈ A(G), there exists n ∈ N such that γ ∈ An(G).

Thus Π(γ, ·) = Πn(γ, ·) : E → Eω is continuous. If v ∈ E, then the linear map

Π(·, v) = lim−→Πn(·, v) : A(G)→Eω is continuous. �

Proof of Lemma 4.15

If K were unbounded, we could find x1, x2, . . . in K and a continuous seminorm q

on E such that q(xn)→∞ as n→∞. Then (xn)n∈N does not have a convergent

subsequence, a contradiction. �

Proof of Lemma 4.16

Since Ãn(G) is a Fréchet space and hence barreled, it only remains to show

that each bounded subset M ⊆ Ãn(G) is relatively compact. Because Ãn(G) is

complete, we need only show that M is precompact. Thus, for each compact set

K ⊆ Vn, N ∈N0, and ε > 0, we have to find a finite subset Γ⊆M such that

(30) M ⊆
⋃
γ∈Γ

{
η ∈ Ãn(G) : ‖η− γ‖K,N ≤ ε

}
.

Since M is bounded, C := sup{‖γ‖K,N+1 : γ ∈ M} < ∞. Choose ρ > 0 with

2Ce−ρ < ε. Then K1 := {g ∈ G : d(g) ≤ ρ} is a compact subset of G (see [13,

p. 74]), and hence L :=K−1K1 is compact in GC. The inclusion map Ãn(G)→
O(VnG) being continuous, M is bounded also in the space O(VnG) of C-analytic

functions on the finite-dimensional complex manifold O(VnG), equipped with the

compact open topology, which is a prime example of a Montel space. Hence, we

find a finite subset Γ⊆M such that

(31) (∀η ∈M)(∃γ ∈ Γ)
∥∥(η− γ)|L

∥∥
∞ < e−Nρε.

Given η ∈M , pick γ ∈ Γ as in (31). Let z ∈K, g ∈G. If d(g)≥ ρ, then∣∣η(z−1g)− γ(z−1g)
∣∣eNd(g) ≤

(∣∣η(z−1g)
∣∣+ ∣∣γ(z−1g)

∣∣)e(N+1)d(g)e−d(g)

≤ 2Ce−ρ < ε.

If d(g)< ρ, then z−1g ∈ L, and thus∣∣η(z−1g)− γ(z−1g)
∣∣eNd(g) ≤ e−NρεeNd(g) < ε,

by (31). Hence ‖η− γ‖K,N ≤ ε, showing that (30) holds for Γ. �
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