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Abstract We develop relative trace formulas of unitary hyperbolic spaces for split rank
1 unitary groups over totally real number fields.
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1. Introduction

Let E/F be a CM extension of a totally real number field F'. We consider the uni-
tary group G = U (h) of a nondegenerate Hermitian space (V,h) over E of dimen-
sion m > 4 such that the signature of h is (1—, (m — 1)+) at all the Archimedean
places of F. Let £ €V be a vector such that h[¢] = +1, and let H be the stabi-
lizer of E¢ in G. An automorphic cuspidal representation 7 of G(Ap) is said to
be H(Ar)-distinguished if m contains a cusp form ¢ on G(Ap) whose H-period
integral Py (p) = fH(F)\H(AF) @w(h)dh is not zero, where dh is the Tamagawa
measure on H(Ap).

There are several reasons to believe the existence of a functorial transfer
from a class of GLy(Ap)-distinguished cuspidal representations of GL2(Ag) to
the set of H(Ap)-distinguished cuspidal representations of G(Ar) (see [14], [5]).
To realize such a transfer between the sets of distinguished automorphic repre-
sentations on different groups, one uses a comparison of relative trace formulas
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whose efficiency has been confirmed in many cases since its cultivation by Jacquet
(see [10], [12], [13]; see also Flicker [6]). In this article, we fully develop a relative
trace formula for the symmetric space H\G to serve as one of the main tools for
constructing the transfer mentioned above, including all the associated techni-
calities necessary to carry out the comparison. Let us review its deduction in a
slightly simplified setting.

We choose a maximal opg-lattice £ C V' and fix maximal compact subgroups
U, C G(F,) by taking the stabilizer of £ in G(F,) at all finite places v of F'. We
start with a decomposable function

o(g) =[[®u(90), g€CG(AR),

on the adele group G(AF), whose non-Archimedean factors ®, (g, ) are left H(F,)-
invariant smooth functions on G(F,) such that &, is of compact support modulo
H(F,) and coincides with the characteristic function of H(F,)U, for almost all
v’s. Using the local harmonic analysis on H(F,)\G(F,), we explicitly construct
a wide and flexible enough class of Archimedean factors ®,(g,) with no support
condition but with some weak gauge-estimate on G(F,) instead. This weaker
support condition on ® is the main feature of our version of the relative trace
formula. For such ®’s, we show that the Poincaré series

B(g)= >, B(vg), ge€G(Ap),
YEH(F)\G(F)

converges absolutely and locally uniformly. To attain this, we construct a majo-
rant of ®(g), adopting a method developed in [29] and [19] to the adelic setting.
The relative trace formula is obtained by computing the H (A g)-period integral
Pr(®) in two ways, leading to its two different expressions, the spectral side
and the geometric side. The only serious issue to be settled here is the abso-
lute convergence of the expressions. On the spectral side, the problem is already
treated by Lapid [16] in a wide setting. As with Lapid, in our case we also need
an estimation of the unitary Eisenstein series on a Siegel domain of G(Ap) uni-
form in the spectral parameter. Such an estimate, stated in Lemma 6.5, becomes
available by a modification of the proof in [7]; for our purpose, we need to attain
the best possible exponent of the norm ||g|| in the majorant. From the gauge-
estimate of ®, we have ® € L*T¢(G(F)\G(Ar)) for some € > 0 (see Lemma 6.3),
which yields the spectral expansion of @ by automorphic forms. The resolution
involves the H(Ap)-period of the unitary Eisensteins; in Section 5.9, we com-
pute them very explicitly by employing Shintani’s method. The nonexistence of
H(Ap)-distinguished residual forms other than constants is also proved. Invoking
a weak version of Wey!’s law on the locally symmetric manifold of G(F ®gR) (see
[2]) and the uniform estimate of Eisenstein series mentioned above as well as a
similar uniform estimate for cusp forms, we prove that the spectral resolution of
®(g) converges absolutely and locally uniformly on G(Ar) (see Proposition 6.7).
The argument also shows that Py (®) is computable by taking the H (A g)-period
integral of each component in the spectral resolution. The process provides us
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with the spectral side (see Proposition 6.8). In Section 7.1, we classify double
cosets H(F)yH(F) C G(F) in terms of the number N°(y) = Ng/rh(y~120,0).
The geometric side is obtained by the familiar unfolding procedure (see [11]);
our gauge-estimate of ® (see Lemma 6.1) ensures the absolute convergence of
the geometric side, which is necessary to apply Fubini’s theorem. As a conse-
quence, the geometric side is expressed as a linear combination of ®(e) and the
sum of adelic orbital integrals J(vy,®) = fH'y(AF)\H(AF) ®(vyh)dO,(h) over dou-
ble cosets H(F)vH(F) different from H(F). The upshot of Sections 6 and 7 is
the relative trace formula enunciated in Theorem 7.4. The integral J(v, ®) is an
Euler product of similar local orbital integrals J, (v, ®,) over all places v of F'. In
Section 8, we study the germ expansion of non-Archimedean local orbital inte-
grals J, (v, ®,) for the regular coset H(F,)yH(F,) near a singular coset; this
kind of theory is crucial to realize the transfer of orbital integrals in the compar-
ison of trace formulas. In Section 9, instead of developing a similar germ theory,
we compute all the Archimedean orbital integrals J, (v, ®,) directly in terms of
Gaussian hypergeometric series.

The first three sections after the Introduction are preliminaries. In Section 2,
we introduce basic notation and symbols which are valid throughout the article.
In Section 3, we recall the harmonic analysis of complex hyperbolic spaces fol-
lowing [4] and [25]. In Section 4, we prove the necessary property of the Poisson
integrals and the normalized local intertwining operators. The holomorphy of
these operators in the closure of positive chamber plays a pivotal role both in the
computation of Eisenstein periods (see Section 5.9) and in the uniform estimate
of unitary Eisenstein series (see Lemma 6.5). This article has two companion
works [27] and [28]. In [27], we proved the fundamental lemma. In [28], we will
complete the comparison of relative trace formulas.

Basic notation. Let N denote the set of positive integers, and let Ng = NU{0}.
For a compact interval I C R and § >0, set 755 = {z € C| [Im(z)| > §,Re(z) € I'}.
For a number field or a non-Archimedean local field F', the maximal order of F' is
denoted by op. For any totally disconnected topological space X, S(X) denotes
the C-vector space of all those locally constant complex-valued functions on X
of compact support. For a set X and its subset Y, the symbol 1y stands for the
characteristic function of ¥ on X.

2. Preliminaries

2.1

Let F be a field of characteristic 0, and let E = F[v/#] be a quadratic étale F-
algebra. The Galois conjugate over F' of an element o € E' is denoted by @. Let
V be an E-module of E-rank m, and let h: V x V — F be a nondegenerate
Hermitian form on V such that h(ax, By) = afh(z,y) for z,y € V and a, B € E.
For x € V, the value h(x,z) is also denoted by h[z]. As in Section 1, let

G= {g € GLg(V) | h(gz,gy) =h(z,y) for all x,y € V}
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be the unitary group of (V,;h). We assume that a pair of F-isotropic vectors e,
e/ such that h(e,e’) =1 is given, and we set Vi = (Ee + Ee’)*. Let G be the
unitary group of V;. Let P be the stabilizer in G of the submodule Fe, and let
P, be the stabilizer of the vector e. Then P is an F-parabolic subgroup of G, and
P is a semidirect product of P; and an F-torus whose set of F-points consists of
all the elements [7] € G with 7 € E*, defined by

[T]e =Te, [T/ =771¢, [7]|V1 =id.
For g1 € G1(F), let m[g1] denote the element of G(F) which acts on V; by g1
and on Ee + E¢’ by the identity; we define M; to be the F-subgroup whose set

of F-points is {m[g1] | g1 € G1(F)}. For X € V; and b € F, define n[X;b] € G(F)
as

n[X;ble=e,  n[X;bly=y—h(y,X)e (yeh),
n[X;0le’ = ¢ + X + (—27'h[X] + Vob)e.

Let N be the unipotent radical of P; then N(F)={n[X;b]| X € V;,b€ F} and
Py =M N. If a vector £ € V such that

hi/ =1 and h(l,e)=1

is given, we define H to be the stabilizer of the submodule E¢ C V and Hy to
be that of the vector ¢. Then H is a symmetric subgroup of G obtained as the
fixator of the inner automorphism g +— 3495217 where sy is the reflection of V
such that sy(¢) = —¢.

2.2. Gauge-forms

Let t € F. We will regard 3(¢) = {x € V —{0} | h[z] =t} as an F-variety by iden-
tifying it with X(¢) (see Lemma A.1), where @) denotes the F-quadratic form
hiz]on V = F?™ Let wy be the gauge-form on V defined as wy = det(h(&;,;)) x

H;nzl dzé/\)_géj for any E-basis {¢;} of V, where z; denotes the E-coordinate func-

tions on V dual to {{;}. By fixing an F-point £ € 3(t), we have an F-isomorphism
G(6)\G =2 X(t) sending a coset G(£)g to the vector g~ 1€, where G(£) denotes
the stabilizer of £ in G. Let ¢: V — {0} = F be the F-morphism defined by
¢(x) = h[z]. From Lemma A.l, there exists a unique G-invariant gauge-form
ws(¢) on X(t) such that wy = wsy) A ¢*(dt), where ¢ is the coordinate of F'. We
fix an F-rational left-invariant gauge-form wg on G once and for all. Then we
take the unique gauge-form wg ey on G(§) so that wa, wg(e), and wx(;) match
together algebraically in the sense of [30, p. 24]. In this way, we fix wp, on
Py =G(e) and wy, on Hy = G({). Let wp\¢ and wy,\¢ be the gauge-forms
on Pi\G = X(0) and Ho\G = X(1) corresponding to wx ) and wsy1), respec-
tively. Since P ={[r] | 7 € E*} Py, there exists a left P-invariant gauge-form wp
drAdF
2VONE, F ()
E'={a € E|Ng/r(a)=1}. Since H =T x Hy, we define an H-invariant gauge-
form wy on H by taking the wedge product of pullbacks of wr and wp,, where

wr is the gauge-form of T such that #‘w(a) =wr A9 with t =Ng/p(a).
E/F

such that wp = Awp,. Let T be the F-torus whose set of F-points is
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It is not difficult to see that PH = {g € G | h(g~'e,¢) # 0}, which shows
that PH is a Zariski-open subset of G. Set Hp = PN H. It turns out that the
restriction of the map [r]m[g1]n[X;b] — (7,91) from P to E* x G; induces an
isomorphism Hp = E' x G. Since PH = P x Hp\H, we have an H-invariant
gauge-form wp,\ g on Hp\H such that wg|PH corresponds to wp A WHp\H ON
P x (Hp\H). We endow Hp with the left-invariant gauge-form wp, such that
WH, WHp, and wy,\ g match together algebraically.

2.3. Local Tamagawa measures
Let F' be alocal field of characteristic 0, and let | - | » be the normalized valuation
of F. Given a gauge-form wx on a smooth F-variety X, the usual process (see
[30, Section 2.2]) yields a measure |wx|p on the F-points X (F'). For example,
the Haar measure |dt|p on F' is such that fw |dt| =1 if F' is non-Archimedean,
and fol |dt|r =1 if F =R. On the spaces such as G(F), H(F), X(t), P(F), and
Hp(F)\H(F), we put the (left-)invariant measures obtained from the gauge-
forms fixed in Section 2.2.

Let D(P(F)\G(F)) be the space of all those continuous functions ¢ : G(F) —
C such that ¢([r]p1g) = [Ng,/r(7)|F "' ¢(g) for all 7 € EX, p; € Pi(F). Then we
have a (continuous) linear functional pp\g : D(P(F)\G(F)) — C satisfying the
relation

}{D(F)\G(F) (/P(F)f(pg)lwplp(p)) dpya(g)

(2.1)
_ / F@)lwclr,  feC(G(F)),
G(F)

where fP(F)\G(F) #(g9)dpp\(g) denotes the value pp\g(¢) for ¢ € D(P(F)\
G(F)). Note that the modulus character of P(F) is given by dpp)([7]p1) =
[r7[p ! (7 € EX, p1 € Py(F)).

LEMMA 2.1
For any ¢ € D(P(F)\G(F)), we have

wraé) = | Shonpalr.
Hp(F)\H(F)
Proof
This follows from wg|PH =wp Awpg,\g and (2.1). O

3. Local harmonic analysis at Archimedean places

We let F =R and FE = F[Vf] = C, and we identify an R-algebraic group with
its R-points; thus G = G(R), H = H(R), and so on. We assume that sgn(h) =
(I—,(m —1)4), and we set {~ ={ —e. Let U be the stabilizer of CL~. Since
h[¢7]=—-1 and h(¢,£7) =0, U is a maximal compact subgroup of G and Uy =
U N H is a maximal compact subgroup of H. Fix an orthonormal basis {Zj};-”;ll
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of (¢7)* such that ¢,,_; =¥, and set ¢,, = {~; by means of the basis {Ej}g-”zl
of V, we identify G with U(m — 1,1). The minimal majorant of h is given
by [1Z]lu = {>1%, I0(Z,£;)[*}'/? (Z € V). Moreover, H = U(m —2,1) x U(1)
and U = {diag(k1,kz2) | (k1,k2) € U(m — 1) x U(1)}. For a dominant weight [ =
{1() hi<j<cm—1 (I(F) €Z, I(j) > 1(j+1)) and c € Z, let (7(1,c), W(zse)) be a unitary
U =U(m—1)xU(1)-module obtained as the tensor product of an irreducible rep-
resentation of U(m — 1) with highest weight  and the character z — 2¢ of U(1).
First we recall some integration formulas, which are more or less well known; we
need to determine the normalizing constants therein.

LEMMA 3.1
We have
e (@) = VO m= 1) [ slbyak. o €D(P\G),
where dk is the Haar measure on U with total volume 1.
Proof
There exists a constant A > 0 such that
(3.1) pina() = 4 [ ok ak

for all ¢ € D(P\G). Fix € >0, and set
1)‘M c@.

o) = [ esp(=ela™ 1 el)irle | T

: j d
By the polar coordinates 7 = re'?, we have t = Ng,p(7) = r* and 2\}/\; =
d*t A ;7% Since [|Z|ly is U-invariant and lell?, =2, it is easy to see that

Jy o( dk = |v6|~*2'=m7e!="I'(m — 1). On the other hand, if we set p(t) =
fz exp( E||Z||2)|UJ2(t)|]R for t € R, then

/(p(t)ezm‘tfdt:/ exp(_€||Z||2)62ﬂ'iTh[Z]|wV|R
R 1%

m

— Vo™ u

(€ — 2miT)™ (e + 2miT)’

By the Fourier inversion, ¢(0) equals

/( |\/§|7 il —d7r =2miRes;—_ _c_ |\/§‘7 i
R

€ — 2miT)™ (e + 2miT) i (e — 2miT)™ (e + 2miT)

— 21—mﬂ.m‘\/§|—m€1—m.

Thus
() = / exp(—ellg™ell?) [wpy\ale

:/2( )exp(_EHZHQ)le(O)hR:SD(O):21—m71_7n|\/§|_m61_m-
0

From the identity (3.1), we have A = 7™ 'T'(m — 1)~ |\/@|'~™. O
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Let A= {a¥ |t €R} be a 1-parameter subgroup of G defined as
aD¢ = (cosht)l + (sinht)(~, aW¢™ = (cosht)f~ + (sinht)e,
aB|(Cl+Cr)t =id,

and let Zynm(A) be the centralizer of A in U N H.

LEMMA 3.2

The map H x [0,+00) x U — G sending (h,t,k) to haDk induces a homeo-
morphism from the quotient space H X [0,4+00) X U/ ~ onto G, where ~ is an
equivalence relation on H x [0,+00) x U such that (h,t, k) ~ (h1,t1,k1) if and
only if t =t; =0, hk = hiky or t =t1 #0, (hm,m™1k) = (hy,k1) with some
m € Zynu(A). In particular, G — HU is a disjoint union of Ha®U (t>0). We
have the integration formula

/ f(@wmelr = C(;/ / f(aPk)(cosht)?™3(sinht) dt dk,
H\G o Ju
where Cg = |vV/0|' 47T (m —1)~".

Proof

This follows from [9, Part II, Theorems 2.4, 2.5] except the value of Cg. By
the basis {¢; 7., fixed at the beginning of Section 3, we write a general point
of Vias Z =371 zjl;. Set &1 = Re(z;) and &; =Im(z;) (1 <j <m). Then
lwv|r = (/1) ™™ Hj;nl d¢;. The U-orbit of £, (resp., £,,) coincides with the
unit sphere S?™m=3 C 4L (resp., S'4,,). If we set (n;) = klp—1 and ké,, = e¥'l,,
for k €U, then the relation Z =rka"¢ (r >0, k €U, t € R) can be written as

& =rcoshtn; (1<j<2m-—2),
&om—_1 = —rsinhtcosy, &om = —rsinhtsin .
From these,

dég Ao Nd€gy, = =12 (cosht)*™ 3 sinht dt A dr Adp Ady

is obtained, where dn = ngf 2

form on the (2m — 3)-dimensional Euclidean sphere . Hence wsxy1) =
(\/10]) "™ (cosht)>™~3sinh ¢t dt A dp A dn. Since Wioru\u = dn is the gauge-form
of the manifold Ho NU\U = 5?3 and vol(S?™~3,|dn|r) = 27 1 '(m — 1)1,
we have

(=1)7n;dny A - /\d/n\j/\ -+ -dngm—2o is the gauge-
S2m—3

|WE(1)|]R
2v0]g " [dglr

= (V10]) """ 4x™ T (m — 1) (cosh £)2™ 3 sinh ¢tz ik,

lwm\clr =

where dk is the U-invariant measure on Hy NU\U with total measure 1. This
gives us Cg. O



434 Masao Tsuzuki

3.1. Spherical function of the principal series
Fix d € Ny. We put
2s4+m—1 +d)*1F<2s—m+3 —d)il,

2 2
viewing this as a meromorphic function on C. We write (74, W) in place of
(T(a,0,....0,—a;0)» W(a,0,...,—d;0y). Then dimg WHNH = 1; we fix a unit vector ¥, €
WY H once and for all. Let C°°(H\G;74) denote the space of all the C>°-
functions f:G — Wy such that

(3.2) f(hgk) =74(k)" f(g) forall (h,g,k) € Hx G xU.

ca(s) =F(25)F(

LEMMA 3.3

For s € C outside the poles of T'(s+ 251 + d)I'(s — 53 —d), there exists a unique

function @4(s) € C*°(H\G;1q4) such that ®4(s;e) =4 satisfying the Casimir
etgenequation

Ca®als) =2""{(2s5)* — (m —1)*}@q(s).
We have ®q(s;aM) = pq(s,t)0q for all t € R with
¢a(s;t) = (cosht) 25— mHl

2s+m—1 2s—m+3
d
2 +a, 2

(3.3)

X 2F1( —d;l;tanh2t).

Proof

The existence follows from [9, Part IT, Theorem 6.2]. Let f € C*°(H\G;74). From
(3.2), there exists a C*®-function ¢(t) in ¢ > 0 such that f(a®) = ¢(t)d4. Then
from [24, Proposition 7.1], the Casimir eigenequation Cqf =27{(25)? — (m —
1)2}f yields

do  4d(d+m—2)

+ (me 3) tanht) a + W(ﬁ

&6 ( L

(3.4) de? tanht
= {(25)2 —(m— 1)2}¢.

By setting w = (cosh )"+~ 1¢(t), z = tanh? ¢, this is transformed to the Gaussian

hypergeometric equation z(1 — z)w” + {c— (a+b+1)z}w —abz=0 (0< 2 < 1)

with

2 -1 2s —
(a,b,c):( sEm +d7 ° m+3_d71)a
2 2
which admits the unique smooth solution on |z| < 1 such that w(0) = 1. O
3.1.1

For s € C outside the pole divisor of {scq(s)}~!, let W4(s) be the unique W,-
valued smooth function on G — HUY having the equivariance

(3.5) Uy(s;hgk) =14(k) 1 W4(s;9) for all (h,k) € H xU,
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whose radial part is given by Wy(s;a?)) =1pa(s;t)94 (t > 0) with

-1 1
t ‘ht —2s—m-+1
I T
. 2s+m—1 2s—m+3
F( d, —d:2 1;—).
2 2 * 2 o cosh? ¢

By the last formula on page 47 of [17], we have the relation

(3.7)  ®a(s;g9) = —2Cqca(s)ca(—s)s{ Va(s;9) — Va(—s;9)}, g€ G- HU.

LEMMA 3.4
There exists N > 0 such that, for any compact interval I C (—1,4+00) and § >0,

H\I/d(s; agf))H <(1+ ’Im(s)|)N(cosh75)72R°(3)7m+17 s€Trs5,t>0.

Proof
Set ay = s+ 2L 4+ d, and b, = s — ™52 —d. From [17, p. 54], we have the integral
represcntatlon

1
-3
Ya(s;t) = —C’al(cosht)_(25+m_1)/ 2% F (t,z)dz, Re(s) > m2
0
with Fy(t,z) = (1 — )% {1 — x(cosht)~2}~%. Let n € N be such that n >
m=3 1 d. We argue as in [25, Lemma 9] to obtain

/1 ab T F(t, ) dt
0

LI 1 FED (¢ 271
CONED | Pt o

- vz, 1 1(n) T
st+n— n s—
—|—{|:| +]_1}/ x Fy (t,x)dx+/1/2x Fs(t,x)dx,

where F(t,z) = L F(t,x). Since |Fy(t,z)| < (1 — 2)Re@)=1 for (s,z) €
Tr,6x % [1/2,1] uniformly in ¢ > §, the third term of (3.8) is absolutely convergent
for Re(s) > =21 — d and is bounded by a constant uniformly in s € 75 and

t > 6. From

FO (b, ) Z<>{ﬁ 1+a}{k]l[l(as+ﬂ)}

7=0 =0 £B=0

] ) as+j+k
x (cosh? t)I=F(1 — g)ae =971 (1 S )

)

cosh?t

we have |.7-'£j)(t,x)| < (14 [Im(s)])? for (s,z) € Tr.s x [0,1/2] uniformly in ¢t >4,
from which the second term of (3.8) is seen to be absolutely convergent for
Re(s) > —n+ 53 4+ d and to be bounded by O((1+ |Im(s)|)") on s € 77,5 uni-
formly in ¢ > ¢. The first term of (3.8) is evidently holomorphic on 7; s and is
bounded uniformly on s € Fr 5, t > 6. O
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It turns out that ¢ — W4(s;a®)) is the unique solution to (3.4) on t > 0 satisfying
the asymptotic conditions

(3.9) Uy(s;aM) =206 logt +O(1)  (t— 40),
(3.10) Ty(s;aM) = O(e 2Re=m+l) (1 5 4o0).

In particular, the function ¥4(s;g) in ¢ has logarithmic singularities along HU.

LEMMA 3.5 .
Let ¢ € C*°(H\G,74) be a function with the majorization Z?:O 145 0(a®)| <
e fort € Ry with some constant 6 > 0. If Re(s) > m74 + 0, we have the formula

/ T @)1 [€6 = 279"+ (m = 1) ]o(0)) lwmals = 2(94l6(c)).

whose left-hand side converges absolutely.

Proof
We argue exactly in the same way as [20, Proposition 23] by using (3.9), (3.10),
and Lemma 3.2 to get the conclusion. ]
3.1.2

Let A be the space of all those even entire functions a(s) such that, for any
c1 < ¢g and for any N > 0, the estimate |a(o +it)| < (1 + [t|)~N (¢ € R) holds
uniformly in o € [c1, c2]. For a € A, we introduce the a-smoothing of ¥,4(s) by
the contour integral

A 1
(3.11) Vilasg) = —/ Ua(s;g)a(s)sds, geG— HU,
2m (o)

with o > 7=2 4 d.

LEMMA 3.6

On any compact subset U of G— HU, the integral (5.11) converges uniformly and
absolutely, defining a C'*°-function on G — HU which is locally square-integrable
on G; it has a unique C'°°-extension to the whole group G.

Proof

Fix § > 0 and a compact interval I C (252 + d, +00). From Lemma 3.4, there
exists a constant N € N such that ||[¥4(s;9)|| < (1 + |Im(s)|)N for g € U, s €
T1.5. Since |a(s)| < (1+[Im(s)|) "N =3 (s € T1.5), the integral (3.11) is absolutely
convergent uniformly in g € U. In particular, g — \i/d(oz; g) is continuous on G —
HU. From the first part of Lemma 3.2, for any relatively compact open set U C G,
there exists Uy C H such that U € Up{a™® |t > 0}i. By Lemma 3.4, we have
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/ |wH|]R/dk/ ||\i/d(a;ha(t)k)H(cosht)Qm_?’sinhtdt
Uo u 0
1 N
<<{27r/(0)(1+|1m(s)|) ja(s)]lsds| |

oo
X {/ (cosht)~o+m=1) (cosht)2m—3 sinhtdt},
0

whose majorant is convergent. Thus W4(a; g) is integrable on U; since vol(U) <
00, it becomes square-integrable on U also. Therefore, the function \i!d(oz; g)
defines a Wy-valued distribution on the Riemannian manifold G/U. Let f: G —
W4 be a smooth compactly supported function such that f(gk) = 74(k)~' f(g) for
all k € U. Applying Lemma 3.5 to the H-invariant function ¢(g) = fH f(hg)|lwm|r,
we have

/ (Fales9)ICef () lwelz = / (Ta(on:9)|(9)) lwale
G G

o [ casH{ [ @so)entz}.

where a,(s) =27"{(2s)? — (m — 1)?}"a(s) for n € N. By shifting the contour
(o) to (—o) and then by using the relation a(s) = a(—s), we easily see that
f(g) a(s)sds = 0. Thus we have the distributional differential equation
Ag\i'd(a) = \i/d(ozn) on the manifold G/U, where A, is the elliptic differential
operator induced from Cg on the distributional sections of the C'°°-vector bun-
dle G %+, Wq — G/U. From the argument above, we have A?W () € L2(U)
(Vn € N) for any open relatively compact U-invariant set U C G. By a form of
Sobolev’s lemma, we conclude that \i/d(a) is represented by a C'°°-section of the
bundle G xy,-, Wq — G/U. O

For d,j € Ny, let fq; € C*°(H\G,74) be the unique function determined by
faj(al) = (cosh® )~ (m=2+d=7)

><2F1<m—2+2d—j,—j;m—2+2d—2j; 9q.

cosh? t)
We remark that this is a polynomial of (cosh2 t)~1, which for j =0 is simply
fao(al) = (cosh? ) ~(m=2tDg,,

LEMMA 3.7
For any t >0, we have

\i!d(a, a(t)) = -1 { L /ﬂR Dy(s; a(t))a(s)kdc(lﬁ

(=1)7 T'(2d+m —2—j)
Z j' T'(2d+m—3—2j)

JEL
0<j<d+ ™53

X fd’j(a(t))a(m; 3 +d—j) }
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Proof
This is the same as in [25, Proposition 12]. The relation (3.7) is used in the
proof. O

LEMMA 3.8
For any R >0, we have

(3.12) H\ild(a;a(t))H < (cosht)™f  teR.

Proof
Let 20 — (m — 1) > R. Then from (3.11) and Lemma 3.4,

Uy(a;at? cos *Ri m(s Nas sds
oz < (coshty 2 [ (15 fim(s)) o) jsa

for all ¢ > 1. From the estimate |a(s)| = O((1 + |Im(s)|)~~~3), the integral con-
verges. Thus (3.12) is obtained at least for ¢ > 1. Since [|¥4(a; a®)]| is continuous
on R from Lemma 3.6, the estimate on ¢ > 1 is extended to R with a possibly
larger implied constant. |

REMARK

The representation I(|-[;) = Ind%(| - | @ 1ar,) is called the principal series of
H\G (see [4]). The discrete spectrum of L?(H\G) is completely described by the
functions fy; (d,j € No), which belong to L?(H\G) if and only if 0 < j < 72 4-d.

4. Local harmonic analysis at non-Archimedean places

In this section, we let F' be a local non-Archimedean field of characteristic 0. The
normalized valuation of F' is denoted by | - | . We fix a prime element w of F', and
we set ¢ = |w|p'. Put |a|g = |aa|r for a € B. If E is a field, let ep/r denote the
quadratic character of F'* trivial on Ng,p(E*); if E is not a field, set ep/p = 1.
We identify an F-algebraic group with its F-points; thus G =G(F), H = H(F),
and so on. We assume that rankg (V) >4, and we fix a maximal og-lattice £ in
(V,h). Set U to be the stabilizer of £ in G. The aim of this section is to prepare
necessary ingredients for the local harmonic analysis of H\G.

4.1. The Poisson integrals
We set Xp = C/2rv/—1(logq) 'Z. For any quasicharacter x of E* and any
irreducible smooth representation o of My, we consider the normalized induced
module Ind%(x ® o) of G.

LEMMA 4.1
The representation m = Ind%(y ® o) is H-distinguished (i.e., Hompg (,C) # {0})
only if o is the trivial representation of My and x|E' = 1.

Proof
This is proved by the same argument as in [27, Lemma 18]. O
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For a quasicharacter n of F'*, set
I(n) =Ind%(noNg/r @ Lu,).

For a unitary character n of F'* and v € Xp, the Poisson integral is defined by

(4.1) <E(nl-|}),f>=j{ Y (nl-759)f(9)dupa, feI(nl-Ir),
P\G
where

. (] 5"V (Npyr(n(ghe)), g€ PH,
(ol -139) = 0 geG—PH

If Re(v) > -1, then the integral (4.1) converges absolutely, defining an H-
invariant C-linear form Z(n|-|%) : I(n|-|7) — C because the function Y (n| - |7)
with Re(v) > mT’l is continuous on G and is right H-invariant. By Bernstein’s
theorem (see [8, Section 12.2]), there exists a polynomial R, (z) € C[z] such that
v— R, (¢")2(n|-|%) extends to an entire family of H-invariant functionals on
I(n|-|%) (v € Xp). We define the normalized H-invariant functional Z°(n| - |7.)
on I(n|-|%) by setting

20 [1) = 2L )
=0(p| %) = s
B Ly — 223 noNg/r)

L(m—1,ep;p)Z(nl - %)
for all unitary characters n of F* and v € Xp.

LEMMA 4.2
For any flat section f) of I,(n| - |3.) over v € Xp, the function (Z°(n| - |7.), f*)
is holomorphic on Re(v) > 0.

Proof
For ¢ € S(V — {0}), set
dr AdT
(”) / (r7)|7 v-(m— 1)/2‘ ’ cd.
¢ (g ol W 9
Then ¢*) is a holomorphic section of I(7| - ). Given a flat section f*), there

exists a finite collection of holomorphic functions ¢;(v) and functions ¢; € S(V —
{0}) such that ) = > cj(u)ég-”) for all Re(v) > 0. We have

<50(77|.|;)’q;<v>>:/P\GY(n|-|”F;g)¢(g )‘(;T\;f:)

=/ (n]- """ D72) (N g/ ph(¢, €)) 6(6) lws o) | -
=(0)

For a general element ¢ € 3(0), we set £ = 2£ + Z with z € E and Z € ¢*. Then
h[Z] = —zz. Let '(t) denote the hyperboloid h[Z] =t in (*, and let ws/(
be the gauge-form on X'(¢) as in Section 2.2. As seen from Lemma A.1, ws(0)

is decomposed to wsy(_.z) A d;yiz The function ¢(z¢ + Z) can be expressed
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as a finite sum of decomposable functions ¢, (2)p2(Z) (¢1 € S(E), ¢o € S(LF)).
For our purpose, it is harmless to assume that ¢(z¢ + Z) itself is one of these
decomposable functions. Thus

(E (] - %), ) = / (] [ I72) (22) (2)
EX

dzAdZz

oy e 5,

-/ (-1~ D72) ()@ (1)@ ()]t
Ng,r(EX)
where we set

‘1’1(75):/E()¢1(2)|WE(15)F, ‘1’2(?5):/2( )¢2(Z)|wz'(7t)|F7 teNg/r(E),
t (=t

with E(t) denoting the fiber NE}F(t) and wg() denoting a gauge-form on E(t).
Suppose that E is a field. From Lemma A.2(1), ®1(t) is a restriction to Ng,r(E)
of a Schwartz—Bruhat function on F', and there is a constant C' such that Uy (t) =
Dy(t) — Cag/}l (t)|t|'m~2 is a restriction of a Schwartz Bruhat function on F.
Let Z(x;¢) denote the (analytic continuation of the) Tate zeta integral
fNE/F(EX)X(t)w(t)|dt|F for a character x of F* and ¢ € S(F'). Then we have

that (Z(n|- %), f)) is a sum of zeta integrals like Z(n] - |;ﬁ(m71)/2; ®,V,) and

CZ(n|- |;+(m73)/2; ®4). The latter term is holomorphic on Re(r) > 0. The former
one has the same singularity as the analytic continuation of the integral

v— —1)/2
/ (Ol "0t
0NN g,/ (EX)

-3
=vol (Ng/r(03): dtl ) L (v = 5= 0o Npyr ),

Re(v) > mT—?),
which is canceled by the normalizing factor. Suppose that E is isomorphic to
F @ F. In this case Ng,p(F) = F and, from Lemma A.2(1), there exists a con-
stant C such that ®;(¢) — Ciordp(t) extends to a Schwartz—Bruhat function
on F. We argue similarly to show that (Z(n|-|%), f*)) has a meromorphic con-
tinuation to C whose singularity on Re(v) > 0 is the same as the analytic con-
tinuation of the integral

(= D)
m—3

2 )
which coincides with ¢~ =("=3)/2 L(y — =3 1)oNp, ) up to a constant factor
and is canceled by the normalizing factor. O

/ n(@) [t D2 ord g (8)|dt = vol (03 |dt | )
DF‘*{O}

Re(v) >



Relative trace formulas for unitary hyperbolic spaces 441

LEMMA 4.3
Suppose that 2 € o}, that E is not a ramified extension of F', and that L is self-

dual. Let m be an unramified unitary character, and let fou) be the U-invariant
vector of I(n|-|%) such that f(V)( k)=1 for all k €eU. Then

(E(n] - %), 15y =1.

Proof

Let ¢ be the characteristic function of Lpyim, and let %V) be the correspond-
ing holomorphic section of I(n]-|%) as in the proof of Lemma 4.2. We have
do([T]ke) # 0 for some k € U if and only if 7 € 0, where 0 = 0p[V/0]. Thus

) . dr AdT . «
§ (k)f/ox dolke)| T | =vole}), keu.

with vol(o}) =1—¢~2 if E is an unramified field extension and vol(oy) = (1 —
g1)? if EXF EB F. Combining this with the obvious P-equivariance

& ([7lprg) = (- 157" V) (77)68 (9) ([7]p1 € P), we have the equality ¢ =
drAdT

P

vol(o}fj)féy). Thus, from wp =wp, A

(E(n]-1%), £y = VOHOE)% Y (0 1%:9) 08" (9)dppyc

P\G
=vol(o}) ?{ / |55 [rlg)o(r~ g te)
P\G J Ex
><‘Tﬂm_l'dT/\dT‘ q
F —2\/_77—- . Hp\G

= vol(og)/ GY(n| 1559)0(9” e)lwpnalr

=vole) [l ) (5 () s
prim

From the proof of [27, Lemma 20] and from [27, Remark, Section 5.3], the last
integral is evaluated to be

1L(V7mT735nONE/F>

1><71L 1m 1 .
volles) = L) Ly 1 ) 0

E/F

4.2. Normalized intertwining operator

Let 7 be a unitary character of F'*, and let v € Xg. The normalized intertwining
operator R(n,v):I(n|-|%) = I(7|-|z") is defined by an analytic continuation of
the absolute convergent integral

L(v+ ™52, noNg/p)L2v + 1,5, p1%) /f
L(V_TvnONE/F)L(vagE/Fn

fel(nl-7),

[R(n,v)f](g) =
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for Re(v) > mTfl, where N is the unipotent radical of the opposite of P and dn
is the Haar measure on N such that vol(N NU) = 1.

LEMMA 4.4
v) _

Under the same setting and assumptions as in Lemma 4.3, we have R(n,v)fy =

éu) for all Re(v) > 0.

Proof

This is more or less a standard fact. Here is a brief sketch. Let £ = Zgzl(oEej +
0 Eeg-) + Lo be the Witt decomposition; thus Vp = Ly ®,, £ is an anisotropic
Hermitian space with dimg Vj being 0 or 1. Let B be the F-Borel subgroup of G
stabilizing the corresponding maximal isotropic flag. We may assume that e; =e
and e} = ¢’. In particular, B C P and B has the Levi factor isomorphic to (E*)! x
U(Vp). It is easy to see that I(n]-|}) C d%(x1, X2, - Xt 1y (vy)) with x1 =70
Ng/rl- |5 x5 =1" \Ew (2 <j <1). Our operator is obtained as a restriction

of the standard intertwining operator R, (x) from Indg (X1, X2, xt; Luvy)) toO

Indg(w(xl,m, - X1)i Luvy)) with a particular Weyl group element w. Let ~(§X)

be the element of Indg (x15 X255 X151y (vy)) extending fOV)' Then Ry (y) éx) -1

is confirmed by the Gindikin—Karpelevich formula. Since R(n,v) éy) =R(x) f(()X),
we are done. 0

Since our G is not quasisplit in general, the analytical properties of R(n,v) do
not seem obvious from the published works. Here, we provide what we need in
the proofs of Lemmas 5.1 and 5.2.

PROPOSITION 4.5
For any flat section f*) of I(n|-|%) and g € G, the function v [R(n,v)f](g)
is holomorphic on Re(v) > 0.

Proof

Suppose that E is a field. As in the proof of Lemma 4.2, we may suppose that
¥ = ¢ with some ¢ € S(V — {0}). There exists a positive constant C such
that

dr AdT .

2/0717 ‘FWN‘F'

The mapping p: (7,7) — Z = i~ 'e from E* x N to 3(0) is an injective mor-
phism whose image is Zariski dense. Since ws(q) is proportional to (Tf)*(mfl) X

p*% A p*wy, the integral coincides with J,(0) up to a positive constant,

/_f(y)(ﬁ)dﬁZC’/_ (23(7"77,716)7](7'77')|T|2+(m71)/2‘
N N JEX

where
42)  J,()= /E ()</>(Z)(n|-|j;<m*1>/2)(NE/Fh(Z,e’))|w2(t)|F, teF.
t

Thus the desired holomorphy follows from the next lemma. O
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LEMMA 4.6

(1) If Re(v) > =2 for each t € F, the integral (/.2) converges absolutely,
defining a holomorphic function on that region. For each Re(v) > mT—g’ the func-
tion t — J,(t) is continuous and integrable on F.

(2) The function v~ L(v — ™53 no NE/F)_IL(2V,E’E/FnQ)_lﬁl,(O) has a
holomorphic extension to Xp.

Proof

Write a general point Z € V' in the form Z = ze + we' + Zy with z,w € E and
Zy € V1. We may further assume that ¢(Z) is of the form ¢4 (2)¢_ (w)po(Zp) with
¢1,0— € S(E) and ¢g € S(V1). Thus the Fourier transform of J,(¢) (Re(v) >

m 3

) becomes

/ L ()(rt) |dt|F—/ &(Z)(n) - 5 ™ V2) (Ng/ph(Z,¢')) ¢ (vh([2]) dZ

= Mo (N)I(b4, 631, 7),

where, for 7 € F,

Mo(T) = [ ¢0(Zo)¥(Th[Zo]) v |,

|4t
I6s0-i) = [ 0u(@0- @)l 17" ):2)

dz ANdz ’ ‘ dw A dw
2V/0 20 IF
Let Fa(€) = [ a(w)p(Ew +w)| 4 d“’/\d“’ F be the Fourier transform of o € S(E).

Then
1(64.9-50,7) = /E b EFO- 1) ol [ ) e T

By setting ¢, (2) = ¢4 (2) — ¢+ (0)6(z € 0g), we write this integral as a sum of
I(¢ ,¢_;v,7) and
dz ANdz ‘

@3 oul0) [ Fedel- [ 0| S5

There exist constants ¢; < ¢z such that ¢/, (2) =01if |z|p < ¢1 and [Fo_|(72) =0
if |z| g < ca|7| " Thus the integration domain of I(¢/,,¢_;v,7) can be restricted
to the annulus ¢; < |z|g < co|7|5", which is empty if ||z > c2/c;. From this,

X (7 (2w + wz)) ’

I(¢' ,¢_;v,7) is absolutely convergent for all v and defines a Schwartz-Bruhat
function in 7 € F' depending holomorphically on v and, moreover, whose value
at 7 =0 is the Tate zeta integral F¢_(0)Zg(¢' ;0] - \;_(m D2, Ng/rp). (In this
proof, for a« € S(E) and a quasicharacter xof B X , we define the Tate zeta integral
by Zp(o,x) = [px o Z/\dz\p ) In other words, there exists a function

J, € S(FX) dependlng holomorphlcally on v € Xg such that
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(4.4)
(¢, 0—50,7) = Fo_(0)Ze (¢ inl - o ™% o Ngyr) 6(r € 0r) + o (1),
TeF,veXp.

Let us examine the integral (4.3). By the variable change z — 77!z, it becomes

s O 0 [ Fe @l e T

If we complete the integration domain to FE, the Tate zeta integral emerges.

Hence (4.3) is absolutely convergent on Re(r) > +% and is written in the form

b1 (0) (2] - |22 TN () Ze(Fo_sm| - |5 ™2 oNg r) + Ru(r)}

on the region Re(v) > ™3, where R,(7), given by an integral on some annulus
7|7 < |2|g < C, is a Schwartz-Bruhat function on F* holomorphic in v on the
whole space Xp. By the Tate theory, L(s + 1,no Ng/p) ' Zp(o;n| |7 o Ng/r)
has a holomorphic extension to Xz for any o € S(E). Summing up the argument
thus far, we see that J,(7) is integrable on F if Re(v) > ™2, and we obtain the
identity

L(V - mT—B’n ° NE/F)_lﬁu(T)

(4.5) = Mo (M {B1(0)8(r € 0r) + B2(0) (1] - 177" D) (1) + e (1)},
m—3
2

with some holomorphic functions £;(v), f2(v) on X and some holomorphic fam-
ily of Schwartz-Bruhat functions o, € S(F*). The integral M, (7) is the Fourier
transform of the function M, recalled in Section A.1. From [21, Proposition 4.4],
it is of the form

(4.6) Mo (1) = C18(r ¢ 0p)e o (T)|7| 5" + Cod(r € 0F) +4(7)

Re(v) >

with some constants Cq, Cy and v € S(F'*). If the Fourier inversion formula can
be applied, we have

L(l/ - mTizs,noNE/F)ilj,,(O)

. 3 -1
:/M¢O(T)L(V_mT77]ONE/F) I(¢+,¢_;I/,T>|dT|F
F

— [ (€8 ¢ 0 ()17 4+ Cad(r € o) 41(7)

x {B1(w)é(r € op) + Ba ) (?|- 17" D) (1) + aw (1) }dr .

To justify this computation, we have to confirm the absolute convergence of
the integral, which we can write as a sum of integrals of functions from S(F*)
producing holomorphic terms and the following two integrals:
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Ci6a) [ Ry Il

F—OF

Cabia(v) / 72 () 7 52+ dr | .

[
The first integral is absolutely convergent on Re(r) > 0 and has a holomorphic
continuation to Xp when multiplied by L(2v,ef;, ~1°)"". The second integral is
absolutely convergent on Re(v) < mTﬂ, defining a holomorphic function on that
region. Consequently, at least on the region mT*?’ <Re(v) < mng, the function
J,(7) is integrable on F' and we can apply the Fourier inversion formula to obtain
an expression of L(v — =2 noNg,p) ' L(2v, sg/FnQ)’lﬁu(()), which admits a
holomorphic extension to the left half-plane Re(v) < 2. O

5. Periods of automorphic forms

From now on, we work on a global setting. For a number field K, we will use
the following notation throughout this article. Let ©X and X denote the set of
finite places of K and the set of infinite places of K, respectively. We set ©.X =
SE USE. For ve £, let K, be the completion of K at v, and let | - | be the
normalized valuation of K,,. When v € fon, gx, denotes the order of the residue
field of K. The modulus of an idele a € A} is denoted by |a|x =[], |av|x, - Let
Koo = K ®gR, and let A% denote the finite adeles of K thus Ag = Ko x A%.

5.1

Let E/F be a CM extension of a totally real number field F' of degree dp; thus,
E is a totally imaginary number field of degree 2dr. We fix an element 6 € F
such that F = F[v#] once and for all. By the class field theory, the extension
E/F yields a quadratic idele class character eg,p of F'* trivial on the norms
Ng/r(Af). Let (V,h) be a nondegenerate Hermitian space of dimension m, and
let G = U(h) be its unitary group as in Section 2.1. We set ¥, = %L and
Yfn = Zgn. For v € £F, the F,-algebra F @ F, is denoted by F,. When v € Zgy,,
set 0p, =0g ®,, 0p,. For any v € YF the Hermitian form on the E,-module
V, =V ®g FE, induced from h by the scalar extension is denoted by h,. From
now on, we keep the following assumptions:

(i) m>4;
(ii) for any v € ¥, the Hermitian form h, on V, =2 C™ has exactly one
negative eigenvalue.

From these, by the Hasse-Minkowski theorem, the maximal totally isotropic
subspace of V' is 1-dimensional. Thus the F-algebraic group G is of F-rank 1.
We can find a pair of isotropic vectors e, ¢’ in V such that h(e,e’) =1 and the
orthogonal (Ee + Ee’)* is anisotropic. We fix such a pair of vectors e, ¢/ and a
vector £ € V satisfying h[¢] =1 and h(¢,e) = 1 once and for all, and define objects
Vi, Gy, Py, My, and Ny as in Section 2.1.
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5.2. Compact subgroups

Set £~ =/ —e. For v € ¥, let U, be the stabilizer in G(F,) of E ¢~ C V(F,).
Since h[¢~] = —1, U, is a maximal compact subgroup of G(F,) = U(m — 1,1).
Due to h,(4,47) =0, Un ., =U, N H(F,) becomes a maximal compact subgroup
of H(F,). We fix an opg-lattice £1 C V; which is maximal in the sense of [22] once
and for all, and we set L =o0ge+oge’ + L. For v € Xy, let U, be the stabilizer
of L, =L ®,, 0p, in G(F,); then U, is a maximal compact subgroup of G(F,).
We have the Iwasawa decomposition G(F,) = P(F,)U, for all v e %F.

5.3. Global Tamagawa measures

Following [30], we define a Haar measure |d*¢[4 on A} by |d*¢|s = |Dp/q| /2 x
(Ress—1 Cp(s)) [ Tpesr Cr (1[4 |, , where (p(s) denotes the completed Dede-
kind zeta function of F' and (g, (s) denotes its local v-factor. For any smooth
F-variety X, its gauge-form wx, and a set of convergence factors {\, }yes,,, for
X, we define a measure |wx |s- on the finite adéle points X (A%) as the restricted
product of lwx|} = A, |wx |, (see [30, Section 2.3]). Let |wx |, on X (Fx) be
the product measure of |wx|r, over v € XLo,. We define a measure |wy|s on the
adele points X (Ap) by taking the product of |wx|r,. and |wx|s~ multiplied by
|Dp gl = 4mX)/2 and we set vol(X) = vol(X (Ap);|wx|a). If (Vi,hy) (1<i<r)
is a finite collection of nondegenerate Hermitian spaces over E, as a set of con-
vergence factors for U = [[;_, U(h;), we always take {L(1,eg,/r,) " }v. Then
for any left-invariant gauge-form wy on U, we have vol(U) = {2L(1,eg/r)}".
Indeed, in [30, Section 4.4], it is shown that vol(SU(h;)) =1 if we take the
convergence factor {1},. From [30, Section 3.7(c)], vol(E') = 2L(1,eg,p) for
the convergence factor {L(1,eg, /) " }y. Since SU(h;) is a normal subgroup
of U(h;) with SU(h;)\U(h;) 2T, we apply [30, Theorem 2.4.4] to see that
vol(U(h;)) =2L(1,eg,F). In this way, we fix Haar measures |wa|a, [wr,|a, [wH |4,
|WHP|A7 and |wG1|A on G(AF), Ho(AF), H(AF), HP(AF), and Gl(AF), respec-
tively. If U’ is an F-subgroup which is also a direct product of unitary groups
and if gauge-forms wy, wys, and wyny on U, U’, and U'\U, respectively, are
given as matching together algebraically, then we apply [30, Theorem 2.4.3] to
endow U/U’ with a U-invariant gauge-form to define a U (Ap)-invariant measure
lwy /o |a on (U\U)(AF). In particular, for the hyperboloid 3(t) (see Section 2.2)
and Hp\H, the set of convergence factors is {1},,.

5.4. Siegel domain and norm functions

Set U = [[,exr Uy and Uso = [, ¢ Uy. Viewing them as subgroups of G(Ar),
we have the Iwasawa decomposition G(Ar) = P(Ap)U. For g € G(Ar), we set
a(g) = |t|g by decomposing g = [r]m[gi|nk with g1 € G1(Ap), T € A%, n €
N(Ar), and k € U. For a real 7> 0, define 7 € A% as 7, = 7/ (w e XE),
T =1 (weE ). Then we have |7|p =72 and 7 € A} For to > 0, set af(ty) =
{[r] | 7 > to}. Any subset &g C G(Ap) of the form Naf(to)U with a rela-
tively compact subset N of P(Ap)t = {[ulp1 |u € AL,p1 € Pi(Ap)} and ¢ >0
is called a Siegel domain of G(Ap) with respect to P and U. For a given
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Siegel domain &g = Nag,(to)U and v € G(F), we set &, =y~ Naf(to)yU. Let
p: GLg(V) = GL,, be an E-isomorphism. For v € ¥, we define a norm func-
tion on G(F,) by ||gvllc(r,),, = supr{|p(9)ijle, |1 <4, <n} if v € Xg, and by
llgolla(r,),p = llP(9)llus, the Hilbert—Schmidt norm of p(g) € GL,,(C), if v € ¥
For g = (g9») € G(AF), the product ||gllc,, = [[,ex 90|l (F,),p» Which makes sense
because |gy|lc(r,),, =1 for almost all v, is called the norm of g with respect
to p. If p’ is another E-isomorphism like p, then the corresponding norm func-
tions are comparable; that is, ||g|la,, < |lgllc,,» on G(Ap). We fix p once and
for all, and omit the subscript p from || - ||g,,. For t = (t,)yex.. € R¥>, we set
a(t) = (ag,t“))vegoo € G(Fw), where al!) denotes the l-parameter subgroup a(®)
of G(F,) introduced in Section 3 (see Lemma 3.2 above). The following easily
confirmed relations are frequently used:

||[z}||GXT+T*17 a(r) =7,

||G H cosht, for7>0 and teR¥>
VEY oo

5.5. Eisenstein series

Let o be an irreducible automorphic representation of G1(Ar). Since G; is F-
anisotropic, o is cuspidal. Let x = @), x» be a unitary idele class character of E*
trivial on {7 | 7 > 0}. We define V (o, x) to be the space of all the smooth functions
f: M(F)N(Ap)\G(AF) — C satistying f([7]g) = x(7)f(g) for all 7€ A} and
such that the function g; — f(m[g1]k) in g1 € G1(AF) belongs to the space of o
for all k € U. Then we define the representation I(o,y,v) of G(Ar) by

[I(o,x.v:9)f](x) = (alzg)a(z) ") f(zg), g€ G(Ar),

with pg = ™51, For a family of dominant weights A = {(lv;cy)}ves., let
(ta,W(A)) be the external tensor product over v € ¥, of the representations
of U, on Wy, .c,y (see Section 3); that is, W(A) =Nyen. W, ie,)-

Let f: G(Ar) — W(A) be a smooth function satisfying
(5.1)  f([rlprgk) = x(T)7alkos) " f(g), TEAF,p1 € Mi(F)N(Ap), k€U,

such that, for any w € W(A)* and for any k € U, the function {(w*, f(m[gi1]k))
on g1 € G1(Ar) belongs to the space of o. For any v € C, the function f®*)(g) =
a(g)"Pe f(g) can be viewed as an element of the intertwining space Homy,_ (75,
I(o,x,v)). The W(A)-valued Eisenstein series

(5.2) E(f“59)= > v, geG(Ap),
e P(FN\G(F)

convergent when Re(v) > pg, has a meromorphic continuation to C holomorphic
on the imaginary axis Re(v) = 0.

5.5.1. The distinguished Fisenstein series
Let Yr be the set of unitary idele class characters of F* trivial on {z | 7 > 0}. For
n€Yr, put (I(n|-[7),V(n) = (I(1,noNg/r),V(L,noNg/F)), where 1 denotes
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the trivial representation of G1(Ar) on the constant functions. For n € Yz and
v € Yoo, let by(n) €R be the unique real number such that n,(z) = |:1:|Z3:(") for

all positive z € F,X. Set
Qu(nl- %)= T] (1 +|v+ibo(m)|?), veC.

VEX

We call the vector veo (7] - ') = {v + iby(n) }ves.. the Archimedean spectral pa-
rameter of the principal series I(1| - |7) =&, (1] - |5, ). Given 0 = {d, }ves,, €
NZ* let (75, W(d)) denote the irreducible unitary Us,-module obtained as the
external tensor product of U,-modules (74,,Wy,) (see Section 3.1) over all v €
Yoo- Set Ha(n) = Homy, (W (0)*,V(n)) identified with a subspace of W (d)-
valued smooth functions on G(Ar). Let o (n) be the Hilbert space completion
of Hy(n) by the Hermitian inner product

(FIf)no = /M (FR)F1(R)) Ak, 1, f1 € Hao(),

with dk the probability Haar measure on U, and fix an orthonormal basis B, (n) of
Ho (1) contained in H,(n) and consisting of decomposable functions. The Eisen-
stein series E(f*)) with f € Ho(n) play an important role; they are referred to
as the distinguished FEisenstein series. It is well known that there exists a mero-
morphic function mag(n,v) : I(n|-|7) — I(7] - |z") such that the constant term
of E(f®*)) along the parabolic P is

(5.3) / E(f® ng)dn = £ (g) + (ma(m,) ) " (9), g€GAr),
N(F)\N(Af)

where dn is the Haar measure on N(Ap) with vol(N(F)\N(Ap)) = 1. From
Lemma 4.4 and [3, Theorem 8.2], there exists a positive constant C' > 0 such
that

LOO(V - mTig7T/ONE/F)LOO(2VaETEr'L/Fn2)
Le(v+ mT_l,noNE/F)LOO@u—i— LETE”/Fnz)

S T [Rem(1)] (60}

VEXfin

22T (2 + by ()L (v + by () — 522

vel;[m D(v +iby(n) — 252 — d,)2T (v +iby () + 251 + d,)?

><{ X fv(gv)}

VEY oo

[mG(U»V)ﬂ (g) =C

(5.4)

for any decomposable elements f = @, f, € Ho(n), where Ry(n.,,v) :
I(m| 1%, ) = I(7] - |5)) is the normalized intertwining operator studied in Sec-
tion 4.2.

LEMMA 5.1
The distinguished Eisenstein series E(f%)) is holomorphic on Re(v) >0 except
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for a possible pole at v = mTfl The pole occurs only when n is trivial or eg/p

and d, =0 for all v e X.

Proof

Suppose that n =1 or eg/p. From (5.4) and by Proposition 4.5, mg(v; f) is
. _ m—1

holomorphic on Re(v) > 0 except at v = "5=. O

LEMMA 5.2

For any 6 >0 and a compact interval I C (0,400), there exists a constant N >0
such that

lmem,v)f]], o < Qoo (0l - 7)™ fE€Ba(n),v € Topime€ Y.

There exists a constant Ny > 0 such that
v N )
|(mG(777V)m/G(777l/)f|f)mD’ <<Qoo(77| : ‘F) 07 f GBD(U)JVE ZR777€ YF7
where mg(n,v) denotes the derivative of mg(n,v) € Endc(V(n)) with respect
to v.

Proof

In (5.4), the factor [R(ny,V)fy](gv), which is identically 1 except for a finite
number of v’s, is bounded on 75 because it is holomorphic on 75, (see Propo-
sition 4.5) and log g,-periodic in Im(v); the gamma factor is also bounded on
75,1 uniformly in n by Stirling’s formula. The L-values in the denominator are
bounded from below by a constant uniformly in z € 75 ; and 7, due to the absolute
convergence of the Euler products. By the convexity bound of L>(v — mT*?’,n o
Ng/r) and L (2v, Eg/F’I]Z) in the numerator, we have the polynomial bound

(5.5) Hma(nw)wa < Qoo (|- |;‘)Na veTs,n€Yr,

with some N > 0. For the logarithmic derivative, we argue as in [7, Proposi-

tion 2]; as an ingredient, we need a polynomial bound of L*(£v + mT_l,n o

Ng/p) P L®(£r + 252 o Np/r) and Lo(1 + 21/,7)25%””/1,)*1%L°°(1 + 2u,
UQSS/F) uniform in 5 € Yp. Since I C [0, ) implies that Re(—v + 251) > 1
for all v € iR, the former one is bounded, due to the convergence of the Euler
product. For the latter one, which is more delicate because it involves values of
Hecke’s L-function at the boundary of the critical strip, we apply [1] to have its

uniform majorant of the form Qu(n|-|7)" with some N > 0. O

5.6. Smoothed Eisenstein series

From (i) and (ii) in Section 5.1, dimp(£*) = 2(m —1) > 6 and the signature of £+
at all v € ¥ is (1—, (m —2)+). By the same reasoning as in Section 5.1, we fix a
pair of F-isotropic vectors ey, € both orthogonal to ¢ such that h(egy,ey) =1
once and for all. Then Py, the stabilizer of Fey in H, is an F-parabolic subgroup
of H. We fix a maximal og-lattice Ly which contains ogey + o0ge; as an op-
direct summand. For any v € X4y, let Up ,, be the stabilizer of Ly, = L ®o, 05,4
in H(F,). For v € X, set Uy, =U, N H(F,). We define Uy to be the direct
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product of Ug, over all v € Y F. The Ugy-spherical Eisenstein series on H (Ap)
is defined by the meromorphic continuation to C of the absolutely convergent
series

Ew(z;h) = > ag(6h)*TPH Re(z) > pu,h € H(AR),
SEPy (F)\H(F)

where py = mT_Q, and ag : H(Ap) — Ry is defined by the Iwasawa decomposition
H(Ar)= Py (Ap)Up in the same way as a: G(Ap) — R. Let mg(z) be the m-
function for Ey(z) describing the constant term along Pp, and let ry denote
the residue of my(z) at the simple pole z = pg. To regularize divergent integrals
on H(F)\H(AF), following [23] and [31], we use the smoothed Eisenstein series
on H(Ap) defined by

—1
(56) gﬁ}(h): TL ﬁEH(Z,h)dZ, hGH(AF),Re(A) > pH,

2mi Joy A — 2
with (o) a vertical contour Re(z) = o such that py < o <Re()), where 8(z) is
an entire function such that B(pg) =1 and sup{|B(c +it)|(1 + [tV [t ER,0 €
[c1, 2]} < o0 for all N €N and real numbers ¢; < ¢a.

LEMMA 5.3

The integral (5.6) converges absolutely, defining a holomorphic function on
Re(A) > py. For any € >0 and any Siegel domain Gy of H(Ap) defined by
Py and Uy, there exists a constant C >0 such that

(5.7) (A= p)€sa(h)] < Cam(h) "N he &, Re(N) € (o prr +c).
Moreover, for all h € H(AFr), we have the pointwise convergence

im0 p)Esa(h) = 1.

Proof

Let 0 >0, and let I C (0,4+00) be a compact interval. We need a uniform esti-
mate like [7, Corollary 2] for our Eisenstein series Fp(z), which is induced from
cuspidal because Py /Np is F-anisotropic. Although the setting of [7] does not
cover our case in a strict sense, the argument in [7, Section 5.3] can be modified
to be applied to Eg(z). The crucial point is the estimation of the L?-norm of the
truncated Eisenstein series |[AT Ef(2)||2 which, by the Maass—Selberg relation,
boils down to an upper bound of the function my(z) in the vertical strip 7s s
(cf. [7, Proposition 2]). In our case, since I is in Re(z) > 0, the Maass—Selberg
relation takes the form

22T —2zT —2zT

eI B, = S 1 o)
n mp(2)e*WT —my(z)e 2T
iy ’

z=x+1yeTsr,
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with a constant C' > 0 and no logarithmic derivative of mg(z) involved. To
estimate this, the first assertion of Lemma 5.2 (applied to Fy(z) and my(z)) is
enough. The remaining part of [7, Section 5.3] goes through as it is. Consequently,
for any element D of the universal enveloping algebra of Ny (F.,), there exists
N > 0 such that

[[Ex(2) # D] ()] < (1+|tm(z)) Y au(R)N, 2€TsrheGy.

By this, from [18, Lemma 1.2.10], we can deduce the following estimate for the
nonconstant term of the Eisenstein series Ej;(z;h) = Eg(z;h) — {ag(h)*tPH7 +
mpy(2)ag(h)=*TPr}:

(5.8)  |En(zh)| <n (14 [m)])Yaw(h) ™, 2T he6u,

where (and below) N; > 0 is an arbitrary large number. We have
Ega(h) =L (AN h)+T5(Nh)+1_(\ D)

for h € Gy with

—1
r B(2)
Iy (\h) = I h)+er
b =g | S ey de
—1
r B(z)
I*(\ h) = - B (z:h)d
( ’ ) 271 (U))\—Z H(Z’ ) %
—1
room="m [ BE) L aw )y de
’ 271 (o) )\—Z ’

where py < o < Re(A). The integral I (A h) can be estimated as |1 (A h)| <
ag(h)™™ on &y by shifting the contour (o) far to the left. From (5.8), the
contour (o) in I*(\, h) can be shifted to any vertical line in the half-plane Re(z) >
0; by this, we have a holomorphic continuation of I*(\, h) to Re(A) > 0 with the
estimation |I*(\, h)| < ag(h)™™ on &y. In these estimations for I, (A, h) and
I*(A\,h), the implied constants are taken to be uniform for A lying in the strip
pu < Re(\) < ppg + €. By shifting the contour in I_ (A, k) far to the right (beyond
A) and accounting for the residue at z = A, we have the expression

—1

(5.9) I_(\h)= %aH(h)AHH + % o %m;{(z)a};(h)fﬁpf’ dz,
whose second term is holomorphic on the half-plane Re(\) < o1 and is estimated
by ag(h)~°1FPH . This completes the proof of (5.7). Let us show the second
assertion. We already see that I, (A, h) + I*(\ k) is holomorphic at A\ = pg.
By (5.9), we have a meromorphic continuation of I_(\, k) around A = pgy and
limy— pyr0(X — pr) - (A h) =limy sy 0(X — par)r i mar(N) = 1. O

5.7. The H-periods of automorphic forms
When we consider the automorphic forms on G(Ap), they are always required
to be U-finite under the right-translation.
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Let (7,W) be a finite-dimensional continuous representation of U,,. A func-
tion ¢ : G(Ap) — W is called a W-valued automorphic form if it has the Us-
equivariance ¢(gkoo) = T(koo) "to(g) for all ks € U and if, for any w* € W*,
the coefficient (w*,p(g)) is an automorphic form in the usual sense (see [18,
Section 1.2.17]). For such ¢, if the integral

Prlp) = / (1) wrr |
H(F)\H(AF)

is absolutely convergent, it is called the H-period integral of ¢. By the Uso-
equivariance of o, we have Py (@) € WHER)Uec

LEMMA 5.4

Let 6y C H(AFp) be a Siegel domain with respect to Py and Uy . Let s € R, and
let & be a smooth C-valued function on H(F)\H(Ar) such that |{(h)| < Be|lh||%
on &g for a constant B¢ > 0. Let ¢ a W-valued automorphic form such that
el < Bollglle; on G(Ap) with some constant B, >0 and > 0. Let U C
G(AFp) be a compact set. If s+r < 2(m —2), then

[€(h)p(ha(t)g)||lwsla < BeBoCo [] (cosht,)",

VEYX oo

tERE“7g€U,

/heH(F)\H(AF)

with a constant Cy only dependent on r and s. In particular, the integral
fH(F)\H(AF)g(h)gp(h)\wH\A converges absolutely. The H -period integral Py (p)
converges absolutely if r < 2(m — 2).

5;50’{0 € G(F) such that ypeg = e and ype)y; = ¢’. Then Py =, 'Pyo N H. We
can choose a Siegel domain S¢ satisfying Sy C H(Ap) NS . We have
[€(h)¢ (ha(t)g) || < BeByllhlE]ha(t)g||
< BeBy|h|lEa®t)||, heSm,teR¥>, gel.
Since a(yohg ') =< an(h),
1hlle = nohg lle = ac(vohyg )Y? = am(h)'/?
for h € &y. Hence
/ A& wn |a < /°° retry=2m=2) gx 5.
Sn to

whose majorant is convergent for s + r — 2(m — 2) < 0. Since |a(t)|l¢ =
Hvezx Haq(;tV)HG(EU) = Hvezw cosht,, we are done. |

5.8. Eisenstein periods
From Lemma 5.4 applied to ¢ = E(f*)) with 7 = 2(|Re(v)| + pa), we have the
following.
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COROLLARY 5.5

Let € be a smooth function on H(Afp) such that |£(h)| < a(h)? on &g with
some B €R. If v is a regular point for the Bisenstein series E(f*)) such that
B+ |Re(v)| < =2, the integral JuEnmam ER)E(f™);h)|wsr|a converges abso-
lutely. The H-period integral Py (E(f™))) converges absolutely for v € iR.

Proof
Since m > 4, for the constant function £(h) =1 (with 8 =0), the convergence
region |Re(v)| < -3 contains iR. O

The triple (x,0,A) is called distinguished if the following conditions are satisfied.

(i) We have that o is the trivial representation of G1(Af).
(ii) There is a unitary idele class character  of F'* such that x =noNg/p.
(iii) For all v € Xu, ¢, = 0. There exists 0 = {d, }yex.. € N3> such that the
dominant weight I, = {l,(j) }1<j<m—1 is given by 1,(1) =d,, l,(j) =0 (1< j <
—1), and I,(m — 1) = —d,,. If this is the case, we write A = A,.

THEOREM 5.6

(1) Let v €iR. The H-period integral Pr(E(f¥))) is zero unless (x, o, ) is
distinguished. Suppose that (x,o,\) is distinguished and that f is a pure tensor
& fo with f, € I,(ny) if v € Zgn and f, € Homyy, (W3, 1o(nw)) if v € Yoo, where
A=Ay with d = {d,}yex.. € NJ=. Then we have

4|DF/Q|72(m71)L(1 ep/r)® L®(v— 252 noNg,r)

P E (v) =
X H |F vf”)
(5.10) Ve

22 malv/B]g, ™ Te(v + iby (n) — =522

X
{vg Le(v 4+ iby(n) — 252 — dy)De(v + iby (n) + 25 + dy)

< Pr, (f,(1) }.

where Pr, : Wy, — WZ“HH(F”) denotes the orthogonal projector.

(2) Let v=1r>0 be a pole of the Eisenstein series E(f")), and set @, =
Res,—, E(f")). We have Py (p,) =0 unless (x,0,A) is distinguished and r =
m—1
g
5.9. Proof of Theorem 5.6
For any Paley—Wiener function a(v) such that a(v) = a(—v), we define the wave
packet of a by

(5.11) B, f19) /E £ ga(it)dt, ge GlAr),
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and consider the integral
0= | Esa(WE(a, f:lr .
H(F)\H(AF)

Since |a(it)] = O((1 + [t])~™) (|t| = +o0) for any N >0, |E(a, f;9)| < a(g)re
on Gg. Hence from Lemma 5.3 and Corollary 5.5, the integral I(\) converges
absolutely when Re(\) > 1/2, defining a holomorphlc function. We will compute
limy—, 0 I(A). From [18, Proposition IV.1.11], the Eisenstein series E(f®)) has
a finite number of poles s; (1 <j <r) in Re(v) >0, which are all simple and on
the interval (0, pg]. Let ¢; denote the residue of E(f)) at v = s;. Then ¢, is an
L?-automorphic form on G(Ap) with the estimation ||¢;(g)|| < a(g)™*7*¢ on a
Siegel domain &g of G(Ap). By shifting the contour in (5.11) to the convergence
region o > pg, we have

Bloofi0)= 55 | BG®ig)a)an =3 0,(00ts)

By plugging this and changing the order of integrals, we have
1
(5.12) IN)=— J(\v)a(v) dV—Za(sj)Rj()\),

27T’L (o’) 7
where

T ) = / B(F®); 1) (1) wit] s,
(F)\H(AFr)

R;(\) = / E5 ()65 (1)t |-
(F)\H(AFr)

Fubini’s theorem can be applied to obtain (5.12) since the integrals J(X,v) and
R;(\) are seen to be absolutely convergent for Re(\) > o +1/2 from Lemmas 5.3
and 5.4. Let Re(v) > pg and Re(\) > Re(v)+1/2. Then from the series expression
(5.2), we have

10 = [ > fOamE Al
HUNHAR) ye prn\G(F)

- / S I E A wnla
seP(F) \G(F)/H(F) HEWH(AR) e fy (F)\H(F)

- > 7 Gh)Es A ().
SeP(FN\G(F)/H(F) " Hs F\H(Ar)
where Hs = HNJ 1PJ. Let 79 € G(F) be as in the proof of Lemma 5.4. Then
P(F)\G(F)/H(F) ={e,v}. Hence J(\,v) = Je(\,v) + Jy, (A, v) with Js(A\,v)
denoting the integrals in the last displayed formula. Let us examine the integral
Jyo (A, ). Let Py be the stabilizer in Py of the vector ex. Set [7]x =75 '[7]70
for 7 € A%. By the Iwasawa decomposition H(Ar) ={[7]g | 7 € A5} Pr1(AF) x
Un,
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Lo = [ &5 (W) (ohler s
P (F)\H(AF)

:/ / / 5[3’)\(”7'][{)
EX\AY J Py 1 (F)\Pu1(Ar) JUn

dT/\dT’ didk,

X f9) (qonllr] k) 715> |
where dl and dk are some Haar measures on Py 1(Ar) and Ug, respectively. We
may assume that Py 1(F)\Pg,1(Ar) has volume 1. Since 'yo_lP'yo N H = Py and
Y5 ' Piyo N H = Py 1, we have

Ty (A7) :/ {/ Epa(llr]m) dl}
EX\AL ~J Py 1 (F)\Pu,1(Ar)
dT/\d?‘

) k) dk V|| 2P
{5 ok arir | TR
:/ {/ Eo(Ul7]m) i}
EX\Aj “J Py 1(F)\Pg,1(AF)

dr AdT
(y) v+pa— 2pH‘ ‘
X k)dk 3|7
{/ ¥ (k) }| | =

From (5.3),

T

55,A(1[T}H)d1:2;m 2 ( ) (| [P+ mp (2)|7) 57 ) de.

/PH,l(F)\PH,l(AF)
Substituting this into the last expression of J,, (X, v

) =17 ( /u FO (k) dk:) (A v) + ta(A,v))

), we have the formula

(5.13)
with
/8 Z) 24v4pa—pH dT/\d'f
()\ V) /EX\AX 27TZ/ —Zl | dz }‘ 2\/57-77 ’A

W= [ ([ I eesseeon A
2( ) EX\AE 21 (c))\—Z H( )| |E } 2\/57-7_' A

which are evaluated by the following lemma. Note that pg — pg =1/2

LEMMA 5.7

Let Re(v) > pc and Re A >Rev +1/2. Then,
t1(\,v) =vol(E*\AL) %7
Proof
5.1, the only singularity

Let ¢ < Re(v)+1/2<cand 1/2 < ¢ < py. From Lemma
of the function my(z) on Re(z) > 1/2 is the simple pole at z = pg. We have
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vol(EX\AL) (N, v)

e (2)
- — tE L2 Qs b dxe
1
:/ (i (2) mH(z)t_Z+”+1/2dz+7rHﬁ(pH>t_pH+”+l/2)dXt
0 \27m Jiey A—z A—pH
e (2) v+l
L —z4v+1/2 X
- /1 (271'@' () A~ zmH(Z)t dz) i
_ 1 (2) _—malz) . rablon) !
210 Jiey A=z 2 — (v +1/2) A=pr —pu+v+1/2
L[ BE)mw)

2mi Jy A—zz— (v +1/2)

_ B(z)  mu(2) ruB(pn) 1

= (ReSZ:V+1/2+ReSz:pH)<)\ e . 1/2)) +5 P ———y
_ Br+1)2)
A= (v+1/2)

Since B(pg) =1, we are done. The computation of t; (A, v) is similar. |

mpy(v+1/2).

From (5.13) and Lemma 5.7, the term J,, (A, v) is evidently meromorphic in
A e C, and for Rev > pg,

(5.14) i (A= prr) Ty (A, v) =0

uniformly in Im(v). Let us examine the integral J,. (X, ). Since G; is F-anisotropic
(from the assumption in Section 5.1) and Hp = E' x Gy, the factor space Hp(F)\
Hp(Ap) is compact. We have

T = / E51(h) W) (W)|wr .
Hp(F)\H(AF)

LEMMA 5.8
If Re(v) > pg, then pr(F)\H(Ap) Il £ (h)|||wsr|a < +oo. The integral

=(/0) = / FO (W)
Hp(F)\H(AF)

is zero unless (x,o,\) is distinguished.

Proof

Since G is F-anisotropic, f(”)(m[gl]uk;) is bounded for (g1,u,k) € G1(AF) X
N(Ap) x U. From this remark, we have a constant C' > 0 such that || f*)(g)|| <
Ca(g)Re+re for all g € G(Ar). Since the function a(g) is left Hp(Ag)-invariant,
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/ a(h)Re(”)+”G|wH|A
Hp(F)\H(Ar)

:vol(Hp(F)\Hp(AF))/ a(h)Re(u)+pG|pr\H|A.
Hp(Ar)\H(AF)

The volume factor is finite since Hp is F-anisotropic. To have the first assertion
of the lemma, it suffices to show that

=~ (g0 R0 gyl < o0
Hp(F,)\H(F,)

and [], Z, < +o0. From Lemma 2.1, we have
—_ Re(v e(v
= - ¢ (- [ 9)al00) "% g (9,)
P(F)\G(Fy)

with V(| -|% ;90) being continuous on G(F,) for Re(r) > pg; thus =, < +o0.
There exists a finite subset S C % such that =, (v ¢ S) is given by Lemma 4.3.
The convergence of [[, 2, follows from that of the Euler product

)_7n2—3) ) .
L(m—1,em .
HL2Re )+ Lep p) (m =15, /r,)

To prove the remaining half of the lemma, we write

FO ) lwr|a

/HP(F)\H(AF)
:/ (/ f(V)(lh)|pr‘A)|pr\H|A~
heHp(Ap)\H(Ap) “JIEHP(F)\Hp(AF)

With d'7 and dg; being some Haar measures on A}, and on G (Ar), respectively,
the integral in the bracket equals

(/ x()|rl5 e de) (/ £ (mgi]h) d91)7
Ex\AL G1(F)\G1(Ar)

which vanishes unless y|AL is trivial and gy ~— f*)(m[g1]h) is a constant. The
restriction x|AL is trivial if and only if x =noNg ,F With some 7 € Yr. Thus the
first two conditions for (x,o,A) to be distinguished follow. The constraint on A
comes from the condition Wi’“mH(Fv) #{0}. O

LEMMA 5.9

Let Re(v) > pg. Then, the integral J.(\,v) converges absolutely for Re(\) > pa
and

. ~ =)
A—}gg+0()\ pr)Je(A, V) (f*)

uniformly with respect to Im(v).

Proof
We have
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}()‘ 7pH)Je()‘7V) - E(f(y))|

SC { A— PH)gﬁ)\ —1{a Re V)+pG|OJH‘A
Hp(F)\H(AF)

with a constant C' > 0 independent of v and A. Fix a small € > 0. From Lemma 5.3,
there exists a constant Cp > 0 such that sup,, cx<,,+c (A = pu)Esa(R)] < Co
on a Siegel set Gp; since the left-hand side is an H (F)-invariant function, the
same inequality is valid for any h € H(Ap). Hence

|\ = pr)Ep a(h) = L]a(h)ReWHPm < (Cy + 1)a(h)Ret)ten,
heH(AF)a)‘E (pvaH+€]

From Lemma 5.8, the right-hand side of this inequality is integrable on Hp(F)\
H(Ap). Thus by the Lebesgue dominated convergence theorem, we are done
because limy_,,,, +0(A — pr)Esa(h) =1 for any h € H(Ap). O

LEMMA 5.10
Let 0 > pg. Then

2m/PH E(f))a(v) dv

— E(f)a Za $;)Pr ().
j

(5.15)
27’(’2 (o)

Proof

By Lemma 5.3 and Corollary 5.5, the left-hand side of (5.15) coincides with the
limit limx—,,,,+0(A — par)I(X), which in turn is evaluated as in the right-hand
side of (5.15) by means of (5.12), (5.14), and Lemma 5.9. O

If (x,0,A) is not distinguished, then Z(f(*)) = 0 for all Re(r) > pg from Lemma
5.8. By letting a(s) vary, from the formula (5.15), we obtain Pg(E(f®))) =0
for all v € iR and Py (¢;) =0 for all 5. In the rest of the proof, we assume that
(x,0,A) is distinguished. Let n € Y be such that x =70 Ng/r. In this case,
from the proof of Lemma 5.8,

S = vl (H) | Dyl O ) [ 1 W)l
Hp(F)\H(F,)

for Rev > pe. Here the factor | D jq|~ 4 HP\H )/2 arises from the definition of

the global Tamagawa measure. Since Hp = E' x U(Vl) \wHP\H|},U = lwgp\HF,
vol(Hp) ={2L(1,eg/p)}? and dim(Hp\H) = m? — (m —2)? = 4(m —1) (see Sec-
tion 5.3). By means of Lemma 4.3, the product becomes
1 L= (v — ™72 o Ng/r)

L>Q2v+ 1LneR) )

LTI =00l 15 0) ) @ =0r)

VEXfin VEX oo

L (m—1,ep2)
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with
=, (f) = / SO Wwrole, €W, (vE o).
Hp(F,)\H(Fy)
LEMMA 5.11

For Re(v) > pg,
VOl ™2 A (v + by (n) — 52)°

E,(f)) = Pr, (f,(1)).
(") L(v +iby(n) — 252 — d,)T (v +iby(n) + 251 + d,) (1)
Proof

Without loss of generality, we may assume that b,(n) = 0. From Lemma 2.1,

we see that the integral =, ( féu)) coincides with the Poisson integral (Z(n,|- |7, ),
) defined by (4.1), for any £ € (Wa, ®c I(,| |7 )% Set @ (g) =
E.(R(g) ,SV)) for g € G(F,). Then () G(F,) — W, is a spherical function stud-
ied in Section 3.1. Since @5,”)(1) = Ev(fvy))7 we have <I>,€”)(a5f)) = Ev(ﬂgy))@iu (s;
t)¥q, with ¢4, (s;t) given by (3.3), which, by [17, p. 47], equals
oy~ 2 1
(cosht)Q"’mHgFl( v 2m+3 +d, 1/+2m
On the one hand, by the formula in [17, p. 40], we have

fim_ #2718 (o) = 2, (1)

—d,;1;tanh? t).

t—+o0
—2v—m-+3 —2v+m-—1
(5.16) X oy (g, S — 1)
—2v+m—1
—2,(f) 2 Hz)

T+ 22t +d,)D(v— 252 —d,)
for Re(v) > 0. On the other hand, by the same way as in [9, Proposition 7.7], we
have

Jim 2 @O 00) = [ (@)l Re(w) >0

v

where wy is the unique gauge-form on N such that wg|PN =wp Awy on the
Zariski-open set PN = P x N of G. From [3, Theorem 8.2] after adjusting for
the difference of the normalization of measures by Lemma 3.1, the last integral
is evaluated as

27 2vFm=1P () (v — mng)Q
M~ 557 42T+ 55 1 d )P

(5.17) M

1—- 2 —
SEU m)/2 _m—1

By equating (5.16) with (5.17), we have the desired expression for (=, (féu))wdv)
on Re(v) > 0. O

Consequently, we see that Z(f()) with Re(v) > pg equals the right-hand side of
(5.10). By this expression, Z(f*)) has a meromorphic continuation on C. The
singularity on Re(v) > 0 arises from the completed L-function L (v — mT*?’,n o
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Ng/r) 11, FC(V — mT’g), which is holomorphic except for simple poles at
v="m-1 m=3 (only when =1 or ep/r). Moreover, we have
—/ (v |L>(v— 253 no NE/F v
=) < 11 12°Cnel - 15,3 £

|Loo(21/+1,77 EE/F =S

X{ I Te(v+ib(n,) — 252)?|

e [De(v +ib(n,) — 52 — dy)Te(v +iby (1) + 5+ +dv)l}

for Re(v) > 0. Take any T; s in Re(v) > 0. By Stirling’s formula, the gamma factor
turns out be O(1) on 77 s. The product of normalized Poisson integrals is also
O(1) on 7},5 (because it is periodic in Im(v)). From the convexity bound, we have
|L> (v m=3 noNg/r)| < (14 |Im(v))™ on T;5 with some constant Ny > 0.
From [1 ] we have a polynomial bound |L>(2v+1,7n EE/F)| L« (14 [Im(v)])Ne
on 7T7,s5. Thus, we have a polynomial bound of Z(f*)) on 77 5. By shifting the
contour from (o) back to the imaginary axis, we have

L ) )
2 ), 2(f")a(v)d
_ 1 )
=i ) 2(f")a(v)dv
—I—a(m_ )Res 1.:.(f(”)) (m2 3)Res m=3 E(fM).

Comparing this with Lemma 5.10, we obtain
n(E(f™) =E(f") (veiR),
Pr(¢m_1)=Res,_m_ 2P, Pu(pm-

2

3) = Res,_m_s E(f))

with ¢5 = Res,—s E(f*)), and Pg(¢;) =0 for a residual form ¢; (if any) other
than ¢m2_1 and qu s. Actually, Lemma 5.1 shows that no such ¢; exists other
than ¢ mo1.

6. The spectral side

6.1. A majorant

Let V= Hvezf V, be a compact open subset of G(A%) such that V, =U, for
almost all v. Let ¢y, be the characteristic function of H(F,)V, on G(F,), and
set ¢v(gfin) = [lyex,, PV, (90) for gain € G(AF). For N € N and v € ¥, let us

define a function ¢ : G(F,) = Ry by
dMNM(go) =llgs N, g€ G(F),
where || - ||z, is the minimal majorant of h, with respect to U,. The function

(M) G(Ap) = Ry defined by

oy
E}N) { H PN }¢V(9ﬁn) 9= gooGsin € G(Ap),

VEY oo
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is left H(Ap)-invariant and is smooth on G(Ap). Thus the sum

oMV (g)= > (). geGap),
YEH(F)\G(F)

is well defined.

LEMMA 6.1

Let N >2(m —1). The series @E}N) converges absolutely and normally on G(Ap)
defining a left G(F)-invariant continuous function. For any Siegel domain &g C
G(Ap) with respect to P and U, we have the estimation

<I>(N)(g) < a(g), g€ 6g.

If N > 4m — 6, then the function <I> ) belongs to LY{G(F)\G(AFR)) for all 1 <
l<m-—1.

Proof

Let N = Ny Na, be a relatively compact open neighborhood of the identity in
G(Ar) with Ny and Ng, being open in G(Fx) and G(AY), respectively. We
may suppose that Ny is a subgroup such that Vg, = V. Since Noo = [[ex_ Mo
is relatively compact, we have

||(gy)71€|’uv < BUH971€||Z/I1,7 (9,y) € G(Fy) x Ny,

with By, = supyep, {2; l(y=1)* 511)}1/27 where {v;} is an orthonormal basis
of V(F,) with respect to the Hermitian inner product associated to the norm
| - lzt,, and where (y~!)* denotes the Hermitian adjoint of the operator y=! €
Endc(V(F,)). Thus, if we set B =[], BY, then

oy (9) < Bo\(gy),  (9.y) € G(Ap) x N

From this,

<I>§;N) (9) B~ *vol(N)

</y S W o)lwcls

EN yeH(F\G(F)
/ ST anlg T e () lwela
7€H(F \G(F) Y YEH(FNG(A 5eH( )
</ 1y (g™ ) bl ()l
YyeH(FN\GAF) * ca(r)

with 1 the characteristic function of N' on G(Ap). Let U be an arbitrary
compact set in G(Ap). Since 3¢ (p) Ix (g vy) S #(GF)NUNNIU) (<
+o00) for g € U and y € G(Ap), the last integral is majorized uniformly in g € U
by
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/ ¢§;N)(y)|WG|Aa
H(F)\G(AF)

which is the product of vol(H (F )\H(AF))|DF/Q|_‘“"’ H\G)/2 and

vol (H(A)\H (AS)V; |wH\G|Aoo 11 /

VEX oo

Iy el lwmlr, }
v E€H (Fy )\G(Fy)

Since V, is compact and V, = U, for almost all v, the first factor is finite. For
v € Yo, the integral

/ Il ol
Yo €H (Fy)\G(Fy)
:Og/ (2cosh 2t)™N/2(cosh t)?™ 3 sinh ¢ dt
0

is convergent if N > 2(m — 1). This settles the first assertion of the lemma. From
Lemma 6.2(1), we have

2("(g) <alg)" " [ W) el g€ 8.
H(F)\G(F)gN

Let ng}N) (y) # 0; then y = ha(t)u with some h € H(Ap), t € (Ry)¥<, and u €

U V. Hence |lylle < ||hllglla(t)]lq. If y € G(F)gN, then from Lemma 6.2(2), we

have [ly[|g' < a(g) /2. Hence

/ A Wlals
H(FN\G(F)gN
—1 e .
/ . @) a(9)'?) T ¢V (al*))(cosht, )3 sinht, dt,
R « VEY oo
with I(T) =fuzﬁ6>HT\wH|A. Since I(|Ja(t)|gta(g)"/?) < [la(®)[| 2™ P a(g) =2
GZ

by Lemma 6.2 (3) and since [[a(?)||¢ < [[,ex. ev, the t-integral is majorized by
(n=2) H/ (m=2) (cosh 2t,) ~N/2(cosh t, )™ 3 sinht, dt,,.

If N >4m — 6, then the t,-integrals are convergent. Therefore,

D(g) < a(g)" ! x a(g)"" =a(g)

for g € G¢. By the Iwasawa decomposition, we have

/ [237(9)] el <</ a([r]) P20l :/ p2-20m-1) 47
(GFe] to “

T r

The last r-integral is finite if [ <m — 1. O
LEMMA 6.2
(1) Let N be a relatively compact open set of G(Ag). Then

> anlg M) <al@)" e (¥), g€ S,y € G(AR).
YEG(F)
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(2) Let |- |l be the norm function on G(Ap). Then

lvgyllat <a(g) ™%, yE€G(F),g€GayeN.

(3) Let Gy be a Siegel domain of H(Ap) with respect to Py and Uy . Then

heExn |wH|A<<T_2(m_2), T>1.
llkllc>T

Proof

We prove (1) and (2) in the same way as [26, Lemma 3.3]. Let 7o € G(F) be
the element introduced in the proof of Lemma 5.4, and set [7]g = 5 *[7]70 for
7€ A} as in Section 5.9. A general element of G is of the form h = y[r] gk with
k €Uy and y € Py(Ap) lying in a fixed compact set and 7 € (ty,+00). Thus
Ialle = llzlmlle = I '[z]olle < I[rlle = 7. From this, we have

R 9y dr 2 2
/ |wH|A<</ rm2m=2) _ p2m=2)
he€GH T T (]
lrllc>T

6.2. Test functions

Let 0 = {dy}ves.. € Ng™, and let (15, W(d)) be the unitary representation of

U~ defined in Section 5.5. As before, we fix a unit vector ¥4, € WCZ”QH(F”)

for each v € ¥, and we set J(0) = @, cx_ Va,- Recall A (see Section 3.1.2).
For a decomposable function oo = ®v€2m oy € Qpex A, let us define a function

y(a) : G(Fa) = W (D) Rues. Wa, by setting
\ijb(a;goo): ® @du(av;gv)v goo:(gv)v GG(FOO)
VEY oo

A function ¢ € S(G(A®)) is called decomposable if there exists a family of func-
tions ¢, € S(G(Fy)) with v € X, such that ¢, = 1, for almost all v and

?(gin) = H bu(gv);  giin = (gv) € G(AF).
VEDfin
For a decomposable function ¢, we define a smooth function @ («, @) : G(Ap) —
W (0) by setting
Oy (e, 659) = Va(@igoo) [ @5 (90), 9€G(AR),
VEXfin

where

o1 (g,) = vol (H(Ey) N ly: [wrr[3,) / G0 (oge) s
H

F,

;‘Ua gng(Fv)'

Note that ¢ = ¢y, if ¢, = 1, . From the construction, the function ® = ®;(a, ¢)
has the equivariance

(6.1) B(hgkso) = To(koo) ' ®(g), h€ H(Ar),9€ G(Ar), koo € Uso.
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6.3. The relative kernel functions
Let & = ®y(a, ¢) be as in Section 6.2. From (6.1), the summation

B(g) = (- Vol (H(AF) NUs |wrlax) Y, 2(v9), g€G(Ap),
YEH(F)\G(F)
makes sense if absolutely convergent. When the dependence on the data (9, «, ¢)
matters, we write ®,(«, ¢;g) in place of ®(g).

LEMMA 6.3
The series ®(g) = Py (v, ¢; g) converges absolutely and normally on G(AR), defin-

ing a continuous W (0)-valued left G(F')-invariant function. For anyl € [1,m—1),
we have ® € (LY(G(F)\G(Ar)) ®@c W(0))Hes.

Proof

For v € Xy, set V,, = Supp(¢,). Then there exists a constant B, > 0 such that
|65 (g,)| < By, (g) for all g, € G(F,). For a place v € Xg, such that ¢, =1y,
we can take B, = 1. Fix an integer N > 4m — 6. For v € ¥, Lemma 3.8 yields
a constant B, > 0 such that | g, (cv;g,)| < Bqu;WH&vN for all g, € G(F,).
Taking the product of local estimations, we have | ®(g)|| < B(bg,N) (g) for all g €
G(Ap) with B=T]], B,. Then we apply Lemma 6.1 to complete the proof. [

6.4. Spectral expansion of the relative kernel function

For any unitary representation 7 of G(Ar), we set 7[0] = (7 ®c W (0))¥>, view-
ing this as a closed subspace of the Hilbert space 7 ®c W (). In particular,
L*(G(F)\G(AFr))[0] is identified with the space of equivalence classes of measure-
able functions ¢ : G(F)\G(Ar) — W (0) such that ¢(gkeo) = To(keo) to(g) for
all ko € Uso and fG(F)\G(AF) llo(9)]I?lwa|a < +o00. Let Hais(G) (resp., Hews(G))
be the set of all the irreducible closed subrepresentations of L?(G(F)\G(Ar))
(resp., L2 . (G(F)\G(AF))). For 7 € Ilgis(G), the space 7[0] is identified with the
space of W (d)-valued L?-automorphic forms (see Section 5.7) whose coefficients
generate m; we fix an orthonormal basis B, () of [0] once and for all.

LEMMA 6.4

Let ¢ : G(Ap) = W(0) be a smooth function which satisfies the following condi-
tions.

(i) We have o(vgkoo) = To(koo) “1o(g) for all v € G(F) and koo € Uso .
(ii) There exists a family of complex numbers {v, }yes., such that

o *Cq(r,) = 2_1{(2Vv)2 —(m— 1)2}90 for all v € Y.

(i) For any e >0 and for any D € U(goo), the majorization ||[p* D](g)| <e
a(g)m=D/2%¢ on g € S holds.
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Then the integral (®|p) = fG(F)\G(AF)(<I>(g)|<p(g))|wg|A converges absolutely and

@) ={ ] awlv) }(0@)IPu(p ).

VEY
Proof
Set
0" (go0) =/ ¢_5H(9ﬁn){/ @(hgoogﬁn)|wH|A}‘WH\G|A°°7
H(A®N\G(AF) H(F)\H(AF)

I € G(Fo),

where ¢ (gg,) is the product of ¢ (g,) over all v € Xg,,. From condition (iii), by
Lemma 5.4, we see that the integral converges absolutely and has the majoriza-
tion

(6.2) Z‘ s (t))H <e [ (cosht,)™ =1, teRY> we Ny
VEX oo

Moreover ¢ (g,,), when viewed as a function in g, € G(F,), belongs to

C*(H(F,)\G(Fy),1q4,) for all v € T,. We have
(—1)* ol (H(AF) NUs [wir|a=) " (B])

= (®(9)le(9)) lwala

H(F)\G(AF)

- (2011 [ plhg)lw |4 ) korn
H(AF)\G(AF) H(F)\H(AF)

:/ (\ija(a;goo)|90H(goo))‘WH\G|FX>
(Foo )\G (Foo)

- (2%) . /L(o> {/mm)\c(m) (Posigeo)le™ (920)) ‘WH\G|F°°}
a(s) d:uoo(s)v

where Vs (8; 9oo) = Qs Va, (503 90), a(8) =[x @v(sy), and the outer inte-
gral in the last line is the multidimensional contour integral on (o) = {s € C¥ |
Re(s,) = o} with respect to the differential form djueo(s) =[], cx_ Svdsy. Due
to the estimation (6.2) combined with Lemma 3.4, we have a constant N > 0
such that

(s (s130) 6" (a(0))) | < [T (1 [1m(s,)]) " cosht,) Reeorve, ¢ B2~
VEYX oo

(6.3)

By this,

/ {/ }(\I/a(s;goo)\@H(goo))||}¢a(s)||dﬂoo(s)|
L(o) *H(Fao)\G(Fux)
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< /]L(O'){/Rioo [(Ps (s;a(t))|¢H(a(t)))’ H (coshtv)zm_3(sinhtv)dtv}

VEX oo

X |a(s)Hd,uoo(s)}
oS 204+2m—3+¢ (g
/RE I (cosht,) (sinht,)dt, }

VEX oo

x {/MU)(H [tm(s,)[) ¥ a(s)][dpoc (5)] }-

In the last line, the t,-integrals are convergent if ¢ > m — 1 and the s-integral

is also convergent due to the majorization |ay,(s,)] < (1 + [Im(s,)])™

N-2

on

Re(sy) = 0. Thus all the equalities occurring in the displayed formula (6.3) are
justified by Fubini’s theorem. By (6.2), we can apply Lemma 3.5 successively to

obtain

/H(Foc)\G(Fac) VED oo
X |wi\G|Fa
=297 (9(0)| 0" (¢))-

By condition (ii), this yields

o (R
A(FW)\G(FM)(WD( agoo)|§0 (goo))| H\G|FOO7HUEE (VQ_SQ)

('110(55900” H [CG(FU) - 2_1{(231))2 - (m - 1)2}}@1{(900))

Plugging this into the last formula in (6.3) and then applying [26, Lemma 9.5],

we have

(—1)% vol (H(AR) NU; |wirla=) " (@)

(R e ",
‘< ) ) b Y 0 )

2mi

= (1) { [T awlv) 0@ (€)).

VEX oo

By definition,

o (e) :/ Q_SH(gﬁn){/ sﬁ(hgﬁn)|wH|A}|wH\G\Aoo
HAR)\G(AY) H(F)\H(AF)

= Vol (H(AF) NU; |wir|a=) "

x / o) | o(hgsn) o |a Jwmn cla
G(A H(F)\H(AF)

Vol(H (AF) NU; |WH|A°°) 1/PH(SD”‘@-

O

Let 7 € Igis(G). For v € ¥, let v,(7) be a complex number such that the
eigenvalue of Cg(p,) on  is 27H{(2v, ()% — (m —1)?}; to specify v, () uniquely,
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we always impose the condition Re(v, (7)) > 0 or Re(v, (7)) =0, Im(v, (7)) >0
on v, (7). The vector veo(m) = {vy(m) }vex,, is called the Archimedean spectral
parameter of . Set

Qu(m= [ (1+ @)

VEY o

We already introduced the similar quantity Qs (7| - |7) for n € Yp and v € C in
Section 5.5.1.

LEMMA 6.5
For any R >0, there exists N > 0 such that
(6.4) [e(9)]] < Quo(m)Nalg)™, g€ Sa,p€Bo(m), 7 € eus(G).

There exists N1 > 0 such that, for any € > 0,

||E(f(l’)7g)|’ <, Qoo(77| . |;)N1a(g)(m71)/2+6,

g€ G, f€Bo(n),n€Yr,vEiR.

(6.5)

Proof

The first estimate, as well as the second one with a possibly larger exponent of
a(g), follows from the argument of [7, Section 5.3] (see also [27, Section 15.1]).
Since the exponent of a(g) in (6.5) is crucial to our purposes, we reproduce
the argument closely following [7] but giving a necessary modification. Let ¢ €
CO(G(AF)). Then from [7, p. 636]," there exist constants c;,ca >0 such that

E(I(n|-%:¢) Y, g) = / Ky(g,2)ATE(f"),2)|wela
G(F)\G(AF)

for all g € G and all T'> c¢1log [|g|le + c2, where Ky(g,2) =3 ey ¢~ 72).
Let V =supp(¢). From Lemma 6.2, there is a constant ¢s > 0 such that

|Ks(9,2)] < esa(9)™  a(mgv(9), 9 €6a,x € G(Ap).

By Lemma 6.2(2), we have a constant ¢4 > 0 such that ||z|¢ > csa(g)'/? for
all 2 € &g such that 1g(pygv(z) # 0. Taking the integral in x € &¢ and by
Lemma 6.2 (3) (adapted to G), we have

9 1/2 1 1/2
( |Ky(9,2)| |wG|A) < csa(g) ( e |WG|A)
G(F)\G(AF) Ille>caalg)!/?
_ _ _ 1/2 _
< cga(g)™ {a(g)" "2 = cga(g) m I/

with some constant cs,cg > 0. Thus, by the Cauchy—Schwarz inequality

(6.6) \E(I(n]|%:0)f*),9)| < coalg) ™ V72| ATE(F™)],

Hn [7, p. 636] (line 5 from the bottom), T' > ¢1||g|| 4+ ca can be replaced with T > ¢; log ||g|| + c2.
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for all g € G and all T > ¢ log ||g||¢ + 2. Note that E(f*)) is a cuspidal Eisen-
stein series since My = G is F-anisotropic. From the Maass—Selberg relation (see
[7, (11)], we have a constant ¢z > 0 (independent of v, n, and T > 1) such that

ATE(FO)||, < eV (1 + | (ma(@, —v)mi ) I1), 5| + [mam )1, o)

where mg(n,v) : I(n] - |7) = I(7] - |z") is the global intertwining operator defined
by (5.4). This, combined with Lemma 5.2, gives us constants cg and N >0
independent of T" such that

(6.7) [ATE(f )|, < esT"*Qoo (1] - |;)N, veiR,neYp.
From (6.6) and (6.7),
|B(I(n]- [5:0) £, )| < coalg)™ V2TV2Qu (0] -17)", veiRneYr,

for all g € S and all T > ¢; log ||g|l¢ + co. By letting T' = 2(cq log || gl| + ¢2), we
obtain

IE(I(nl-5:0) £, 9)| < a(g)™ V2 Qe (n] - %)

with the implied constant independent of v € iR, n € Yp, and f € V(n). The
remaining part of the proof is the same as [7, Section 5.3]. O

Let V= [],cx_ Vo be an open compact subgroup of G(A%)NU such that ¢
is right V-invariant. Let I14;s(G)Y be the set of all those 7 € Ili(G) such that
7Y # {0}, and set Iy (G)Y = eyws(G) N gis(G)Y. For each 7 € gis(G)Y, we
always choose our By(7) in such a way that any ¢ € B, () belongs to 7[0]Y
the orthogonal complement of 7[0]Y in 7[0]. Similarly, for each ) € Yz, we always
require that By (n) is a disjoint union of By (1) N Ho ()Y and By (1) N (Ha(n)Y)*.

or

LEMMA 6.6

Let U be a compact subset of G(Ag). There exists Ny such that if R > Ny, then
the series

= > > Quo(m) lele)]|
mE€leus(G)Y p€By ()Y
and the series-integral
)= Y [ Qul-15) B g)||ldv]
nEYr fEBy ()Y 7 E

converges uniformly on g € U.

Proof
By Lemma 6.5, we have a constant C' >0 and Ny > 0 such that |p(g)] <
CQoo(m)No for all p € By(m)Y and g € U. Thus, the series

(6.8) > > Quo(m) N

T€leus (G)Y p€Bo ()Y
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is a uniform majorant for Qﬁ%(g) on g € U. By Weyl’s law for the C*°-bundle
G(F\G(AR)/V X 7 W) = G(F)\G(AF) /U V (see [2], [15]), the series (6.8)
turns out to be convergent if R— Ny > (m —1)dp. In the same way, by Lemma 6.5,
the series-integral €% (g) is majorized uniformly on U by

(6.9) 3 Z 0l )~y

nEYr fEBy(n ZR

with some constant Ny > 0. Since f € Hy(n) is determined by its restriction to
Usn =UNG(AS), we see that By(n)Y is contained in the space of W (0d)-valued
functions on the finite set Us,/V, and hence #B8,(n)Y < [Usy : V] dim W (9). Thus
to see the convergence of (6.9), we may ignore the summation over f. There exists
an open compact subgroup V; C U such that any function f:Ug,/V — W () is
left V;-invariant. Let fy, be an ideal of og such that, for any 7€ [[, x5, {(1+
fvog,) Nog }, the element [7] (see Section 2.1 for the definition) is contained in
V1. Let Yr(fy) be the set of n € Y such that the conductor of no Ng,p divides
the ideal fy. Since By(n) = & unless n € Yr(fy), the series (6.9) is majorized by

> [ Qulul 1)
neYr(jv)

There exists a lattice L of {b= (b,) € iR¥= | > b, =0} such that Y (fy) =
{nIL, |- |l;lfv |be L,ne€Y2(fy)}, where Y2 () denotes the finite-order elements
in Yr(fy). Since #Y2(fy) < 0o, we are reduced to see the convergence of

Z/ [T (+lit+o,2)~ " a
belL VEYX oo

Since [pa,. H?il(l +|z;]?)"Fdx < +o00 if R > dr/2, we have the desired conver-
gence for any R such that R > dr/2+ Np. O

PROPOSITION 6.7
The series-integral

oY a(ve(®) (90)Pu (e 9)el9)

m€llais(G)Y p€By (m)V
6100 £33 = [ ol ol 1) OE)Pa (B (] [7:6) 7))
nEYF feB, (n)V
x E(f");g)dv
converges to the value ®(g) absolutely and locally uniformly in g € G(Ap).
Proof

By Lemma 6.3, ® € L2<(G(F)\G(AF))[0]Y for any € € [0,m — 3); since m >4,
such €’s are nonempty. We have the spectral expansion of ® of the form



470 Masao Tsuzuki

D)= Y. > (Bl

m€lqis (G)Y By (m)V

1
_ V) (V)
15l DR R
(x,0) f€BL (x,0)Y

(6.11)

which should be understood in the L2-sense for a moment. Here (,o) runs over
a set of pairs of unitary idele class characters x of E* and an irreducible closed
submodule o C L?(G1(F)\G1(AF)), and By(x,0)Y is an orthonormal basis of
I(x,0)[0]Y (see Section 5.5). Since ¢ = E(f*)) with v € iR satisfies the conditions
(i), (ii), and (iii) in Lemma 6.4, (®|E(f*))) is proportional to (9(2)| Py (E(f*) *
#)). By Theorem 5.6, Py (E (f ())) is zero unless x =no Ng/r With some 7 €
Yr and o coincides with the constant functions on G1(F)\G1(Ap). Let ¢ €
By (m) with 7 € I4is(G) — Hews(G). From [18, Proposition IV.1.11], ¢ is a finite
linear combination of the residues ¢, = Res,—, E(f*)) with f € I(x,0)[d] and r €
(0, mT_l] By applying Lemma 6.4 to ¢,., we see that (®|p,.) is a constant multiple
of P (¢r * ¢), which, from Theorem 5.6(2), should be zero unless noNg,p =1, o
is trivial, and r = 21, Applying Lemma 6.4 to all cuspidal components (®|¢),
we see that (6.11) is simplified to

Blg)= D>, > a(te(™)(0Q)Pule*d))elg)

7€ll4is(G)Y pEBy (m)V
612+ 3 S o al ol 1) (@PH Il [7:6) 7))
nEYr feBa(n)"

X B(f®) dv,

where the only noncuspidal ¢ € By(7)Y contributing to the sum is the constant
function, which occurs only when d, =0 for all v. To complete the proof, it
suffices to show the uniform convergence on U of the series-integral (6.12). From
Lemmas 5.4 and 6.5, we have a constant N > 0 such that

IPatesd)l< [ o Bl

(6.13) H(F)\H(Ar)

L Quo(mMN, T ellw(@)Y, 0 e By(m)V.

For an arbitrary large R >0, we have |a(s)| < [],cx (1 +[Im(s,)]) ™" compact
uniformly in Re(s). Hence

([ (Voo (1)) (90) | Pr (0 % 8)) 2(9)|| < | (voo () |||P (0 % &) | 0(9)]]

€ Qoo (vae(m) " [l

with the implied constant independent of m and ¢. Thus, the discrete part of
(6.12) is majorized by the series €%, (g), which is uniformly convergent on
U by Lemma 6.6. From Lemmas 5.4 and 6.5, we obtain a polynomial bound

1Pa(E(I(n] - 7:0) fY)I < Qoo(nl - 7)Y uniformly in f € By(n)Y, n, and v.
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Using this estimate and Lemma 6.6, we see the uniform convergence on U of the
continuous part of (6.12) in the same way as in the discrete part. (]

6.5. Period integral of the relative kernel function
We consider the H-period integral Py (®|9(d)) of g — (2(g)[9(0)).

PROPOSITION 6.8

The period integral Py (®|9(0)) converges absolutely and equals (—1)%F x
vol(H(A®) NU) times

S alve®) Q)P D) (Pu(e)[9()

mellais(G)Y p€By (m)V

£ Y [ alm ol ) EEIP (B 15:8)1))

neYr fEBa(n)"
% (Pa (B(F)19(2)) dv

Proof

The formula is obtained by the termwise integration of the series-integral (6.10).
To justify this process by Fubini’s theorem, we only have to ensure the conver-
gence of the following series-integrals:

> 2 |amM)I@IPa(ex9)]

w€llais(G)Y peBy (m)V

(6.14)
x / ()|l
H(F)\H(AFr)
> X el [ G@Pa (201 [1:) )
(6.15) 1T/

{/ 1B ol Y]
H(F)\H(AF)
By (6.13), the series (6.14) is majorized by

Y el )] Qe (v (m) ™,
T€ll4is (G)Y pEB, (7)Y

whose convergence can be confirmed in the same way as in the previous proof.
The convergence of (6.15) is shown similarly. O

7. The geometric side

Let ® = ®,(«, ¢) be the relative kernel function defined in Section 6.3. We com-
pute the period integral Py (®|9(0)) in a different way than in Section 6.5.
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7.1. The double coset space
For v € G(F), set

b(y)=h(y7'0.0),  O=y"=b(y)l, Ay =h[].

A simple computation shows that £7 is orthogonal to £, and A, =1~ Ng,rb(7).

LEMMA 7.1

There exists a well-defined bijection
N": H(F)\(G(F) — H(F))/H(F) — Ng/r(E)
such that N’(H(F)vyH(F)) =Ng,rb(y).

Proof

If h,hy € H(F), then there exist elements c,c; € E' such that h™'¢ = cf and
hil = c14; thus Ng/p(h(hghi(,0)) = Ng,p(h(ghi,h~"0)) = Ng/p(c1ch(gl,0)) =
Ng/r(h(gl,£)). This shows that the map N is well defined.

Let us show the injectivity of N°. Suppose that N°(H(F)gH(F)) =
N(H(F)g H(F)) with g, € G(F) — H(F). Then Np,p(h(g~',0)) =
Ng/r(h(gi'¢,0)); equivalently, h(g~1¢,¢) = ch(g; '¢,¢) with some c € E'. If we
set y =h(g7,0), & = g~ ¢ —yl, and &), = cg; ' —y¢, then we can easily confirm
that & and &) belong to £+. The condition g, g; ¢ H(F) implies that both & and
& are nonzero. A computation shows the identity h[¢] =1 — Ng,ph(g7¢,0).
Hence N°(H(F)gH(F)) = N°(H(F)g,H(F)) means the equality h[¢] = h[¢)].
Since h restricted to ¢+ is nondegenerate, we apply Witt’s theorem to have an
isometry h of £+ such that h&y = &). Extend h to an element of G(F) by setting
h(£) = €. Then h(g=¢) = h(& +yl) = &+ yl = cgy ' ¢; equivalently, g1hg~ " = cl.
This means that gihg~! € H(F). Since h € H(F), we obtain H(F)gH(F) =
H(F)gH(F), as desired.

Let a € E. By the Hasse-Minkowski theorem applied to the quadratic space
(h,¢1) (see the first sentence of Section 5.6), we can find a vector &, € £+ such
that h[{,] =1—Ng/r(a). Since the vector § = al+§, satisfies h[{] =1, by Witt’s
theorem, we have ¢ = g~/ with some g € G(F). Noting that &, # 0, we obtain
g € G(F) — H(F), and by a computation N’ (H(F)gH(F)) = Ng/r(a) also. This
completes the proof. O

We fix a complete set of representatives X¢ g (F) in G(F) — H(F) of the dou-
ble coset space H(F)\(G(F) — H(F))/H(F) once and for all. An element ~y €
X m(F) is said to be regular or unipotent according to whether N°(v) # 1 or
N°(v) =1, respectively. We set

Xen(F)={v€Xau(F)|N'(7) € F = {1}},

X&uy(F)={veXau(F)| N’(y) = 1}.
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By Lemma 7.1, the set X¢ 5 (F) is a singleton. Indeed, we may take X¢& ,(F) =
{7}, where 7, € G(F) is an element such that v, = ¢+ ey with ey being an
F-isotropic vector in £+.

7.2. The orbital integrals

Let v € X¢,u(F), and set H, =y~ 'H~yN H. The unitary group U(h[¢1) is iden-
tified with Hy, and the stabilizer Ho(¢7) in Hp of ¢7 coincides with Ho N H,. By
the Hp-isomorphism

Ho(0)\Hy > Ho(0')h — b= 07 € ©'(A,),

we transport the gauge-form |wsr(a )| on T'(A,) ={ € ¢+ — {0} [ h[g] = A,}
to Ho(¢")\Hy. When N’(v) # 0, we have a gauge-form wg\g on H,\H =
Ho(¢")\Hy (cf. [27, Lemma 4.7]). When N”(v) =0, it is easy to see that [\ H =
(T x Ho({+))\Ho with T = E*. We fix an H-invariant gauge-form wy_\p on
H\\H so that wy \ g, wr, and w41y g, match together algebraically.

LEMMA 7.2
We have vol(H) = {2L(1,eg/p)}?. For v € X u(F), the volume vol(H.,) equals
{2L(1,ep/r)}? or {2L(1,ep/r)}® according to whether N°(v) #0 or N(7)? =0.

Proof
Since H, is isomorphic to U(m —2) x U(1)? or U(m — 2) x U(1) according to
whether N°(v) is zero or not, from Section 5.3, the lemma is immediate. O

For any function ® = ®(0, o, ¢) constructed in Section 6.2, define

(1) To(y; @) = / (@(MIIQ)) wonr, il
Hy(Ap)\H(AF)
LEMMA 7.3
We have
(7.2) 3 / @) st sl < +o0.
veXa,u(F) H(F)\H(Ar)

In particular, the integral (7.1) converges absolutely.

Proof

From Lemma 6.1 and the proof of Lemma 6.3, we have the estimate
>renrner 12(19)| < alg) on any Siegel domain &¢ C G(Ap), which, com-
bined with Lemma 4, shows the convergence of the double integral

YEH(F)\G(F)
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By the unfolding, we see that this equals
Z vol(H.) |@(vh)||lwrr,\ el
vEH(F)\G(F)/H(F) Hy(A\H(AF)

which, from Lemma 7.2, turns out to be a majorant of (7.2). O

7.3. The relative trace formula
From Proposition 6.8 and Lemma 7.3, we obtain the following.

THEOREM 7.4

Let V be an open compact subgroup of G(A¥)NU. For any o € As and a
decomposable ¢ € S(G(AR))Y (see Section 6.2), we have the identity Iy(c, ¢) =
Jb(aa¢); where

Lio,d)= > Y alve(®)(@@)Pulesd)(Pa@]d(@)

ﬂGHdiS(G)V pEBy (7\')V

+ZZ

nEYFr fEBy(n

. [Ra<vm<n\-|;>><ﬂ<a>\PH< (160l 7:) 1)
x (Pu(E(f))9(2)) dv

and

Jala, ) = (— 1) vol (H(AT) mz,{){vol(H) (®a(cv, 6;€)[9(2))
+ Z vol(H )T (73@0(a’¢))}‘

v€Xa,u(F)

All the series and integrals are absolutely convergent.

8. The germ expansion of local orbital integrals

In this section, we return to the setting of Section 4, keeping all notation and
conventions introduced there. For any v € G — H, the local orbital integral is
defined by

(8.1) (v f) = /H FGMleale, £ ESUG),

where H., and wg \g are as in Section 7.2. We let Sg(F) be the space of all
the compactly supported C-valued functions ¢ on F' smooth on F* such that
() equals a constant multiple of xg(x) in a neighborhood of x =0, where
xe(z) =vol(o;){1 + ordp(z)}d(x € o) if E is not a field and xg(z) =d(x €
op){l+eg/p(x)} if £ is a field.
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PROPOSITION 8.1

(1) Let f € S(H\G). The integral (8.1) converges absolutely. There exists
0,1 € Se(F) such that

m—2

(82) Jr(vif)=e1(N'(9) + Cue [N () = 12 e (N (9) = 1) 00 (N°(7))
for all v € G — H such that N°(v) # 0, where Cye is the constant to be defined
in Section A.1 For any pair (¢o,p1) of elements from Sg(F) satisfying this
condition, we have

01(1) = Jr(va; f), wo(1) = f(e).

(2) For any pair (po,¢1) of functions from Sg(F'), there exists f € S(H\Q)
such that (8.2) holds for all v € G — H with N°(7) #0.

Proof

There exists ¢ € S(3(1)) such that f(g) = [ _pm d(1g )| wpr|F for all g € G.
Since 3(1) is a closed subset of V', we can extend ¢ to an element of S(V)
denoted by the same symbol ¢. Let v € G — H with N°(y) #0. For t € F, set

>'(t) = ¢+ NX(t). Then

JF('Y;f):/

Ze¥' (1-Ng/rb(7))
:/ JH7b(7),8)|wEr | P,
TEET

where ¢+ JY(B,4) is the linear functional on S(V) defined by (A.1). From
Lemma A.3, there exists @1 € S(E) such that

JB,0) = ¢1(8) + Cued(Ng/pB —1€0p)Ng/pf — 1272
x e (Ngyp(B8) — 1) (5¢)

for all B € E — E'. Setting 8 = 7b(7y) with 7 € E! and taking the 7-integral, we
obtain

/EE1 P(r(bNE+ 2Z))lwer | Flws (1 -xp, wb) |7

Tr(y: ) = o1 (N b)) + Cuae [Ny pb(y) — 17
X sg/}l, (NE/Fb(’y) — 1)@0 (NE/Fb(V))7

where ¢ and ¢; are functions on F' defined by integration on the fibers F(z) =
-1
Ng) p(z) as

(8.4)

p1(z) = / G1(T)|lwe@) | F,,
TEE(T)

<p0(x):5(:6—1€0p)/ A7) |WE @) | F-

TeE(x)
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From Lemma A.2(2), both (g and ¢ belong to Sg(F). For any 7 € E', by taking
the limit 8 — 7 in (8.3), we have @, (1) = J*(7,¢). Hence,

)= [ Tl = Tr(ui f),

M= [ st0lplr= 1)

This proves the first assertion in (1) of the proposition. To show the second part
of (1), we let & and &; be functions from Sg(F) such that the equation (8.4)
with (@0, 1) replaced with (&,&1) holds. By taking the difference of the two
equations, we obtain

(85) ©1(Ng/rb) —&1(Ng/rb) = Crexne (Ng/rb — 1){&(Ng/rb) — 0o(Ng/rb) }

for all b= b(v) with some v € G — H satisfying N’y # 0, 1. From Lemma 7.1, b can
be an arbitrary element in EX — E*. Since the function Cl¢xpe on F is not smooth
at zero, a contradiction arises from (8.5) if (1) # ¢o(1). Hence &o(1) = ¢o(1)
and &1(1) = ¢1(1) is obtained. This proves the second assertion of (1) in the
proposition. To show the claim (2), suppose that we are given a pair of functions
(po, 1) from Sg(F) satisfying (8.2). By Lemma A.2(2), we can find @g,p1 €
S(FE) such that fE(t) Pi(T)lwewlr = ¢;(t) for all t € F*. By Lemma A.3(2),
there exists ¢ € S(V) such that J*(8,¢) = ¢1(8) + Crexnt (Ng/rB — 1)@0(B)
for all B € E — E'. From this, we obtain (8.4) by taking the fiber integral over
B € E(NEg/rb(7))- 0

9. Archimedean orbital integrals

In this section, we return to the setting of Section 3, keeping all notation and
conventions introduced there; thus F =R, E=C, G denotes G(R), and so on.
Fix an integer d € Ny. Recall the function Wy(a; g) defined by (3.11). The aim of
this section is to study the integral

(9.1) T, (73 0a(a)) :/ \H(ﬁd“i’d(a§7h))|u]H7\H|R

.
for v € G— H, where 9 is the fixed unit vector of WY implicit in the definition
of Wy(a) (see Section 3.1). The integral behaves differently depending on the
signature of h[{"] =1 — Ng,pb(7y) (for the definition of /7 and b(v), we refer the
reader to Section 7.1). Indeed, we have the following evaluation.

THEOREM 9.1
The integral (9.1) converges absolutely and

Jou (7 a(0)) = = /( alsiats)sds,

T 2w
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where o > mTfl and

d

-, —T(m—1)D(s— 252 —d) d (d 1y

s (m— _du D+ 4 d) D (s— 23 +d—1
(~h[p])—s+m=8)/2-dnt Kt B QR B o)

XoFy(s + 25t 4 dys — 53 4 d — ;25 + 15 (h[0]) )
(h[7] <0),

- = M(s— 273 +d—1
(2-1)5(nle"] 0)p(m+l_2)m (h[¢7] > 0).

We separate three cases h[¢7] <0, h[¢?] =0, and h[¢?] > 0 to prove the theorem.

9.1. Thecase h,[(?] <0
Fix a vector £y € V orthogonal to ¢ and ¢~ such that h[¢y] =+1, and define a
1-parameter subgroup a(Hr) (r eR) by

a(lg)ﬁ_ =coshrl™ +sinhrfg, a(l_;)EH =coshrly + sinhr{™,
a{?|(Cly + o)t =id.
We define 1-parameter subgroups t3 () (¢ € R) as
th(e)lm =ely,  t5()|(Cly)*" =id,

ta(p)l” =l th(p)l(C)t =id
LEMMA 9.2
Suppose h[¢7] < 0. The integral (9.1) converges absolutely and
. 1 .
Joa (73 V() = 5 /(”) Ja(s;7)a(s)sds,
where

o=t () ()

x (—1)'(=h[0) "2 (1 = ne])

m=1_g

x/ (1 —h["]cosh?r) " 2
0

m—1 m—3 1
X o F (s+—+d,s———d;2s+1;—)
2 2 2 1 —h[¢"]cosh®r

2m+-21—5

X (sinhr) coshrdr.

Proof
Since Ng/pb(y) > 1, we have Ng,pb(y) = cosh? t, with some t, > 0. Since
N?(a®) = Ng/rh(a¢,£) = cosh®t for t € R, we have N’(a{*)) = N°(v), which
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implies v € Ha™) H from Lemma 7.1. We can write v = h,ya(tv)hfy with some
hy, b, € H. Set a=a*) and Hy- ={h € H |t~ = cl=,hl = cl (Ic € CV)}.
Then HNa 'Ha= Hé— is confirmed easily. We have an H-isomorphism from

H,- \H onto H,\H induced from h > h;lh. Thus, by a change of variables,

Jﬁd(v;\i/d(a)):/H H(ﬁd@d(a;yh))\wm\,{m

= ’h[[y”m—Q /ﬁ \H (ﬁd|\ild(a;ah)) du(h),

where dy is the H-invariant measure on Hy,-\H corresponding to |wsy(—1)|r on
¥'(-1)={Z e ¢+ | h[Z] = —1} by the isomorphism H,-\H = %'(—1) induced
from h— h= 10—,

Let dkg be the Haar measure on Uy with total volume 1. The measure du

is decomposed as du = 70|~ Cpy (sinh )25 COShrzﬁfé\

the Cartan decomposition H,-\H = {t;{(cp)ag) | €R >0}y, where Cy =
|vV6|>~47x™=2T (m — 2)~'. Noting that 74(ko)¥dq = ¥4, by Lemma 9.3, we have

Jo, (; ‘i’d(a))

1 jm—2 oo T dp S () (r)
:’h[ﬁ” Cy ; ; m(ﬁd@d(a,a ty(p)ay ))

x (sinhr)?™ 5 coshrdr

dr dkg with respect to

+oo
= |h[¢7] |m727r\\/§|7ICH / (Va| W a(e;al™)) (cosh? u) ¢
0

d

A\’ l+m—-3\""
X Z (l> < l > (71)l(cosht,y)2(d7l)(Sinht’y Sinhr)Ql(SinhT)2m75

=0

x coshrdr

— ‘h[€7]|m—2(2 B m)l /OO{/ (COSh2 u)fsf%fd
2mi 0 (o)

m—1 m—3 1 a(s)
X F(s—i———i—d,s———d;2$+1;7)7sds}
2 2 2 cosh? u/ 2scq(s)

X Z( ) <Z—|—m 3) (—1)"(cosht, )24~V (sinh t., sinh )% (sinh ) >m 5

x coshrdr.

Since cosh?u =1 + sinh? 1y cosh? 7 =1 — h[¢"] cosh?r, we are done by an order
change of integrals. To apply Fubini’s theorem, we need to make sure that
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/ / |¢d (s;u)a ||sds|(1—|—smh2t cosh? 1) ~4(sinh )?™+2=5 coshr drr
(o)

< +00.

By Lemma 3.4, the integral is majorized from above by

{/(g)(l + |Im(8)|)N|a(s)||sds|}

X {/ (1 + sinh? ¢, cosh? 7)o~ (M=1/2=d(gip} ) 2m+20=5 coshrdr},
0

which is convergent if o > (m — 3) — 2d + 2] due to the bound |a(s)| < (1 +
[Tm(s)[)~N=3 and (1 + sinh®¢, cosh® )=~ ("=1/2=d(sinh 7)2m 4215 coshr <
67(207(m73)+2d72l)r for r > 0. 0

Let us compute jd(s,’y). It suffices to evaluate the integral

fi(2) =/ (1 — zcosh? p) s~ (m=1)/2-d
0

m—1 m—3 1
X o F (s+—+d,s———d;2s+1;7)
2t 2 2 1— zcosh?r

)2m+2l_5 coshrdr

X (sinhr

for z < 0. From the formula 2 F(a,b,¢; 2) = (1 = 2)" %2 F1(a,c — by c; 25 ) (see [17,
p. 47]), we have

fz(Z):/ (—zcosh?y)=s=(m=1)/2-d
0

X 2F1(3+ mT +d,s+ mT +d;2s—|—1;(zcosh2r)_1)
x (sinh )2 +2=5 cosh - dr.

Suppose that |z] > 1 and Re(z) < 0 for a moment. By the power series expan-
sion of 9Fy and by the formula [ (sinhr)*(coshr)~? dr =271 B(12, ﬁfTo‘) for
Re(B) > Re(a), Re(a) > —1 (see [17, p. 10]), this becomes

[(2s+1) Z D"T(s + 2L + d+n)?
[(s+ 2 +d)2 nll'(2s+1+n)

X (e /0 (coshy)~2e(m=1)=2d=2n 1 (ginhy ) 242075

B I'(2s+1) Z DT (s + 2L + d+n)?
C2D(s+ 2L+ d)? n'F2s+1+n)
Tm+1-2)T'(s— 23 +d—1+n)
[(s+ 252 +d+n)
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CD(m+1-2)0(s— 252 +d—1)
2T (s + 251 +d)

-1 3
X2F1<S+mT+d,S mT+d l; 25—1—1;2_1).

When viewed as a function in z, the last expression is holomorphic on Re(z) <0
and equals f;(z) when Re(z) <0, |z| > 1, as seen above. By the absolute conver-
gence of the defining integral, f;(z) is also a holomorphic function on Re(z) < 0.
Thus the evaluation of fj(z) remains valid for all Re(z) < 0. This settles the first
case of the theorem.

LEMMA 9.3
We have a(t)t;l(go)ag) € Ha "™k with uw>0 and k €U satisfying

(9.2) cosh? u =1 + cosh? rsinh?¢,

(Dalrak)9a) = (cosh? u) Z() (- 3) (1)

x (cosht)?@=1 (sinh ¢ sinh )%,

(9.3)

Proof

Set g = a(t)t;I(go)a(;) = ha™k with h € H, k €. On the one hand, from g =
aDt5(p)al?, we have |(g=M¢7)] = |(a';" (coshtl — e~ sinhte~)|[6~) =
|sinhtcoshr|. On the other hand, from g = ha(Wk, we compute |(g~*4|¢7)| =
|(at=")¢|¢7)| = |sinhu|. Comparing these, we obtain |sinhu| = |sinhtcoshr|,
which is equivalent to (9.2). To show (9.3), we recall the polynomial realization of
Wy. We fix an orthonormal basis {/; } *, of V such that ¢, =¢~, ¢,,_1 =¢, and
lp—o =1Ly, and we let z; (1 <j <m) be the complex coordinate functions on V'
dual to this basis. The group G is embedded into GL,,(C) by sending an element
g € G to the matrix p(g) = (gi;) such that g¢; =3, g;:¢;. Then p(gh) = p(g)p(h)
(g,h € G) is confirmed easily. We have

= {diag(khkg) ‘ ki € U(m — 1),]€2 € U(l)}7
pUNH) = {diag(u,u1,u2) |u € U(m —2),u1,uz € U(1)}.

The functions z; (1 <j <m) together with their complex conjugates z; form a
C-basis of X = Homg(V,C). We let the group GL,,(C) act on X C-linearly by
the rule gz; = (97" )ijz; and gZ; = >_ (g~ ")i;T;; the action is extended to the
symmetric algebra S(X) in the natural way. We introduce a C-bilinear pairing
on X by defining (z;,z;) = (Z;,%;) =0, (x;,T;) = 0;; and extend it to S(X) by
the rule

(Y1 Yp, 21+ 2q) = Opq o ZH?J;,ZUJ)

p: occS, =1
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for all decomposable elements y =1 -y, and z = z1 - z4. Set
§=z;%; (1<j<m).

Then we have (£f XY = 6100, ( dd)il. The relation

(9-4) (97,y) = (x,9%y), g€ GLm(C),z,y € S(X),

is confirmed easily, where g* = g. Let ; and J; denote the derivation of S(X)
with respect to the variables x; and Z;, respectively. For d € Ny, let S%(X) be the
subspace of homogeneous bidegree (d,d) elements of S(X). Let X, be the C-span
of ;,%; (1<j<m—1), and let S(Xy) be the subalgebra of S(X) generated by
Xo; S(Xo) is a U-submodule of S(X). The space of harmonic tensors Wy = {x €
S4(Xo) | Em ! 0;0;x =0} is a U-invariant subspace of S¢(Xp) = S(Xo) NS¥(X),
which yields a realization of 74 inside S(X). Let prynz : S(Xo) = S(Xo)“"# be
the projector defined by pryqy(§) = J;;n g P(ko)E dko. Set
Wq = 271{($m_1 + \/jlxm_g)d(fm_l + \/jlfm_g)d
+ (@1 — V—1Zp—2) (Zrn-1 — \/—_1@m—2)d}7

Va = Prynum(Wa), Vd = ffln—r

A simple computation reveals that wg € Wy, and the relation wy = wq is evident.
Thus 94 € Wy and 94 = 94. Since 74(ko) (ko €U N H) preserves x,,_ 1 up to a
constant, it is easy to see that (¥4, v4) # 0, which guarantees 94 # 0. We introduce
a Hermitian inner product on Wy by

(9-5) (zly) = (2,5)/(a,9a), .y € Wa.

This is U-invariant and satisfies (¥4/¢4) = 1. To show the second formula in
the lemma, we compute the pairing (p(g) " tvg,94) in two different ways. From
g=haWk, using (9.4), we have

{p(g)" va, Va) = (p(ha™) " vg, p(k~") Va)
= <p(a(“))_1vd,p(k_1)*19d> (since vq is H-invariant)
(9.6) = ((coshuzy,—1 + sinhua,,)*(coshuzy, 1 + sinhuz,,)?,
p(k™") Va)
= (cosh® u)*(vg, p(k™1) " 04).

Here, the last equality is due to (Cz,, + CZ,,, Wy) = {0}. From g = a(t)t;I(gp)a(Hr),
the tensor p(g)~lvg is equal to

{cosh tom_1 + € ¥ sinh t(coshrz,, + sinhrz,, o) }d

X {cosh tZm_1 + €' sinht(cosh 7@, + sinhrZ,, o) }d

d 2
Z( > (cosht)?(sinhtsinhr)2d=Del — ed=l 4y
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with 7 a linear combination of monomials

(9.7) oz aTEd R with j £k, 0<jk<m—1,

m—2
and those having z.,,, or Z,, as a factor. The algebraic group H contains an F-
torus T such that t € T acts on £ by the scalar x(t) € E! fixing vectors orthogonal
to £. We have p(t)z; =z;(j #m —1) and p(t)zm—1 = x(t) '@p_1 for all t € T.
Since T CUN H and 9, is (U N H)-invariant, we automatically have p(t)dq = 94
for all ¢ € T'. The elements (9.7) have nontrivial T-weights x’~*: thus the pairings
with ¥4 are all zero. Those monomials having z,, or Z,, as a factor are paired
with ¥4 to be 0. As a linear combination of these, we have (n,94) =0. Hence
d

d\? o . .
(9.8) <p(g)_1vd719d> :Z (l) (cosht)? (sinhtsinhr)2(4=D (el ed=l 9,).
1=0
LEMMA 9.4
Set Ry = Z;n:_lg &;. Then

-1
Pry (Ea) = (l * 77 - 3) R) (1eN).

Proof

Since S!(Xo)4"™ = CRY), we have a constant ¢; € C such that pry~y (&L, o) =
c;R). Consider the operator Ag = Z;n:f 0;0;. The obvious formula Ag&l,_, =
12¢!-1, implies that Agpryqg(€h, o) = 12 pryqm (€15 because Ag is (U N H)-
invariant. The latter formula, combined with the easily confirmed formula
Ao(RL) =1(1+m—3)R5™, yields the recurrence relation ¢; = ﬁcl,l (I>1)
—1

and ¢; = (m — 2)~!, which is uniquely solved by ¢; = (I‘H?_?’) . a

Recall the U-decomposition

d m—1
(9.9) S Xo) =@ R'Wa—y where R=Ro+&n1= Y _ &
=0 j=1

LEMMA 9.5
There exist constants c(k,l) € C (0 <1< k) such that c(k,0) = (€& _, ¢k _1)/
<19k,19k> and

k

k=Y ek, DRy, (kEN),
=0

Proof

Since WHMH = C9,, by taking the & N H-invariant part, (9.9) yields S¢(Xo)4"H =
@7:0 CR'"94_;. Hence the H-invariant tensor £¥ | is written as a linear combina-
tion Zfzo e Ry (0 <1< k). To determine the coefficient cxo, we compute the
pairing (€% _;,9x). From the definition, the difference 9 — &F,_; is a linear com-
bination of monomials in x; (1 <j <m — 1) divisible by some z; (j #m —1).
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Hence (€F,_,9%) = (€& _, €5 ). On the other hand, (¢¥ _;,9%) = cro(Vk,Vk)
because <Rl19k_l,19k> =0 (l > 1). Thus cxg = <££¢—la§m— >/<191€,’L9k> O

We compute

<§£n—1 m— 2719d>
= <££n 1PrumH(§ ) 19d>

-1
— (d B ldt"; B 3) (€ RITUY,) (Lemma 9.4)
—1d—l
_ (d—H—m—S) <dfl) (_1)d7l7j<£:ln—_j1Rj7l9d>
d—1 = Ji

d—Il+m-—3 —ldldy
(" ) 3 (1) e R 000

(Lemma 9.5)

-1
(T 0t (b ld.0) = (o 00/ 004,

Combining this with (9.8), we obtain

(plg)va, V) = zd: <cli> ? (d - ljf] _ 3) -

1=0
x (=1)% (w4, v4) (cosht)? (sinh ¢ sinh r)2@=1
which, together with (9.6),

(v (7104 = (coshoy de() ()

x (=1)%~!(cosht)® (sinhtsinh ) 2@~ (v, v,).

shows the identity

(9.10)

Let P;:S%(Xo) — Wy be the projector determined by (9.9). Then 0 # (94,v4) =
(94, Pa(vq)) implies that Py(vq) € Wy is nonzero. Since v, is H-invariant, P;(vg)
is (U N H)-invariant. Thus Py(vg) = ¢q with some ¢ # 0. As we have seen in the
proof of Lemma 9.5, (vgq,94) = (va,vq). Hence ¢ = (vq,v4)/{(94,94). The identity
(9.10) holds true after we replace vg with Py(vg) on the left-hand side. With this
remark, together with (9.5), the equation (9.10) yields (9.3). This completes the
proof of Lemma 9.3. O

9.2. The case h[¢?] >0
Let us define a 1-parameter subgroup x(*) (z € R) by setting
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k) = cosaly —sina/, n(m)ﬁzcosxéquinxﬁH,

KO |(Cl+ Cly)*t =id.

LEMMA 9.6
Suppose h[¢7] > 0. The integral (9.1) converges absolutely and

Jo, (7: ¥a(a)) =%/( )jd(5§7)a(5)5d57

where
d

Tulsi) = = m)|}21WHm_2 SCdl(S) 2 <?> 2 (l : T? ) 3) )

=0

x (=)' (=h[e]) (1 = npe)) "

m=1_g

x/ (L+h[]sinh®r) " 2
0

m—1 m—3 1
X oF (s+—+d,s———d;23+1;—)
2 2 2 1+ h[¢7]sinh?r

2mA2=5 ginhr dr.

x (coshr)
Proof
Since 0 < Ng,pb(y) <1, we have Ng,pb(y) = cos® z, with some x., € (0,7/2].
Then h[¢(7] = 1 — cos?z, = sin®z,. Since N’(x(®)) = Ng,ph(s@)(,0) =
cos? z, = N°(v), we have HyH = Hx*) H from Lemma 7.1. Thus v = hym(“)h’w
with some h.,hl, € H. Set r = #(*2). Then it turns out that x~*Hx N H coin-
cides with Hy, = {h € H | g = cl,hl = cf (3c € CD)}. We remark that
Hy \H = U(m—3,1)\U(m—2,1). Let diu be the measure on Hy,,\ H correspond-
ing to |wsy(1)|z by the isomorphism Hy, \H = X'(1) = {Z € ¢+ | h[Z] = +1}
induced by h+— h™'"py. Then |wy \glr on H,\H corresponds to |h[{]|™ 2dpu
on Hy, \H by the isomorphism h + h,h. For the pair (H,Hy,) and the mea-
sure dyu, both the decomposition H = Hy,, {t};(go)ag) | € R r>0}Uy and an
integration formula similar to the one in Lemma 3.2 hold true. Thus,

Jo, (7 a(a) = [nfe7]| ™ / (9l ala, kh)) duh)

2

e \H
el [ [ttt 0)
o 2[v0] Jo
x (coshr)*™ S sinhrdr

with Cr = [v/0]?~™47™ 2T (m — 2)~!. The remaining part of the proof is similar
to Lemma 9.2 except that we use Lemma 9.7 below instead of Lemma 9.3. [
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LEMMA 9.7
We have ff(x)t}g(cp)a(Hr) € Ha ™k with u>0 and k €U satisfying

2 L2
cosh?u = 1 + sinh? rsin® z,

(Vala(k)da) = (1 + sin® zsinh? ) 4 Z < ) (l +m— 3)
x (=1)!(cos )2 (sinz cosh )2

Proof
This is basically the same as Lemma 9.3. O

Let us compute J4(s,7). It suffices to evaluate the integral

fJ(Z)z/ (1+ zsinh?y) == (m=1)/2-d
0

m—1 m—3
X oF <s+7+d75777d,25+1;7)
>t 2 2 1+ zsinh?r

)wal

x (coshr sinhrdr

for z >0, w=m+1—2 with 0 <[ < d. We first keep the w in the region Re(w) < 1
and take the Mellin transform of z — f (2):

/ fu; )\ 1dZ—/ / 1+ZSlIlh2 ) s—(m—1)/2—d
0 0

m — m—3
X o F (s+—+d,s———d,2s+1;7)
> 2 2 1+ zsinh?r

2w—1

X (coshr) sinhrdrdz.

By the variable change z +—> (sinh2 r)~1z, the double integral breaks up into a
product of

(9.11) / (sinhr) =22 (coshr)?* = dr
0
and
/OO Z>‘71(1 +Z)fsf(m71)/27d
0

1 1
x2F1(5+mT+d7s—mT 4,25+ 17— )dz

(9.12)

The first integral is absolutely convergent and is evaluated as W if

Re(w) < Re(\) < 1. By the variable change y = (1 + 2)™%, (9.12) becomes
m

1
-1 -3
/ ys+d+(m—1)/2—)\—1(1 _ y)x—12F1 (S+ mT +d,s— - d,2s + 1;3/) dy,
0
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[(25+1)0(N)2T(s+ 252 +d—)\)
D(s+ ™5 +d)2T (s— 252 —d+\)
region Re(s) + 251 + d > Re(A) > 0. Thus we see that the Mellin transform
converges absolutely on Re(w) < Re()) < 1, Re(s) + =% + d > Re(\) > 0, and

/°° ()P e = (1 — MDA —w) T(2s+ 1)T(N)20(s + 252 + d—\)
w - A°(1-w)  T(s+ 2l 4ad)2T(s— —d+ )
By Mellin’s inversion formula,
1 / F1—-ANP(A—w) D(2s+ DIV T(s+ 252 +d—N) N
— z
o)  20(1—w) T(s+21+d)T(s— 23 —d+ ) ’

which is evaluated to be

in the absolute convergence

le(Z) =

211

where the contour is taken as Re(w) < o < 1. The integral on the right-hand
side defines a holomorphic function on Re(w) < 1. To continue it to a half-plane
containing the point w =m + [ — 2, we shift the contour leftward beyond \ = w,
which is the only pole of the integrand swept by the moving contour. By the
residue theorem,

L T2s+ )0 (w)*T(s+ 2L +d — w)z
[(s+ 251 4+ d)2I(s ———d+w)
1 L1 =MD\ —w) T(2s+ DT(A)?T(s + 252 +d — \)
Tomi Sy W—w)  T(st L1 dPh(s_ B3 _dt

—w

fulz)=27"

27NN,

where 07 < Re(w). The second term has a zero at w=m + [ —2 due to the
factor 1/T'(1 —w). Thus f, ., ,(2) is given by the first term substituted with
w=m+1—-2

9.3. Thecase h[¢7] =0

Since {7 4+ ¢~ is an R-isotropic vector orthogonal to ¢, by Witt’s theorem, we can
fix § € G such that 6 Y =0+ ({y +¢7). Set Hs =6 "'H5N H. A computation
reveals that Hs = {h € H | Wl = cl,h(lg +¢7) = c(by + £7) (3c € CW)}. Thus
{ag) | r € R}Hs, up to the center of H, coincides with the R-parabolic subgroup
of H stabilizing C(¢y + ¢7). By the isomorphism Hs\H = ¥'(0) induced by
h h(fg + £), we transport the measure |wsy()|r to obtain an H-invariant
measure dp on Hs\H. From Lemma 3.1, we have the integral formula

,/Tm72

% 2—m
/H T mant = ﬂ VB

(9.13)
x / F(@S kg)e2m=2r 4 dkg
0 Ug

associated to the Iwasawa decomposition H = H(;{ag) | r € R}Up, where dkg is
the probability Haar measure on Uy .
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LEMMA 9.8
Suppose h[¢7] =0. The integral (9.1) converges absolutely and

1 ~
o r5ia@)) = 5 [ datsaspsas,
where
d 2 -1

o 2—m 1 d l+m_3 1 e _opy—g—m=1_4 4
Ja(s;y) = —— -1 1 e

=" () (717) e [Casem

m—1 m—3 1 o (mal—2)r
><2F1(8+—2 +d,8f—2 *d;28+1;—1+€_2r>6 2(mH=2)r g

Proof
Since h(614,0) =1, we have v € HSH from Lemma 7.1. By a change of variables,
we have Jyg, (7; Wa(a fHJ\H (949 (v, 6h)) dpu(h). We complete the proof in
the same way as in Lemmas 9.2 and 9.6 by using the formula (9.13) and Lemma
9.9 below. ]
LEMMA 9.9

Let §ag) =ha"k with h€ H(F,), u€R, and k €U. Then

d -1
COShQU =1+ 6—21'7 (ﬁd‘Td Z < ) (l +m — 3) (_1)le—2l7".

=0

Proof
This is basically the same as in Lemma 9.3. We use the formula p(d)z;,—1 =
Tin—1+ T2 + Tom,- O

By the variable change z = e~2", the integral jd(s,'y) is reduced to the same
integral (9.12) with A =1+ m — 2 in the case h[¢"] > 0.

Appendix
Let I be a field of characteristic 0.

LEMMA A1
Let Q = Z?Zl ajx? be a nondegenerate quadratic form over F of n-variables
T1,y...,%pn. For anyt € F, set

Sot)={ze F" —{0}| Q(z) =t},
viewing this as an F-algebraic variety. Let wpn =dxy A--- Adx, be the standard
gauge-form on F™. Let ¢ : F™ — {0} — F be the F-morphism defined by ¢(x) =
Q(z).
(1) There exists a gauge-form ws, ) on Xq(t) satisfying the relation wpn =
Wws,o 1) A ¢*(dt), where t is the coordinate function on F.
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(2) Forj, letUj={ze€Xg(t)|z; #0}. Then

wsgw|Us = day A dzy A Ad,.

Q(Ijl‘j
A1

Let F be a local non-Archimedean field of characteristic 0, and let E = F[\/f]
be an étale quadratic algebra over F. Let eg,p be the quadratic character of
F* trivial on Ng,p(£*) if E is a field and eg,p = 1 otherwise. Let V' be an m-
dimensional E-vector space, and let h: V x V' — E be a nondegenerate Hermitian
form on V. Set X(t) = X(¢t) for t € F, where Q is the quadratic form h[Z] on
the F-vector space V. For ¢ € S(V), define

My(t) = / f@)lwslr, teF.
3(t)

If m =1 and h is isotropic, then we set C, =vol(o5). If m>1,or m=1 and h
is anisotropic, then we set Cy, = |9|;m/2\2|;mp(5’§/F,m)’lfy(Q), where p(x, s) =
e(x,s,w)*% for a quasicharacter x of F* with respect to the additive
character ¢ of F such that ¢|or =1 and ¢[p,' # 1. The factor |9|;m/2|2|;m
comes from the difference between our Haar measure on V' and the one used in
[21]. Define a function xp : F* — C* by

em/r™tET (m>1),
Xn(t)=0d(t€or) {1+ ordp(t) (m =1 and h is isotropic),
1+eg/p(t) (m =1 and h is anisotropic).

LEMMA A.2
(1) For any f € S(V), there exists ¢ € S(F) such that

My(t) =) + f(0)Crxn(t), teF™.

(2) Let Sn(F') be the space of all the compactly supported functions ¢ on F
smooth on F* such that p(t) = Cxn(t) in a neighborhood of t =0 with some
constant C. Then, f— My is a linear surjection from S(V') onto Sn(F).

Proof

This follows from [21, Proposition 3.5, Théoréme 3.7] applied to our h viewed as
a quadratic form on the 2m-dimensional F-vector space V. We also note that,
since dimp V' = 2m is even, we apply the first case of [21, Proposition 1.7] to
determine the constants 8,(Q) occurring in [21, Proposition 3.5]. O

Let £ € V be an anisotropic vector with h[f] = 1. Set h® = h|¢*. For t € F, we set
»4(t) = ¢+ NX(t). For any S € E, define

a1 Ies- [ FBU+ ) lwsing el fESW).

yeXf(1-Ng,/rB)
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PROPOSITION A3
(1) Let f € S(V). For any B € E, the integral J*(b, f) converges absolutely.
There exist o, 1 € S(E) such that

(A.2) B ) =1(B) + Crexne(1 — Ng/pB)po(B), Be€E—E".

(2) Let po,p1 € S(E). There exists f € S(V) such that (A.2) holds for all
BeE—E".

Proof

To prove (1), we may assume that f(8¢+y) = f1(B) f2(y) with f1 € S(E), f2 €
S(¢+). Then JY(B, f) = f1(BOMy,(1 — Ng/#B). Applying Lemma A.2(1), we
have assertion (1). Let us show assertion (2). Let ¢g,¢1 € S(F). By Lemma
A.2(2), we have a function fj € S({+) such that M, (t) = Chexpe (t) for all t € F.
Define f' € S(V) by setting f/(B¢+y) = po(b) f5(y) for b€ E and y € £+. Then

B, f) = po(b)M (1 = Npg/rB) = ¢0(B)CheXne (1 — Np/rh)

for all 3€ E — E'. Let ¢ be the characteristic function of a compact open neigh-
borhood of 1 — Ng,p(supp(¢1)). Then ¢ € S(F). By Lemma A.2(2), we have
f§ € S(¢+) such that My (t) = ¢(t) for all t € F. Define f”(B+y) = 1(b) f/ (y).
Then

B, f) = @1(b)M (1 — Ng/rB) = ¢1(B)6(1 — Ng/rB) = ¢1(B)

for all B € E — E'. Obviously, the function f = f’+ f” has the desired property.
(I
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