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Abstract. Let K be a hypergroup. The purpose of this article is to study the
notions of amenability of the hypergroup algebras L(K), M(K), and L(K)∗∗.
Among other results, we obtain a characterization of approximate amenability
of L(K)∗∗. Moreover, we introduce the Banach space L∞(K,L(K)) and prove
that the dual of a Banach hypergroup algebra L(K) can be identified with
L∞(K,L(K)). In particular, L(K) is an F -algebra. By using this fact, we give
necessary and sufficient conditions for K to be left-amenable.

1. Introduction and preliminaries

For a locally compact Hausdorff space K, let M(K) be the Banach space of all
bounded complex regular Borel measures on K. For x ∈ K, the unit point mass
at x will be denoted by δx. Let M1(K) be the set of all probability measures on
K, and let Cb(K) be the Banach space of all continuous bounded complex-valued
functions on K. We denote by C0(K) the space of all continuous functions on K
vanishing at infinity, and by Cc(K) the space of all continuous functions on K
with compact support.

The space K is called a hypergroup if there is a map λ : K × K −→ M1(K)
with the following properties.

(i) For every x, y ∈ K, the measure λ(x,y) (the value of λ at (x, y)) has a
compact support.
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(ii) For each ψ ∈ Cc(K), the map (x, y) 7−→ ψ(x ∗ y) =
∫
K
ψ(t) dλ(x,y)(t) is in

Cb(K ×K) and x 7−→ ψ(x ∗ y) is in Cc(K), for every y ∈ K.
(iii) The convolution (µ, ν) 7−→ µ ∗ ν of measures defined by∫

K

ψ(t) d(µ ∗ ν)(t) =
∫
K

∫
K

ψ(x ∗ y) dµ(x) dν(y)

is associative, where µ, ν ∈M(K), ψ ∈ C0(K) (note that λ(x,y) = δx ∗ δy).
(iv) There is a unique point e ∈ K such that λ(x,e) = δx for all x ∈ K.

When λ(x,y) = λ(y,x), we say thatK is a commutative hypergroup (for more details,
see [4], [8], [16]). Let K be a foundation; that is, K = cl(

⋃
µ∈L(K) suppµ). We

define

L(K) =
{
µ
∣∣ µ ∈M(K), x 7→ |µ| ∗ δx, x 7→ δx ∗ |µ| are norm-continuous

}
.

It is easy to see that M(K) is a Banach algebra and that L(K) is an ideal in
M(K). An invariant measure (Haar measure)m onK is a positive nonzero regular
Borel measure on K such that m ∗ δx = m, for all x ∈ K. If K admits a Haar
measure m, then L(K) = L1(K,m) (see [8]).

An involution on a hypergroup K is a homeomorphism x 7→ x̃ in K such that
˜̃x = x and e ∈ suppλ(x,x̃) for all x ∈ K. For each µ ∈ M(K), define µ̃ ∈ M(K)

by µ̃(A) = µ(Ã); that is,
∫
K
f(x) dµ̃(x) =

∫
K
f(x̃) dµ(x), for each f ∈ Cc(K).

Then µ −→ µ̃ is an involution on M(K) such that M(K) and L(K) are Banach

∗-algebras and λ̃(x,y) = λ(ỹ,x̃), whenever x, y ∈ K (see [4]).
Let K be a foundation hypergroup without a Haar measure. With these condi-

tions L(K) is a general hypergroup algebra which includes not only group algebras
but also most of the semigroup algebras. We recall (see [16, Proposition 1]) that
the algebra L(K) possesses a bounded approximate identity. Also, in this article
the Banach space L(K)∗ ·L(K) is denoted by B. Medghalchi [16] showed that B∗

(dual of B) is a Banach algebra by an Arens-type product and that L(K) ⊆ B∗.
For f ∈ B, if K admits an invariant measure (Haar measure m), then by Propo-
sition 2.4 of [17], B = LUC(K) where

LUC(K) =
{
f
∣∣ f ∈ Cb(K), x→ lxf from K into Cb(K) is continuous

}
,

and lxf(y) = f(x ∗ y) for any y ∈ K.
Let A be a Banach algebra, and let X be a Banach A-bimodule. A continuous

derivation D : A −→ X is said to be approximately inner if there exists a net {ζi}
in X such that D(a) = limi(a.ζi − ζi.a) for all a ∈ A, in the norm topology. The
Banach algebra A is called approximately amenable if every derivation from A into
the dual A-bimodule X∗ is approximately inner for all Banach A-bimodules X.
Similarly, a complex Banach algebra A is called an F -algebra if it is the (unique)
predual of a W ∗-algebra M and the identity element u of M is a multiplicative
linear functional on A.

Ghahramani, Loy, Willis, and Zhang introduced and studied concepts of
approximate amenability (contractibility) and uniform approximate amenabil-
ity (contractibility) for Banach algebras (for more details, see [5]–[7]). Medghalchi
[17] introduced cohomology on hypergroup algebras. He showed that the
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amenability of L(K) implies the left amenability of K; however, the converse is
not valid any longer even if K is commutative and discrete. Moreover, Skanthara-
jah [22] initiated and studied the notion of amenability for hypergroup algebras
in the sense of Jewett [2]. The concept of ϕ-amenability of Banach algebras was
introduced by Kaniuth, Lau, and Pym [12]. Similarly, character-amenable Banach
algebras were introduced and investigated in [10]. These concepts generalize the
concept of left amenability for F -algebras introduced by Lau [14].

This article is organized as follows. In Section 2, we investigate the concepts of
approximate amenability and contractibility for Banach algebras M(K), L(K),
and L(K)∗∗. As one of the interesting results, in Theorems 2.2 and 2.4 we show
that K is left-amenable if the hypergroup algebra L(K) is approximately
amenable as a Banach algebra, but the converse is not true. Ghahramani and
Loy [5, Theorem 3.2] showed that a necessary and sufficient condition for M(G)
to be approximately amenable is that G be discrete and amenable (see [5, The-
orem 3.1]); we prove that for a hypergroup, this is not true. Moreover, in Theo-
rem 2.6, for a hypergroup with an involution, we prove that the finiteness of K is
equivalent to the contractibility of L(K). Also, in Theorem 2.8, we show that K
is discrete and amenable if L(K)∗∗ is approximately amenable; the converse is not
necessarily true. But, for a hypergroup with an involution, in Theorem 2.9, we
obtain that a necessary and sufficient condition for L(K)∗∗ to be approximately
amenable is that K be finite.

Let G be a locally compact group. By Theorem 3.2 of [5] and Johnson’s classical
result, the approximate amenability of L1(G) is equivalent to the amenability of
L1(G). Therefore, it is natural to ask the following question on hypergroups: Is
the approximate amenability of L(K) equivalent to the amenability of L(K)? We
have yet to find an answer to this question.

In Section 3, we first introduce the Banach space L∞(K,L(K)). In Theorem 3.2,
we prove that the dual of the Banach hypergroup algebra L(K) can be identified
with L∞(K,L(K)) and hence L(K) is an F -algebra. This allows us to give an
alternative theorem similar to Theorem 3.2 of [5] (see Theorem 3.5).

2. Approximate amenability of L(K) and L(K)∗∗

Throughout this paper, K is a foundation hypergroup without a Haar measure.
For f ∈ B and x ∈ K, we will denote lxf by 〈lxf, ν〉 = 〈f, δx ∗ ν〉 whenever
ν ∈ L(K). Since B = L(K)∗ ·L(K), f = g · µ (g ∈ L∗(K), µ ∈ L(K)). Therefore,

〈lxf, ν〉 = 〈g · µ, δx ∗ ν〉 = 〈g, µ ∗ δx ∗ ν〉 =
〈
g · (µ ∗ δx), ν

〉
.

Hence, lxf = g · (µ ∗ δx). It follows that lxf ∈ B. Also, by Proposition 2 of [16],
1 ∈ B, where 1 is the constant function.

Definition 2.1. Let K be a hypergroup. A linear functional m : B −→ C is called
a mean if m(1) = ‖m‖ = 1. A mean on B is called a left-invariant mean if
m(lxf) = m(f), for f ∈ B and x ∈ K. A hypergroup K is called left-amenable if
there exists a left-invariant mean on B.

Now we are in a position to prove a theorem that generalizes one side of The-
orem 3.2 of [5] to hypergroups.
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Theorem 2.2. If L(K) or M(K) is approximately amenable, then K is left-
amenable.

Proof. Let L(K) be approximately amenable, and let X = B
C1 , where 1 is the

constant function. With left action f · µ and right action µ · f , B is a Banach
M(K)-bimodule, where

〈f.µ, ν〉 = 〈f, µ ∗ ν〉, µ · f = µ(K)f,

for f ∈ B, µ ∈M(K), and ν ∈ L(K). Since the space C1 is a closed sub-bimodule
of B, X is a Banach M(K)-bimodule. We know that δe ∈ B∗ and δe /∈ X∗, since
X∗ = {F ∈ B∗|F (1) = 0}. Let ν0 = δe and D : µ 7−→ µ · ν0 − µ(K)ν0 (the action
µ · ν0 is dual action), where µ ∈ M(K). In particular, D(δx) = δx · ν0 − ν0, for
x ∈ K. It is clear that D is a derivation on M(K) into X∗. We can consider
D as a derivation on L(K) into X∗. On the other hand, L(K) is approximately
amenable. So, there is a net (mα) in X

∗ such that

D(µ) = lim
α
(µ ·mα −mα · µ) = µ · ν0 − µ(K)ν0,

for µ ∈ L(K). Therefore,

lim
α

(
µ · (ν0 −mα)− µ(K)(ν0 −mα)

)
= 0. (2.1)

Taking µ ∈ L(K), µ ≥ 0, ‖µ‖ = 1, and x ∈ K. Therefore, we have

D(δx) = δx · ν0 − ν0 = (δx · ν0) · µ− ν0 · µ = D(δx) · µ = D(δx ∗ µ)− δx ·D(µ).

Since δx ∗ µ ∈M1(K), mα · (δx ∗ µ) = mα. Then

δx · ν0 − ν0 = D(δx) = D(δx ∗ µ)− δx ·D(µ)

= lim
α

[
(δx ∗ µ) ·mα −mα · (δx ∗ µ)− δx · (µ ·mα −mα · µ)

]
= lim

α

[
(δx ∗ µ) ·mα −mα − δx · (µ ·mα −mα)

]
= lim

α
[δx ·mα −mα].

It follows that

lim
α

[
δx · (ν0 −mα)− (ν0 −mα)

]
= 0.

For each α, (ν0 −mα)(1) = 1. Thus, ‖ν0 −mα‖ 6= 0. Now, taking nα = ν0−mα

‖ν0−mα‖ ,

we have ‖nα‖ = 1, and by (2.1), limα(δx · nα − nα) = 0 in norm, where x ∈ K.
Take n ∈ X∗ as n is a weak* cluster point of (nα). Then δx · n = n, and thus, n
is a left-invariant mean on B because

〈lxf, n〉 = 〈f · δx, n〉 = 〈f, δx · n〉 = 〈f, n〉,

for all f ∈ B and x ∈ K. So, K is left-amenable.
Now suppose that M(K) is approximately amenable. Since L(K) is a closed

ideal of M(K) with a bounded approximate identity, L(K) is approximately
amenable (see [5, Corollary 2.3]). Thus, K is left-amenable. �
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For a locally compact group G, it was shown (see [5, Theorem 3.2]) that L1(G)
is approximately amenable if and only if G is amenable. The following example
indicates that the converse of the above theorem is not true for hypergroups.

Example 2.3. Let (Rn)n∈N0 be a polynomial sequence defined by a recurrence
relation

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x),

where N0 = N ∪ {0}, n ∈ N, and R0(x) = 1, R1(x) =
1
a0
(x − b0), an > 0, bn ≥ 0,

for all n ∈ N. We assume that an + bn + cn = 1 for n ∈ N. Define a convolution
on l1(No) such that

δn ∗ δm =
n+m∑

k=|n−m|

g(n,m, k)δk,

where g(n,m, k) > 0. Then (N0, ∗) is a discrete commutative hypergroup with
the unit element 0 which is called the polynomial hypergroup on N0 induced by
(Rn)n∈N0 . Since (N0, ∗) is a commutative hypergroup, (N0, ∗) is amenable (see
[22, Example 3.3(a)]). Consider the class of polynomial hypergroups induced by

the ultraspherical polynomials (R
(α)
n )n∈N0 , α ≥ −1

2
(see [13]). The Banach algebra

`1(N0) of the polynomial hypergroup is induced by the ultraspherical polynomials

(R
(α)
n )n∈N0 .

Theorem 2.4. Let N0 be the class of polynomial hypergroups generated by the
ultraspherical polynomials (Rα

n)n∈N0, α > 0. Then `1(N0) is not approximately
amenable.

Proof. Assume toward a contradiction that `1(N0) is approximately amenable.
Since `1(N0) is Abelian, it is pseudoamenable (see [9, Corollary 3.4]). Therefore,
`1(N0) is weakly amenable (see [9, Corollary 3.7]). This is impossible (see [13]). �

Remark 2.5. Ghahramani and Loy [5] showed that the group G is amenable and
discrete if and only if M(G) is approximately amenable. By Theorem 2.2, the
hypergroup K is left-amenable if M(K) is approximately amenable. But we do
not know, if M(K) is approximately amenable, whether K is discrete. Let N0

be the class of polynomial hypergroups generated by the ultraspherical polyno-
mials (Rα

n)n∈N0 , α > 0. Then (N0, ∗) is a discrete, commutative, and amenable
hypergroup (see [22, Example 3.3(a)]). By Theorem 2.4, M(K) = `1(N0) is not
approximately amenable. It follows that it is not necessarily true that M(K) is
approximately amenable if K is amenable and discrete.

We now state and prove another interesting theorem.

Theorem 2.6. Let K be a hypergroup with an involution. Then L(K) is con-
tractible if and only if K is finite.

Proof. Let L(K) be contractible. By Theorem 2.8.48 of [3], L(K) is biprojective
and unital. Therefore, K is discrete. Since K is discrete and has an involution,
Jewett’s and Dunkl’s definitions of hypergroup coincide. It follows that K has
a Haar measure and `1(K) = L(K). Now, since L(K) is biprojective and C is
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an essential module over L(K), C is projective. On the other hand, the map
ϕK : L(K) −→ C defined by ϕK(µ) = µ(K) is admissible. Therefore, ϕK has a
right inverse morphism ρ. Take P0 := ρ(1) ∈ L(K), so

f ∗ P0 = f ∗ ρ(1) = ρ(f · 1) = ρ
(
ϕK(f)

)
,

for any f ∈ L(K). Now, suppose that f ∈ C+
c (K) and ‖f‖1 = 1. Then, ‖lxf‖1 =

1, where lxf(y) = f(x ∗ y) for all x, y ∈ K. We have

‖lxf ∗ P0 − lxP0‖1 =
∥∥lx(f ∗ P0)− lxP0

∥∥
1
=

∥∥lx(f ∗ P0 − P0)
∥∥
1

≤ ‖f ∗ P0 − P0‖1 = 0.

Hence, P0 = lxf ∗P0 = lxP0 almost everywhere. Since ϕK(P0) = ϕK(ρ(1)) = 1, P0

is equal to a nonzero constant almost everywhere. It follows that the characteristic
function 1K ∈ L(K), since P0 ∈ L(K). On the other hand, c1K = 1K∗1K ∈ C0(K)
where c > 0 (see [2, Proposition 1.4.11]). Thus, K is compact. From this it follows
that K is finite.

Conversely, assume that K is finite. So, `1(K) is amenable (see [1, Theo-
rem 3.3]). Therefore, there existsM ∈ (`1(K) ⊗̂ `1(K))∗∗ such thatM is a virtual
diagonal for `1(K). On the other hand, (`1(K) ⊗̂ `1(K))∗∗ = `1(K) ⊗̂ `1(K). It
follows that M is a diagonal for `1(K). Thus, `1(K) is contractible (see [3, The-
orem 1.9.21]). �

In this article, the second dual L(K)∗∗ with the first Arens product is denoted
by (L(K)∗∗,�). Also, π : L(K)∗∗ −→ B∗ is the adjoint of the embedding of B in
L(K)∗. By a well-known result of Ghahramani, Loy, and Willis [6, Theorem 2.1],
if L1(G)∗∗ is weakly amenable, then M(G) is weakly amenable. The following
theorem extends this result to hypergroups.

Theorem 2.7. Let K be a hypergroup. Then we have the following.

(i) If B∗ is weakly amenable, then M(K) is weakly amenable.
(ii) If (L(K)∗∗,�) is approximately amenable (weakly amenable), then M(K)

is approximately amenable (weakly amenable).

Proof. (i) For f ∈ M(K)∗, define Tf ∈ B∗∗ by 〈Tf , µ + m〉 = f(µ), where µ ∈
M(K) and m ∈ C0(K)⊥ (B∗ = M(K) ⊕ C0(K)⊥). Assume that M(K) is not
weakly amenable. So, there is a noninner derivation D : M(K) −→ M(K)∗.
Define 4 : B∗ −→ B∗∗ by 4(µ +m) = TD(µ), for each µ ∈ M(K),m ∈ C0(K)⊥.
For each µ1, µ2, ν ∈M(K) and m1,m1, n ∈ C0(K)⊥, we have〈
(µ1 +m1)4 (µ2 +m2), ν + n

〉
=

〈
4(µ2 +m2), (ν + n)(µ1 +m1)

〉
=

〈
4(µ2 +m2), ν ∗ µ1 + nµ1 + νm1 + n � m1

〉
= 〈TD(µ2), ν ∗ µ1 + nµ1 + νm1 + n � m1〉
=

〈
D(µ2), ν ∗ µ1

〉
=

〈
µ1D(µ2), ν

〉
= 〈T(µ1D(µ2)), ν + n〉,
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since C0(K)⊥ is a closed ideal of B∗. It follows that (µ1 + m1) 4 (µ2 + m2) =
T(µ1D(µ2)). By a similar argument, 4(µ2 +m2)(µ1 +m1) = T(D(µ2)µ1). Therefore,

4
[
(µ2 +m2)(µ1 +m1)

]
= TD(µ2∗µ1) = T[D(µ2)µ1+µ2D(µ1)]

= 4(µ2 +m2)(µ1 +m1) + (µ1 +m1)4 (µ2 +m2).

It follows that 4 is a derivation and that 4|M(K) = D. We prove that 4 cannot
be inner. If 4 is inner, then there is an F ∈ B∗∗ such that 4(G) = GF − FG,
for all G ∈ B∗. If Ψ := G|M(K), then Ψ is an element of M(K)∗. Now, for all
µ ∈M(K), we have

D(µ) = 4(µ) = µΨ−Ψµ.

Hence, D is an inner derivation, and thus it is a contradiction. It follows that B∗

is not weakly amenable.
(ii) Here, L(K) has a bounded approximate identity (eα)α with ‖eα‖ = 1 (see

[8, Lemma 1]). Let E be a weak* cluster point of (eα) in L(K)∗∗. It is clear that
E is a right identity for L(K)∗∗ and ‖E‖ = 1 (see [16, Lemma 5]). The map

ϕ : L(K)∗∗ −→ E � L(K)∗∗, F 7−→ E � F

is an epimorphism. On the other hand, L(K)∗∗ is approximately amenable, and
therefore E � L(K)∗∗ is approximately amenable (see [5, Proposition 2.2]). By
Theorems 7 and 4 of [16], E � L(K)∗∗ is isometrically isomorphic to B∗ =
M(K)⊕C0(K)⊥, where C0(K)⊥ is a closed ideal in B∗ and C0(K)⊥ = {m ∈ B∗ |
for all f ∈ C0(K), 〈m, f〉 = 0}. Thus, M(K) is approximately amenable (see [5,
Corollary 2.1]).

Now, let (L(K)∗∗,�) be weakly amenable, and let M(K) be not weakly
amenable. Then, by an argument similar to that of (i), the derivation 4 : B∗ →
B∗∗ is not inner. Now, let E be a right identity of L(K)∗∗. We have that E �
L(K)∗∗ is isometrically isomorphic to B∗; therefore, we may consider 4 to be
defined on E � L(K)∗∗. Now, define Λ : L(K)∗∗ −→ L(K)∗∗∗ by Λ(G) = 4(E �
G), for all G ∈ L(K)∗∗. Since L(K)∗∗ = E � L(K)∗∗ + (1− E) � L(K)∗∗, Λ is a
noninner derivation (see [6]). It follows that L(K)∗∗ is not weakly amenable, which
is a contradiction of the hypothesis. Therefore, M(K) is weakly amenable. �

Following [16, Definition 8], a compact set Z ⊆ K is called a compact carrier
for m ∈ L(K)∗∗ if for all f ∈ L(K)∗, 〈m, f〉 = 〈m, fχz〉, where fχz is defined by
〈fχz, µ〉 = 〈f, χzµ〉, for all µ ∈ L(K). Now let

Lc(K)∗∗ = clL(K)∗∗
{
m

∣∣ m ∈ L(K)∗∗,m has a compact carrier
}
.

We now state and prove another interesting theorem.

Theorem 2.8. Let K be a hypergroup, and let (L(K)∗∗,�) be approximately
amenable. Then K is discrete and left-amenable. The converse statement is not
necessarily true.

Proof. Let (eα)α, ‖eα‖ = 1, be a bounded approximate identity for L(K) (see
[16]), and let E be a weak* cluster point of (eα)α in L(K)∗∗ (E is also a right
identity for L(K)∗∗). By hypothesis, L(K)∗∗ is approximately amenable. Then
L(K)∗∗ has a left approximate identity (Fα)α (see [5, Lemma 2.2]). For each
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m ∈ L(K)∗∗, E � m = limα(Fα � E) � m = limα Fα � m = m. Hence, E is an
identity for L(K)∗∗ and so L(K)∗ = L(K)∗L(K) = B (see [15, Proposition 2.2]).
This means that the natural embedding of B into L(K)∗ is the identity map and
π is also. By Proposition 13(a) and Theorem 14(b) of [16],M(K) = E � Lc(K)∗∗.
Therefore, by Theorem 14(c) of [16], we have

M(K) =
⋂

E∈ε1(K)

E � Lc(K)∗∗ = L(K).

So M(K) = L(K). Thus, K is discrete. Also, by combining Theorems 2.7 and
2.2, K is left-amenable.

To show that the converse is not true, let N0 be a class of polynomial hyper-
groups generated by the ultraspherical polynomials (Rα

n)n∈N0 , α > 0. Then
`1(N0)

∗∗ is not approximately amenable. This is because if `1(N0)
∗∗ is approx-

imately amenable, then `1(N0) is approximately amenable (see [5, Theorem 2.3]).
But, by Theorem 2.4, this is impossible. �

In [5, Theorem 3.3], it is shown that L1(G)∗∗ is approximately amenable if and
only if G is finite. For a hypergroup with an involution, the following theorem
shows that this result remains true for approximate amenability.

Theorem 2.9. Let K be a hypergroup with an involution ∼: K → K, and endow
L(K)∗∗ with the first Arens product. Then the following assertions are equivalent.

(i) (L(K)∗∗,�) is approximately amenable.
(ii) K is finite.
(iii) (L(K)∗∗,�) is amenable.

Proof. (i)⇒(ii) By Theorem 2.8, K is discrete and left-amenable. By hypothe-
sis, K is discrete with an involution. Then Jewett’s and Dunkl’s definitions of
a hypergroup coincide. Therefore, K has a Haar measure and L1(K) = L(K)
(see [11, Theorem 7.1.A]). Also, TIM(L∞(K)) 6= ∅ (topological two-sided invari-
ant mean on L∞(K); see [22, Theorem 3.2]). If m is a topological two-sided
invariant mean on L∞(K), then m is a two-sided invariant mean on L∞(K)
(see [22, Lemma 3.1]). An argument similar to [5, Theorem 3.3] shows that
|LIM(L∞(K))| = |IM(L∞(K))| = 1. Now if K is infinite, this contradicts [22,
Corollary 5.6]. Thus K is finite.

(ii)⇒(iii) Since K is a finite hypergroup, L(K)∗∗ =M(K) = L(K) and K has
a Haar measure. Now the mapping T : M(K) −→ B(L2(K)) with µ 7−→ Tµ is
defined in [11, Theorem 6.2I], where for all f ∈ L2(K)

Tµ(f) = µ ∗ f

is a faithful norm-decreasing unital ∗-representation of M(K). We have that
L(K)∗∗ =M(K) is ∗-semisimple and so it is semisimple (see [3, Theorem 3.1.17,
p. 347]). Now, by the Wedderburn structure theorem (see [3, Theorem 1.5.9]),
L(K)∗∗ is amenable.

(iii)⇒(i) This implication is trivial. �
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3. A characterization of left amenability of a hypergroup

In this section, we first show that L(K) is an F -algebra. Consider the product
linear space

∏
µ∈L(K) L∞(|µ|). Denote by L∞(K,L(K)) the linear subspace of all

f = (fµ)µ ∈
∏

µ∈L(K) L∞(|µ|) such that

(i) ‖f‖∞ := supµ∈L(K) ‖fµ‖∞,|µ| <∞,
(ii) if µ, ν ∈ L(K) and µ� ν, then fν = fµ, |µ|-almost everywhere,

where ‖g‖∞,|µ| denotes the essential supremum norm with respect to |µ|.

Theorem 3.1. For each F ∈ L(K)∗, there is a unique f = (fµ)µ ∈ L∞(K,L(K))
such that

F (µ) =

∫
fµ dµ.

Moreover, ‖F‖ = ‖f‖∞.

Proof. For each µ ∈ L(K), Fµ := F |L1(|µ|) is a bounded linear functional Fµ

on L1(|µ|). Hence, by the Radon–Nikodym theorem, there is a function fµ ∈
L∞(|µ|) = L1(|µ|)∗ such that for any ν ∈ L1(|µ|), we have

F (ν) = Fµ(ν) =

∫
fµ dν.

In particular, F (µ) =
∫
fµ dµ. We claim that f = (fµ)µ∈L(K) ∈ L∞(K,L(K)).

Let µ, ν ∈ L(K) and µ� ν. We have∫
fµ dµ = Fµ(µ) = Fν(µ) =

∫
fν dµ.

Therefore, fµ = fν |µ|-almost everywhere.
On the other hand, for each µ ∈ L(K),

‖fµ‖∞,µ = ‖Fµ‖ = sup
{∣∣Fµ(ν)

∣∣ : ν ∈ L1
(
|µ|

)
, ‖ν‖ ≤ 1

}
= sup

{∣∣F (ν)∣∣ : ν ∈ L1
(
|µ|

)
, ‖ν‖ ≤ 1

}
≤ ‖F‖.

Hence, ‖f‖∞ ≤ ‖F‖. It follows that f = (fµ)µ∈L(K) ∈ L∞(K,L(K)). Also

‖F‖ = sup
{
|F (µ)| : µ ∈ L(K)), ‖µ‖ ≤ 1

}
= sup

{∣∣∣∫ fµ dµ
∣∣∣ : µ ∈ L(K)), ‖µ‖ ≤ 1

}
≤ sup

‖µ‖≤1

‖fµ‖∞,|µ|‖µ‖ ≤ sup
µ∈L(K)

‖fµ‖∞,|µ| = ‖f‖∞.

Thus, ‖F‖ = ‖f‖∞.
To show uniqueness, let f, g ∈ L∞(K,L(K)) be such that for each µ ∈ L(K),

F (µ) =

∫
fµ dµ =

∫
gµ dµ.
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For each ν � µ, we have∫
fµ dν =

∫
fν dν =

∫
gν dν =

∫
gµ dν.

Therefore, fµ = gµ in L∞(|µ|). This means that f = g. �

We now state and prove another interesting theorem.

Theorem 3.2. Let K be a hypergroup. Then L(K) is an F -algebra.

Proof. Let T : L∞(K,L(K)) −→ L(K)∗ be defined by

T (f)(µ) =

∫
fµ dµ,

(
f ∈ L∞

(
K,L(K)

)
, µ ∈ L(K)

)
.

First, we show that T is an isometric isomorphism of L∞(K,L(K)) onto L(K)∗.
Let µ, ν ∈ L(K). Without loss of generality, we can suppose that µ, ν ≥ 0. Then
µ � µ + ν, ν � µ + ν, and µ � αµ, for all α ≥ 0. Therefore, by Theorem 3.1,
for f ∈ L∞(K,L(K)), α ≥ 0,

T (f)(µ+ ν) =

∫
fµ+ν d(µ+ ν)

=

∫
fµ+ν dµ+

∫
fµ+ν dν

=

∫
fµ dµ+

∫
fν dν = T (f)(µ) + T (f)(ν)

and

T (f)(αµ) =

∫
fαµ d(αµ) = α

∫
fαµ dµ = α

∫
fµ dµ = αT (f)(µ).

Thus, T (f) is a linear functional and then T (f) ∈ L(K)∗. Also, for any µ ∈ L(K)∣∣T (f)(µ)∣∣ = ∣∣∣∫ fµ dµ
∣∣∣ ≤ ‖fµ‖∞,|µ|‖µ‖,

and hence, ‖T (f)‖ ≤ ‖f‖∞. Theorem 3.1 shows that T is onto and hence it
is an isometry. On the other hand, by Exercise 1.1 and Example 2.1.4 of [19],
L∞(K,L(K)) with the complex conjugation as an involution, the pointwise mul-
tiplications, and the norm ‖·‖∞, is a commutative C∗-algebra. Also, the constant
function 1 is as in the identity. It follows that L(K)∗ is a W ∗-algebra. Therefore,
L(K) is an F -algebra. �

In Section 2, Theorem 2.4 indicates that, unlike the group case, the con-
verse of Theorem 2.2 is not true for hypergroups. We restrict our discussion
to ϕ-approximate amenability of L(K) and character amenability of L(K)∗∗. In
Theorem 3.5, however, by using Theorem 3.2, we will provide a characterization
of left amenability of the hypergroup K.

Let4(L(K)) be the set of all nonzero multiplicative linear functionals on L(K).
If ϕ ∈ 4(L(K)) and X is an arbitrary Banach space, then X can be viewed as
a Banach left L(K)-module by the following actions. For µ ∈ L(K), x ∈ X,
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µ • x = ϕ(µ)x. Throughout, by a (ϕ,L(K))-bimodule X, we mean that X is a
Banach L(K)-bimodule for which the left module action is given by µ•x = ϕ(µ)x.

We recall the definitions of ϕ-amenability and ϕ-approximate amenability (see
[12]).

Definition 3.3. Let K be a hypergroup and ϕ ∈ 4(L(K)). Then L(K) is called
ϕ-amenable (resp., approximately ϕ-amenable) if every derivation D from L(K)
into the dual L(K)-bimodule X∗ is inner (resp., approximately inner) for all
(ϕ,L(K))-bimodules X.

Lemma 3.4. Let K be a hypergroup, and let F ∈ L(K)∗ and µ, ν ∈ L(K). Then

(i) 〈F, µ ∗ ν〉 =
∫
〈F, δx ∗ ν〉 dµ,

(ii) 〈F, µ ∗ ν〉 =
∫
〈F, µ ∗ δx〉 dν.

Proof. (i) Let ν ≥ 0, and we may assume that C := suppµ is compact. Then
φ : C −→ L(K) is defined by φ(x) = δx ∗ ν and it is continuous. Thus, by [20,
Theorems 3.20, 3.27], we can write

∫
C
ϕ(x) dµ ∈ L(K), that is,

∫
C
δx ∗ ν dµ(x) ∈

L(K). On the other hand, for each ψ ∈ C0(K)

µ ∗ ν(ψ) =
∫
K

∫
K

ψ(x ∗ y) dµ(x) dν(y) =
∫
K

∫
K

ψ(x ∗ y) dν(y) dµ(x)

=

∫
C

δx ∗ ν(ψ) dµ(x).

Hence,

µ ∗ ν =

∫
C

δx ∗ ν dµ(x).

If F ∈ L(K)∗, then (see [20, Theorem 3.26])

〈F, µ ∗ ν〉 =
〈
F,

∫
C

δx ∗ ν dµ(x)
〉
=

∫
C

〈F, δx ∗ ν〉 dµ(x).

Finally, if (eα) is a positive approximate identity of norm 1, then

〈νF, µ ∗ eα〉 =
∫
C

〈νF, δx ∗ eα〉 dµ(x).

Hence, we have 〈F, µ ∗ ν〉 =
∫
C
〈F, δx ∗ ν〉 dµ(x). We can now release the condition

on ν.
(ii) Let µ ≥ 0, and we may assume that C := supp ν is compact. Then φ :

C −→ L(K) is defined by φ(x) = µ ∗ δx and it is continuous. Now, proceeding
exactly as above, we have

〈F, µ ∗ ν〉 =
∫
〈F, µ ∗ δx〉 dν. �

We now give a characterization of left amenability of a hypergroup.

Theorem 3.5. Let K be a hypergroup, and let ϕ ∈ 4(L(K). Then the following
assertions are equivalent.

(i) L(K) is approximately ϕ-amenable.
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(ii) K is left-amenable.
(iii) L(K) is ϕ-amenable.

Proof. (i)⇒(ii) Let L(K) be approximately ϕ-amenable. Then X := L(K) is a
Banach (ϕ,L(K))-bimodule with the right module action ν · µ := ν ∗ µ, for ν ∈
X,µ ∈ L(K). Hence X∗, with dual module action, is a Banach L(K)-bimodule.
Now, since ϕ ∈ X∗,

〈ϕ · µ, ν〉 = 〈ϕ, µ • ν〉 =
〈
ϕ, ϕ(µ)ν

〉
= ϕ(µ)〈ϕ, ν〉

and

〈µ · ϕ, ν〉 = 〈ϕ, ν · µ〉 = 〈ϕ, ν ∗ µ〉 = ϕ(ν ∗ µ) = ϕ(ν)ϕ(µ) = ϕ(µ)〈ϕ, ν〉,

for µ ∈ L(K), ν ∈ X. Thus, µ · ϕ = ϕ(µ)ϕ = ϕ · µ. On the other hand, the
space C is a Banach (ϕ,L(K))-sub-bimodule of X∗. So, Y := X∗

C is a Banach
L(K)-bimodule. Let θ : X∗ −→ Y be the canonical mapping, and let n ∈ X∗∗

with n(ϕ) = 1. Then, for µ ∈ L(K),

〈µ · n− n · µ, ϕ〉 = 〈µ · n, ϕ〉 − 〈n · µ, ϕ〉 = 〈n, ϕ · µ〉 − 〈n, µ · ϕ〉 = 0.

It follows that µ ·n−n ·µ can be considered as an element of θ∗(Y ∗), where θ∗ is
the adjoint of θ. Since θ∗ is injective, we can define D : L(K) −→ Y ∗ such that
θ∗ ◦D(µ) = µ · n− n · µ. It is easy to see D is a bounded derivation on L(K). By
the assumption, there exists a net (φα) ⊆ Y ∗ such that

D(µ) = lim
α
(φα · µ− µ · φα),

(
µ ∈ L(K)

)
.

Therefore,

lim
α

((
θ∗(φα) ·µ−µ ·θ∗(φα)

))
= lim

α
(
(
θ∗(φα ·µ−µ ·φα)

)
= θ∗

(
D(µ)

)
= µ ·n−n ·µ.

So, we have

µ ·
(
θ∗(φα)− n

)
=

(
θ∗(φα)− n

)
· µ.

Define nα := (n− θ∗(φα)) ∈ L(K)∗∗, for all α. Therefore,

〈nα, ϕ〉 = 〈n, ϕ〉 −
〈
θ∗(φα), ϕ

〉
= 〈n, ϕ〉 −

〈
φα, θ(ϕ)

〉
= 1− 0 = 1.

Also, if nα and µ ∈ L(K), then nα · µ = µ · nα. Hence, we have

〈f, nα · µ〉 = 〈f, µ · nα〉 = 〈f · µ, nα〉 = ϕ(µ)〈f, nα〉,

for f ∈ L(K)∗. On the other hand, by Theorem 3.2, L(K)∗ is a W ∗- algebra.
So, if ϕ(µ) = 1, then µ · nα = nα · µ = nα and µ · n∗

α = n∗
α · µ = n∗

α (see [14,
Theorem 4.1]). Thus, we can assume that nα is self-adjoint. Let nα = n+

α −n−
α be

the orthogonal decomposition of nα. Then nα · µ = n+
α · µ− n−

α · µ and

‖n+
α · µ‖+ ‖n−

α · µ‖ = 〈n+
α · µ, ϕ〉+ 〈n−

α · µ, ϕ〉 = 〈n+
α , µ · ϕ〉+ 〈n−

α , µ · ϕ〉
= ϕ(µ)〈n+

α , ϕ〉+ ϕ(µ)〈n−
α , ϕ, 〉 = 〈n+

α , ϕ〉+ 〈n−
α , ϕ〉

= ‖n+
α‖+ ‖n−

α‖.

Hence, µ ·n+
α = n+

α ·µ = n+
α , µ ·n−

α = n−
α ·µ = n−

α (see [21, Theorem 1.14.3], the
Jordan decomposition theorem), and n+

α , n
−
α cannot both be zero . Without loss of
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generality, we assume that n+
α 6= 0, for all α. Now, let mα = 1

‖n+
α ‖n

+
α (‖mα‖ = 1),

and let m be a weak* cluster point of (mα)α. It is clear that m is a mean on X∗.
Take P1(L(K)) := {µ ∈ L(K)|µ ≥ 0, ‖µ‖ = 1}. For f ∈ X∗ and µ ∈ P1(L(K)),
we have

〈m, fµ〉 = lim
α
〈mα, fµ〉 = lim

α
〈µ ·mα, f〉 = lim

α

1

‖n+
α‖

〈µ · n+
α , f〉

= lim
α

1

‖n+
α‖

〈n+
α , f〉 = lim

α
〈mα, f〉 = 〈m, f〉.

It follows that m is a topologically left-invariant mean on L(K)∗ because the
linear span of P1(L(K)) is L(K). Now, let m̃ = m|B (B = L(K)∗L(K)). Then
we have

〈m, f · δx〉 =
〈
m, (gµ) · δx

〉
=

〈
m, g(µ ∗ δx)

〉
= 〈m, g〉 = 〈m, gµ〉 = 〈m, f〉,

for f = gµ ∈ B (g ∈ L(K)∗, µ ∈ L(K)) and x ∈ K. Hence, m̃ is a left-invariant
mean on B. Thus, K is left-amenable.

(ii)⇒(iii) Suppose that m is a left-invariant mean on B. Let ν ∈ P1(L(K)) and
f = Fµ ∈ B (F ∈ L(K)∗, µ ∈ L(K)). By Lemma 3.4(ii), we have

〈m, f · ν〉 =
〈
m, (Fµ) · ν

〉
=

〈
m,F (µ ∗ ν)

〉
= 〈m · F, µ ∗ ν〉 =

∫
〈m · F, µ ∗ δx〉 dν

=

∫ 〈
m,F · (µ ∗ δx)

〉
dν =

∫ 〈
m, (Fµ) · δx)

〉
dν

=

∫
〈m, f · δx)〉 dν =

∫
〈m, f〉 dν = 〈m, f〉ν(K) = 〈m, f〉.

Now, let µ0 ∈ P1(L(K)) be fixed. For F ∈ L(K)∗, define f(x) := 〈F, δx ∗ µ0〉.
It is clear that f ∈ Cb(K) and f · µ ∈ Cb(K), for µ ∈ L(K) (see [16]). So, for all
ν ∈ Ball(L(K)) and x ∈ K, we have

fν(x) = f(ν ∗ δx) =
∫
f(t) d(ν ∗ δx)(t) =

∫
〈F, δt ∗ µ0〉 d(ν ∗ δx)(t)

= 〈F, ν ∗ δx ∗ µ0〉.

Hence, if ν ∈ Ball(L(K)) and x, y ∈ K, then∣∣fν(x)− fν(y)
∣∣ = ∣∣〈F · ν, δx ∗ µ0 − δy ∗ µ0〉

∣∣
=

∣∣〈F, ν ∗ δx ∗ µ0 − ν ∗ δy ∗ µ0〉
∣∣ ≤ ‖F‖‖δx ∗ µ0 − δy ∗ µ0‖.

It follows that {fν |ν ∈ Ball(L(K))} is equicontinuous, and consequently, f ∈ B
(see [16, Proposition 2]). Now, define M ∈ L(K)∗∗ with M(F ) = m(f), for any
F ∈ L(K)∗. By Lemma 3.4, if ν ∈ P1(L(K)), then

f · ν(x) = f(ν ∗ δx) =
∫
f(t) d(ν ∗ δx)(t) =

∫
〈F, δt ∗ µ0〉 d(ν ∗ δx)(t)

= 〈F, ν ∗ δx ∗ µ0〉 = 〈F · ν, δx ∗ µ0〉.
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Therefore, M(F · ν) = m(f · ν) = m(f) = M(F ), for ν ∈ L(K) and F ∈ L(K)∗.
It follows that L(K) is ϕ-amenable (see [12, Theorem 1.1]).

(iii)⇒(i) This implication is trivial. �

Definition 3.6. LetA be a Banach algebra. ThenA is right- (resp., left-) character-
amenable if for every ϕ ∈ 4(A) ∪ {0} and every (ϕ,A)-bimodule (resp., (A,ϕ)-
bimodule) E, every derivation D : A −→ E∗ is inner. Also, A is character-
amenable if it is both left- and right-character-amenable.

Theorem 3.7. Let K be a hypergroup, and let (L(K)∗∗,�) be character-amenable.
Then K is finite.

Proof. Since L(K)∗∗ is left-character-amenable, L(K)∗∗ has a left bounded
approximate identity (see [10, Corollary 2.5]). By an argument similar to that in
the proof of Theorem 2.8, K is discrete. Thus, Lc(K)∗∗ = M(K) and L(K)∗∗ =
M(K)∗∗ = B∗ = M(K)

⊕
C0(K)⊥ (see [16, Theorem 14]). On the other hand,

the map

θ :M(K)⊕C0(K)⊥ −→ C0(K)⊥, µ⊕m 7−→ m
(
m ∈ C0(K)⊥, µ ∈M(K)

)
is an epimorphism. So, by Lemma 2.12 of [10], C0(K)⊥ is left- and right-character-
amenable. Thus, C0(K)⊥ has a left bounded approximate identity (eα)α and a
right bounded approximate identity (gα)α (see [10, Corollary 2.5]). Let eα −→ e
and gα −→ g in weak* -topology σ(L(K)∗∗, L(K)∗). Now, since (eα) is a left
bounded approximate identity, for each m ∈ C0(K)⊥, eα � m −→ e � m in
weak* -topology σ(L(K)∗∗, L(K)∗) and eα � m −→ m in the norm topology.
Thus, e is a left identity for C0(K)⊥. Since (gα) is a right bounded approximate
identity, egα → e in norm. But egα = gα, so that egα → e in norm. Therefore,
e = g is an identity for C0(K)⊥. By an argument similar to that in the proof of
Theorem 2.5 of [18], K is compact. It follows that K is finite. �
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15. A. T. Lau and A. Ülger, Topological centers of certain dual algebras, Trans Amer.
Math. Soc. 394, no. 3 (1996), 1191–1212. Zbl 0859.43001. MR1322952. DOI 10.1090/
S0002-9947-96-01499-7. 558

16. A. R. Medghalchi, The second dual algebra of a hypergroup, Math. Z. 210 (1992), no. 4,
615–624. Zbl 0755.43001. MR1175726. DOI 10.1007/BF02571818. 552, 553, 557, 558, 563,
564

17. A. R. Medghalchi, Cohomology on hypergroup algebras, Studia Sci. Math. Hun-
gar. 39 (2002), no. 3-4, 297–307. Zbl 1026.43001. MR1956941. DOI 10.1556/
SScMath.39.2002.3-4.4. 552

18. A. R. Medghalchi and S. M. S. Modarres, Amenability of the second dual of hypergroup
algebras, Acta Math. Hungar. 86 (2000), no. 4, 335–342. Zbl 0970.46030. MR1756256.
DOI 10.1023/A:1006775726657. 564

19. G. J. Murphy, C∗-Algebras and Operator Theory, Academic Press, Boston, 1990.
Zbl 0714.46041. MR1074574. 560

20. W. Rudin, Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill,
New York, 1991. Zbl 0867.46001. MR1157815. 561

21. S. Sakai, C∗-algebras and W ∗-algebras, Ergeb. Math. Grenzgeb. (3) 60, Springer, New
York, 1971. Zbl 0219.46042. MR0442701. 562

22. M. Skantharajah, Amenable hypergroups, Illinois J. Math. 36 (1992), no. 1, 15–46.
Zbl 0755.43003. MR1133768. 553, 555, 558

Department of Mathematics, Kharazmi University, 50, Taleghani Avenue, 15618,
Tehran, Iran.

E-mail address: laali@khu.ac.ir; std r.ramazani@khu.ac.ir

http://www.emis.de/cgi-bin/MATH-item?0851.46035
http://www.ams.org/mathscinet-getitem?mr=1307520
https://doi.org/10.1090/S0002-9939-96-03177-2
http://www.emis.de/cgi-bin/MATH-item?1146.46023
http://www.ams.org/mathscinet-getitem?mr=2397875
https://doi.org/10.1016/j.jfa.2007.12.011
https://doi.org/10.1016/j.jfa.2007.12.011
http://www.emis.de/cgi-bin/MATH-item?0584.43004
http://www.ams.org/mathscinet-getitem?mr=0803608
https://doi.org/10.1017/S0305004100063696
http://www.emis.de/cgi-bin/MATH-item?1118.46046
http://www.ams.org/mathscinet-getitem?mr=2296395
https://doi.org/10.1017/S0305004106009649
http://www.emis.de/cgi-bin/MATH-item?1175.22005
http://www.ams.org/mathscinet-getitem?mr=2506414
https://doi.org/10.4064/sm193-1-3
http://www.emis.de/cgi-bin/MATH-item?0325.42017
http://www.ams.org/mathscinet-getitem?mr=0394034
https://doi.org/10.1016/0001-8708(75)90002-X
http://www.emis.de/cgi-bin/MATH-item?1145.46027
http://www.ams.org/mathscinet-getitem?mr=2388235
https://doi.org/10.1017/S0305004107000874
https://doi.org/10.1017/S0305004107000874
http://www.emis.de/cgi-bin/MATH-item?1182.43008
http://www.ams.org/mathscinet-getitem?mr=2583017
https://doi.org/10.1016/j.cam.2009.02.046
http://www.emis.de/cgi-bin/MATH-item?0545.46051
http://www.ams.org/mathscinet-getitem?mr=0736276
https://doi.org/10.4064/fm-118-3-161-175
http://www.emis.de/cgi-bin/MATH-item?0859.43001
http://www.ams.org/mathscinet-getitem?mr=1322952
https://doi.org/10.1090/S0002-9947-96-01499-7
https://doi.org/10.1090/S0002-9947-96-01499-7
http://www.emis.de/cgi-bin/MATH-item?0755.43001
http://www.ams.org/mathscinet-getitem?mr=1175726
https://doi.org/10.1007/BF02571818
http://www.emis.de/cgi-bin/MATH-item?1026.43001
http://www.ams.org/mathscinet-getitem?mr=1956941
https://doi.org/10.1556/SScMath.39.2002.3-4.4
https://doi.org/10.1556/SScMath.39.2002.3-4.4
http://www.emis.de/cgi-bin/MATH-item?0970.46030
http://www.ams.org/mathscinet-getitem?mr=1756256
https://doi.org/10.1023/A:1006775726657
http://www.emis.de/cgi-bin/MATH-item?0714.46041
http://www.ams.org/mathscinet-getitem?mr=1074574
http://www.emis.de/cgi-bin/MATH-item?0867.46001
http://www.ams.org/mathscinet-getitem?mr=1157815
http://www.emis.de/cgi-bin/MATH-item?0219.46042
http://www.ams.org/mathscinet-getitem?mr=0442701
http://www.emis.de/cgi-bin/MATH-item?0755.43003
http://www.ams.org/mathscinet-getitem?mr=1133768
mailto:laali@khu.ac.ir
mailto:std_r.ramazani@khu.ac.ir

	1 Introduction and preliminaries
	2 Approximate amenability of L(K) and L(K)**
	3 A characterization of left amenability of a hypergroup
	Acknowledgments
	References
	Author's addresses

