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JACEK CHMIELIŃSKI,1* RADOS LAW  LUKASIK,2 and PAWE L WÓJCIK1
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Abstract. For two unknown functions f , g, the equation〈
f(x)

∣∣ g(y)
〉

= 〈x | y〉

and its stability as well as the approximate orthogonality-preserving property

x ⊥ y =⇒ fx ⊥ε gy

are considered.

1. Introduction

The orthogonality equation and the related orthogonality-preserving property
have been intensively studied recently in connection with functional analysis and
operator theory, as well as functional equations (see [15]). In the present article, we
consider both of these topics in a generalized setting—that is, with two unknown
mappings.

Throughout, we use X, Y to mean real or complex inner-product spaces. The
scalar field K ∈ {R,C} sometimes will be restricted to C. Moreover, for some
results, the completeness of X, Y will be additionally assumed. For linear map-
pings, we will write fx, gy, and so on, instead of f(x), g(y).
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1.1. Orthogonality equation. The term orthogonality equation usually means
the one with a single unknown function f : X → Y ,〈

f(x)
∣∣ f(y)〉 = 〈x | y〉, x, y ∈ X. (1.1)

It is not difficult to observe that f is a solution of (1.1) if and only if it is a linear
isometry—and hence injective but not necessarily surjective (if so f is called a
unitary mapping). The above equation was generalized in [6] by introducing two
unknown functions f, g : X → Y so that we have〈

f(x)
∣∣ g(y)〉 = 〈x | y〉, x, y ∈ X. (1.2)

A description of solutions of (1.2), as well as some related topics, can be found
in the authors’ previous papers [6], [13].

It is obvious that a pair (f, g) satisfies (1.2) whenever the pair (g, f) does, and
hence f and g share their necessary properties. It can be also noticed (see [6] for
details and examples) that if (f, g) is a solution of (1.2), then both mappings f ,
g are injective but need not be surjective or linear. In particular, none of the f , g
need satisfy (1.1). On the other hand, a pair of linear isometries—that is, solutions
of (1.1)—need not be a solution of (1.2). Actually, a pair (f, g) consisting of two
different solutions of (1.1) cannot be a solution of (1.2). Similarly, if only one of
the mappings f or g is a surjective solution of (1.1), then (1.2) does not hold
unless g = f . Surjectivity (or some approximate surjectivity) of one of mappings
f and g has strong consequences.

Theorem 1.1 ([6, Lemmas 1.5, 1.6, Theorem 1.7]). Suppose that (f, g) solves
(1.2). If f(X)⊥ = {0}, then g is linear; if f is surjective, then both f and g are
linear and g(X)⊥ = {0}. Moreover, if X and Y are Hilbert spaces (complete-
ness being essential) and f is surjective, then both mappings f and g are linear,
continuous, and bijective.

1.2. Orthogonality-preserving property. For inner product spaces X, Y and
a single linear mapping f : X → Y one can consider the orthogonality-preserving
property

x ⊥ y ⇒ fx ⊥ fy, ∀x, y ∈ X. (1.3)

For two linear mappings f, g : X → Y , an analogous property

x ⊥ y ⇒ fx ⊥ gy, ∀x, y ∈ X (1.4)

was introduced in [6], and the following characterization has been proved.

Theorem 1.2 ([6, Theorem 3.9]). Let X, Y be inner product spaces, and let
f, g : X → Y be linear mappings. The following conditions are equivalent with
some γ ∈ K:

(1) x ⊥ y ⇒ fx ⊥ gy, ∀x, y ∈ X,
(2) 〈fx | gy〉 = γ〈x | y〉, ∀x, y ∈ X.

Moreover, each of the above conditions implies (and in complex spaces is also
equivalent to)

(3) 〈fx | gx〉 = γ‖x‖2, ∀x ∈ X.
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In subsequent parts of the paper, we describe approximate solutions of (1.2),
as well as the class of the mappings which approximately preserves orthogonality.
We also deal with stability problems for (1.2) and (1.4).

2. Stability of the orthogonality equation with two unknown
functions

2.1. Stability. As before, X and Y are inner product spaces and f, g : X → Y .
Assume that the pair (f, g) is in some sense an approximate solution of (1.2). The
question is how much (f, g) differs from an exact solution of (1.2). This is a stan-
dard problem in the theory of stability of functional equations (see monographs
[8], [10], and numerous papers). Sometimes it happens that each approximate
solution of a given equation is in fact an exact solution. We will call such a phe-
nomenon a superstability. For the orthogonality equation (1.1), various types of
stability have been considered.

Let us consider the classical Ulam–Hyers approach (see [17], [7]). Namely,
assume that, with some ε ≥ 0, we have∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉

∣∣ ≤ ε, x, y ∈ X. (2.1)

Observe that both f and g must be injective. Indeed, assuming f(x1) = f(x2),
we have, for an arbitrary y ∈ X,∣∣〈x1 − x2 | y〉

∣∣ ≤ ∣∣〈x1 | y〉 − 〈
f(x1)

∣∣ g(y)〉∣∣+ ∣∣〈f(x2) ∣∣ g(y)〉− 〈x2 | y〉
∣∣

≤ 2ε.

Taking y := n(x1 − x2), we get ‖x1 − x2‖ ≤
√

2ε
n
for n ∈ N; hence, x1 = x2.

We say that f : X → Y is δ-surjective if and only if for each y ∈ Y there
exists an x in X such that ‖f(x) − y‖ ≤ δ. A mapping g : X → Y is called
ε-additive whenever ‖g(x + y) − g(x) − g(y)‖ ≤ ε for all x, y ∈ X. Let us note
that approximate surjectivity of one of the mappings f , g satisfying (2.1) implies
the approximate additivity of the other one.

Proposition 2.1. Let X, Y be inner product spaces. If f, g : X → Y satisfy (2.1)
and f is δ-surjective (δ ≥ 0), then∥∥g(x+ y)− g(x)− g(y)

∥∥ ≤ δ +
√
3ε, x, y ∈ X.

Proof. For arbitrary x, y, z ∈ X, we have∣∣〈f(z) ∣∣ g(x+ y)− g(x)− g(y)
〉∣∣ ≤ ∣∣〈f(z) ∣∣ g(x+ y)

〉
− 〈z | x+ y〉

∣∣
+
∣∣〈f(z) ∣∣ g(x)〉− 〈z | x〉

∣∣
+
∣∣〈f(z) ∣∣ g(y)〉− 〈z | y〉

∣∣
≤ 3ε.

(2.2)

Fix arbitrarily x, y ∈ X, and let v := g(x+y)−g(x)−g(y). Since f is δ-surjective,
there exists z ∈ X such that ‖f(z)−v‖ ≤ δ. Let u := f(z)−v. Then f(z) = u+v
and ‖u‖ ≤ δ. Moreover, from (2.2), |〈u+ v | v〉| ≤ 3ε. Thus

‖v‖2 −
∣∣〈u | v〉

∣∣ ≤ ∣∣‖v‖2 + 〈u | v〉
∣∣ = ∣∣〈u+ v | v〉

∣∣ ≤ 3ε,
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and hence

‖v‖2 ≤ 3ε+
∣∣〈u | v〉

∣∣ ≤ 3ε+ ‖u‖‖v‖ ≤ 3ε+ δ‖v‖.

Solving the inequality ‖v‖2 − δ‖v‖ − 3ε ≤ 0, one gets

0 ≤ ‖v‖ ≤ δ +
√
δ2 + 12ε

2
≤ δ +

√
3ε. �

In particular, if f is surjective (δ = 0), then we have∥∥g(x+ y)− g(x)− g(y)
∥∥ ≤

√
3ε, x, y ∈ X.

Under the assumption of approximate surjectivity of one of the mappings f , g,
we obtain the first stability result for equation (1.2).

Proposition 2.2. Let X be an inner product space, and let Y be a Hilbert space.
Assume that f, g : X → Y satisfy (2.1) (with some ε ≥ 0). If f is δ-surjective,
then there exists g0 : X → Y such that (f, g0) satisfies (1.2) and ‖g(x)−g0(x)‖ ≤
δ +

√
3ε.

Proof. According to Proposition 2.1, g is (δ +
√
3ε)-additive. By the classical

Hyers theorem (see [7, Theorem 1]), the mapping

g0(x) := lim
n→∞

2−ng(2nx), x ∈ X

is well defined and additive. Moreover,∥∥g(x)− g0(x)
∥∥ ≤ δ +

√
3ε.

Using (2.1), putting 2ny in place of y, and dividing by 2n, we obtain∣∣〈f(x) ∣∣ 2−ng(2ny)
〉
− 〈x | 2−n2ny〉

∣∣ ≤ ε

2n
, x, y ∈ X;

hence, letting n→ ∞,〈
f(x)

∣∣ g0(y)〉 = 〈x | y〉, x, y ∈ X. �

Assuming surjectivity of one mapping, one gets superstability of (1.2).

Theorem 2.3. Let X be an inner product space, let Y be a Hilbert space, and let
f, g : X → Y satisfy (2.1) (with some ε ≥ 0). If f is surjective, then (1.2) holds
true.

Proof. Due to Proposition 2.2, for some g0 : X → Y , the pair (f, g0) satisfies (1.2).
Since f is surjective, it follows from Theorem 1.1 that f and g0 are linear. Using
the linearity of f , we get from (2.1), for arbitrary x, y ∈ X,∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉

∣∣ = 2−n
∣∣〈f(2nx) ∣∣ g(y)〉− 〈2nx | y〉

∣∣ ≤ ε

2n
,

and, finally, letting n→ ∞, 〈f(x) | g(y)〉 = 〈x | y〉. �
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Notice that δ-surjectivity of f implies that f(X)⊥ = {0} (the reverse is not
true—see the example below). Indeed, suppose that 0 6= y0 ∈ f(X)⊥; then also
ny0 ⊥ f(X) for n ∈ N. On the other hand, for each n ∈ N there exists xn ∈ X such
that ‖f(xn)− ny0‖ ≤ δ. Thus n2‖y0‖2 ≤ ‖f(xn)‖2 + n2‖y0‖2 = ‖f(xn)− ny0‖2 ≤
δ2—a contradiction.

The condition f(X)⊥ = {0} is not sufficient for superstability.

Example 2.4. Given X = Y = l2, we define f = g : l2 → l2 by

f(x) = (
√
ε, x1, x2, . . .), x = (x1, x2, . . .) ∈ l2.

One has f(X)⊥ = {0}, but there is no superstability. However, there exists
g0(x) := (0, x1, x2, . . .) such that 〈f(x) | g0(y)〉 = 〈x | y〉 for all x, y and
‖g(x)− g0(x)‖ =

√
ε.

Assuming linearity of f or g and using similar elementary techniques, one may
prove superstability for the more general class of approximate solutions (see [2]
for one unknown mapping). Let us start with a simple observation.

Proposition 2.5. Let X, Y be inner product spaces, and let f, g : X → Y be
linear mappings. Suppose that, with some p, q ∈ R such that p 6= 1 or q 6= 1,∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉

∣∣ ≤ ε‖x‖p‖y‖q, x, y ∈ X \ {0}.
Then (1.2) holds.

Proof. Assume that p > 1. For x, y ∈ X \ {0}, we have∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉
∣∣ = 2n

∣∣〈f(2−nx)
∣∣ g(y)〉− 〈2−nx | y〉

∣∣ ≤ 2n(1−p)ε‖x‖p‖y‖q.
The right-hand side tends to 0 as n→ ∞; hence 〈f(x) | g(y)〉 = 〈x | y〉 (for x = 0
or y = 0 it is obvious). If p < 1, then we replace 2 by 1/2, and for q 6= 1 the proof
is analogous. �

Apparently, the exceptional case p = q = 1 is much more difficult to handle
and also more interesting. It is treated in the following theorem but only under
some additional assumptions.

Theorem 2.6. Let X, Y be Hilbert spaces, and let f, g : X → Y be linear and
bounded. Assume that g is invertible. If∣∣〈fx | gy〉 − 〈x | y〉

∣∣ ≤ ε‖x‖‖y‖, x, y ∈ X, (2.3)

then there exists a linear and bounded mapping f0 : X → Y such that〈
f0(x)

∣∣ g(y)〉 = 〈x | y〉, x, y ∈ X,

and

‖f0 − f‖ ≤ ε‖g−1‖.

Proof. Let f0 := (g−1)∗. Then, for arbitrary x, y ∈ X,

〈f0x | gy〉 =
〈
(g−1)∗x

∣∣ gy〉 = 〈x | g−1gy〉 = 〈x | y〉.
We have also, for x, y ∈ X,∣∣〈(f − f0)x

∣∣ gy〉∣∣ = ∣∣〈fx | gy〉 − 〈x | y〉
∣∣ ≤ ε‖x‖‖y‖.
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Take an arbitrary element z ∈ Y and y = g−1z. From the above we have∣∣〈(f − f0)x
∣∣ z〉∣∣ ≤ ε‖g−1‖‖x‖‖z‖,

and hence∥∥(f − f0)x
∥∥ = sup

‖z‖=1

∣∣〈(f − f0)x
∣∣ z〉∣∣ ≤ ε‖g−1‖‖x‖, x ∈ X,

and, finally,

‖f − f0‖ ≤ ε‖g−1‖. �

2.2. Decomposition of approximate solutions. In this section, we follow [2],
where a decomposition of approximate solutions of the orthogonality equation
with a single unknown function was studied. A similar decomposition of exact
solutions of (1.2) was shown in [13].

We start with two auxiliary results.

Lemma 2.7. Let X 6= ∅ be a set, let Y be a Hilbert space, and let f, g : X → Y
be arbitrary mappings. Then there exist a subspace Y0 of Lin g(X) and mappings

f1, g1 : X → Y0, f2 : X → g(X)⊥, g2 : X → Y ⊥
0 ∩ Lin g(X) such that〈

f1(x)
∣∣ g1(y)〉 = 〈

f(x)
∣∣ g(y)〉, x, y ∈ X, (2.4)

f = f1 + f2, g = g1 + g2, (2.5)

Lin f1(X) = Lin g1(X) = Y0. (2.6)

Proof. We will use several times the projection theorem for Hilbert spaces. Let
f1, f2 : X → Y be functions such that

f = f1 + f2,

f1(x) ∈ Lin g(X), f2(x) ∈ g(X)⊥, x ∈ X.

Further, let g1, g2 : X → Y be functions such that

g = g1 + g2,

g1(x) ∈ Lin f1(X), g2(x) ∈ f1(X)⊥, x ∈ X.

Let Y0 := Lin f1(X). We observe that〈
f(x)

∣∣ g(y)〉 = 〈
f1(x) + f2(x)

∣∣ g(y)〉 =
〈
f1(x)

∣∣ g(y)〉+ 〈
f2(x)

∣∣ g(y)〉
=

〈
f1(x)

∣∣ g(y)〉 =
〈
f1(x)

∣∣ g1(y)〉+ 〈
f1(x)

∣∣ g2(y)〉
=

〈
f1(x)

∣∣ g1(y)〉, x, y ∈ X.

Since g1(X) ⊂ Lin f1(X) ⊂ Lin g(X), we have

g2(y) = g(y)− g1(y) ∈ Lin g(X), y ∈ X.

Fix x ∈ X. Then f1(x) = u + v, where u ∈ Lin g1(X) ⊂ Lin g(X), v ∈ g1(X)⊥ ∩
Lin g(X).
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Hence we have

0 =
〈
v
∣∣ g1(y)〉 = 〈

f1(x)
∣∣ g1(y)〉− 〈

u
∣∣ g1(y)〉

=
〈
f1(x)

∣∣ g(y)〉− 〈
u
∣∣ g(y)〉 = 〈

f1(x)− u
∣∣ g(y)〉

=
〈
v
∣∣ g(y)〉, y ∈ X.

Then we get

v ∈ g(X)⊥ ∩ Lin g(X) = {0},
which means that f1(x) = u ∈ Lin g1(X), and so we have f1(X) ⊂ Lin g1(X).

Since g1(X) ⊂ Lin f1(X), then Lin g1(X) = Lin f1(X). �

Lemma 2.8. Let X be a set, and let Y be an inner product space. Assume that
mappings f1, g1 : X → Y satisfy∥∥f1(x)∥∥ ≤ α(x), x ∈ X,

or ∥∥g1(x)∥∥ ≤ β(x), x ∈ X,

where α, β : X → [0,∞). Then there exist mappings f2 : X → Lin f1(X), g2 : X →
Lin g1(X) such that 〈

f2(x)
∣∣ g2(y)〉 = 0, x, y ∈ X, (2.7)∥∥f1(x)− f2(x)

∥∥ ≤ α(x), x ∈ X, (2.8)∥∥g1(x)− g2(x)
∥∥ ≤ β(x), x ∈ X. (2.9)

Proof. Assume that ‖f1(x)‖ ≤ α(x) for all x ∈ X. Define f2(x) := 0, and define
g2(x) := g1(x), x ∈ X. Conditions (2.7)–(2.9) are satisfied. If ‖g1(x)‖ ≤ β(x),
x ∈ X, then we take f2 = f1 and g2 ≡ 0. �

The main result from [2] reads as follows.

Theorem 2.9 ([2, Proposition 1, Theorem 1]). Let X be an inner product space,
let Y be a Hilbert space, and let f : X → Y satisfy∣∣〈f(x) ∣∣ f(y)〉− 〈x | y〉

∣∣ ≤ Φ(x, y), x, y ∈ X,

with Φ: X ×X → [0,∞) satisfying for some c > 0 the condition

lim
m+n→∞,m,n∈N

cm+nΦ(c−mx, c−ny) = 0, x, y ∈ X.

Then there exist a linear isometry I : X → Y (a solution of (1.1)) and a mapping
b : X → Y such that ∥∥b(x)∥∥ ≤

√
Φ(x, x), x ∈ X,〈

I(x)
∣∣ b(y)〉 = 0, x, y ∈ X,

and

f(x) = I(x) + b(x), x ∈ X.

Moreover, such a decomposition is unique.
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That is to say that each approximate solution of (1.1) can be decomposed
into an exact solution of the equation and some disturbance. Moreover, one can
notice that, under some additional assumptions (e.g., dimX = dimY < ∞),
b must vanish, which explains superstability in such a case. Some counterparts of
the above result for two unknown mappings are given in the following theorems.

Theorem 2.10. Let X be an inner product space, and let Y be a Hilbert space.
Suppose that mappings f, g : X → Y with a control function Φ: X ×X → [0,∞)
satisfy the following assumptions:∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉

∣∣ ≤ Φ(x, y), x, y ∈ X \ {0}, (2.10)

Lin f(X) = Lin g(X) = Y, (2.11)

and, with some c, d ∈ K \ {0},
∀x, y ∈ X lim

n→∞
|c|−nΦ(cnx, y) = lim

n→∞
|d|−nΦ(x, dny) = 0, (2.12)

∀x ∈ X lim inf
n→∞

∥∥c−nf(cnx)
∥∥ <∞ or Lin g(X) = Y, (2.13)

∀x ∈ X lim inf
n→∞

∥∥d−ng(dnx)
∥∥ <∞ or Lin f(X) = Y. (2.14)

Then there exist linear mappings f0, g0 : X → Y and mappings f1, g1 : X → Y
such that f = f0 + f1, g = g0 + g1, and〈

f0(x)
∣∣ g0(y)〉 = 〈x | y〉, x, y ∈ X, (2.15)∣∣〈f1(x) ∣∣ g1(y)〉∣∣ ≤ Φ(x, y), x, y ∈ X \ {0}, (2.16)

f1(X) ⊂ g0(X)⊥, g1(X) ⊂ f0(X)⊥. (2.17)

Proof. Fix x ∈ X, fix z ∈ Y , and fix ε > 0. Let Fn(x) = c−nf(cnx). First we
assume that, for all x ∈ X, lim infn→∞ ‖Fn(x)‖ = M < ∞. If M = 0, then there
exists a subsequence (Fnk

(x))k∈N of (Fn(x))n∈N which is convergent (to zero). Now
assume that M > 0. Then there exists a sequence (nk)k∈N such that∥∥Fnk

(x)
∥∥ ≤ 2M, k ∈ N.

Due to (2.11), there exist m ∈ N, α1, . . . , αm ∈ K \ {0} and y1, . . . , ym ∈ X such
that ∥∥∥z − m∑

i=1

αig(yi)
∥∥∥ < ε

8M
.

Let N ∈ N be such that, for all i ∈ {1, . . . ,m},

|c|−nkΦ(cnkx, yi) <
ε

4m|αi|
, k ≥ N.

Then for k, l ≥ N we have∣∣〈Fnk
(x)− Fnl

(x)
∣∣ z〉∣∣ ≤ ∣∣∣〈Fnk

(x)− Fnl
(x)

∣∣∣ m∑
i=1

αig(yi)
〉∣∣∣

+
∣∣∣〈Fnk

(x)− Fnl
(x)

∣∣∣ z − m∑
i=1

αig(yi)
〉∣∣∣
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≤
m∑
i=1

|αi|
(∣∣〈Fnk

(x)
∣∣ g(yi)〉− 〈x | yi〉

∣∣
+
∣∣〈x | yi〉 −

〈
Fnl

(x)
∣∣ g(yi)〉∣∣)

+
∥∥Fnk

(x)− Fnl
(x)

∥∥∥∥∥z − m∑
i=1

αig(yi)
∥∥∥

≤
m∑
i=1

|αi|
(
|c−nk |Φ(cnkx, yi) + |c−nl |Φ(cnlx, yi)

)
+
(∥∥Fnk

(x)
∥∥+

∥∥Fnl
(x)

∥∥)∥∥∥z − m∑
i=1

αig(yi)
∥∥∥

<

m∑
i=1

|αi|
2ε

4m|αi|
+ 4M

ε

8M
= ε.

Therefore, (Fnk
(x))k∈N is weakly Cauchy and hence a weakly convergent sequence.

Now, assume that Lin g(X) = Y . Then there existm ∈ N, α1, . . . , αm ∈ K\{0},
y1, . . . , ym ∈ X such that z =

∑m
i=1 αig(yi). Let N ∈ N be such that, for all

i ∈ {1, . . . ,m},
|c|−nΦ(cnx, yi) <

ε

2m|αi|
, n ≥ N.

Then for k, l ≥ N we have∣∣〈Fk(x)− Fl(x)
∣∣ z〉∣∣ ≤ ∣∣∣〈Fk(x)− Fl(x)

∣∣∣ m∑
i=1

αig(yi)
〉∣∣∣

≤
m∑
i=1

|αi|
(∣∣〈Fk(x)

∣∣ g(yi)〉− 〈x | yi〉
∣∣

+
∣∣〈x | yi〉 −

〈
Fl(x)

∣∣ g(yi)〉∣∣)
≤

m∑
i=1

|αi|
(
|c|−kΦ(ckx, yi) + |c|−lΦ(clx, yi)

)
<

m∑
i=1

|αi|
2ε

2m|αi|
= ε,

which, as above, shows weak convergence of (Fn(x))n∈N.
Thus, in both cases of (2.13), there exists a weakly convergent subsequence

(Fnk
(x))k∈N of (Fn(x))n∈N. We denote its weak limit by f0(x).

Observe that, by (2.12), for an arbitrary y ∈ X,∣∣〈Fnk
(x)

∣∣ g(y)〉− 〈x | y〉
∣∣ ≤ |c|−nkΦ(cnkx, y) → 0, for k → ∞,

and hence 〈
f0(x)

∣∣ g(y)〉 = lim
k→∞

〈
Fnk

(x)
∣∣ g(y)〉 = 〈x | y〉, x, y ∈ X.

Property (2.11) yields g(X)⊥ = {0}, and hence by Theorem 1.1, f0 is linear.
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Similarly, for Gn(x) = d−ng(dnx), x ∈ X, there exists a linear mapping
g0 : X → Y such that, for every x ∈ X, g0(x) is a weak limit of some subse-
quence of the sequence (Gn(x))n∈N and〈

f(x)
∣∣ g0(y)〉 = 〈x | y〉, x, y ∈ X.

The above property also gives〈
Fnk

(x)
∣∣ g0(y)〉 = 〈x | y〉, x, y ∈ X,

and, finally,〈
f0(x)

∣∣ g0(y)〉 = lim
k→∞

〈
Fnk

(x)
∣∣ g0(y)〉 = 〈x | y〉, x, y ∈ X.

It is easy to observe that, for f1 := f − f0, g1 := g − g0, we have〈
f1(x)

∣∣ g0(y)〉 = 〈
f(x)− f0(x)

∣∣ g0(y)〉 = 〈x | y〉 − 〈x | y〉 = 0, x, y ∈ X,〈
f0(x)

∣∣ g1(y)〉 = 〈
f0(x)

∣∣ g(y)− g0(y)
〉
= 〈x | y〉 − 〈x | y〉 = 0, x, y ∈ X,

which shows (2.17). To show (2.16), notice that∣∣〈f1(x) ∣∣ g1(y)〉∣∣ = ∣∣〈f(x)− f0(x)
∣∣ g(y)− g0(y)

〉∣∣
=

∣∣〈f(x) ∣∣ g(y)〉− 〈
f(x)

∣∣ g0(y)〉
−

〈
f0(x)

∣∣ g(y)〉+ 〈
f0(x)

∣∣ g0(y)〉∣∣
=

∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉
∣∣ ≤ Φ(x, y). �

Remark 2.11. Notice that, in view of Lemma 2.7, the assumption (2.11) can be
omitted without loss of generality. The same concerns the subsequent results.

Theorem 2.12. Let X be an inner product space, and let Y be a Hilbert space.
Let f, g : X → Y be functions such that (2.11) holds and∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉

∣∣ ≤ ϕ(x)ψ(y), x, y ∈ X \ {0}, (2.18)

given ϕ, ψ : X → [0,∞). Assume that there exist c, d ∈ K \ {0} such that

lim
n→∞

|c|−nϕ(cnx) = lim
n→∞

|d|−nψ(dnx) = 0, ∀x ∈ X,

lim inf
n→∞

∥∥c−nf(cnx)
∥∥ <∞, ∀x ∈ X or Lin g(X) = Y,

lim inf
n→∞

∥∥d−ng(dnx)
∥∥ <∞, ∀x ∈ X or Lin f(X) = Y.

Moreover, assume that there exists M > 0 such that∥∥f(x)− c−nf(cnx)
∥∥ ≤Mϕ(x), x ∈ X,n ∈ N,

or ∥∥g(x)− d−ng(dnx)
∥∥ ≤Mψ(x), x ∈ X,n ∈ N.

Then there exist mappings F,G : X → Y such that〈
F (x)

∣∣ G(y)〉 = 〈x | y〉, x, y ∈ X,∥∥f(x)− F (x)
∥∥ ≤Mϕ(x), x ∈ X,∥∥g(x)−G(x)
∥∥ ≤Mψ(x), x ∈ X.



838 J. CHMIELIŃSKI, R.  LUKASIK, and P. WÓJCIK

Proof. The proof relies on Theorem 2.10 and Lemma 2.8. Notice that with Φ(x,
y) := ϕ(x)ψ(y), x, y ∈ X, all the assumptions of Theorem 2.10 are satisfied, and
hence there exist suitable mappings f0, g0, f1, g1. Notice that f1, g1 satisfy the
assumptions of Lemma 2.8 with α(x) = Mϕ(x) and β(x) = Mψ(x), x ∈ X.
(It follows, in particular, from the definition of f0, g0.) Therefore, there exist
mappings f2, g2 such that conditions (2.7)–(2.9) are satisfied. Now, taking F =
f0 + f2, G = g0 + g2, and using, in particular, the fact that f0(X) ⊥ g2(X),
f2(X) ⊥ g0(X), f2(X) ⊥ g2(X), and 〈f0(x) | g0(y)〉 = 〈x | y〉, x, y ∈ X, we get
the assertion. �

The following result has a simple, direct proof. However, it can also be imme-
diately derived from Theorem 2.12.

Corollary 2.13. Let X be an inner product space, and let Y be a Hilbert space.
Let f, g : X → Y be functions such that (2.11) holds and∣∣〈f(x) ∣∣ g(y)〉− 〈x | y〉

∣∣ ≤ ϕ(x)ψ(y), x, y ∈ X \ {0},

with ϕ, ψ : X → [0,∞). Assume that there exist c, d ∈ K \ {0} such that f is
c-homogeneous and g is d-homogeneous (f(cx) = cf(x), g(dx) = dg(x), x ∈ X).
Moreover, assume that

lim
n→∞

|c|−nϕ(cnx) = lim
n→∞

|d|−nψ(dnx) = 0, ∀x ∈ X.

Then (f, g) satisfies the orthogonality equation (1.2).

Proof. The assumptions of Theorem 2.12 are satisfied with an arbitrary M > 0.
Hence it follows that f = F , g = G. �

3. Stability of the orthogonality-preserving property with two
unknown functions

3.1. Approximate orthogonality-preserving property. For inner product
spaces X, Y and one linear mapping f : X → Y the approximate orthogonality-
preserving property

x ⊥ y ⇒ fx ⊥ε fy, ∀x, y ∈ X, (3.1)

was introduced and examined in [4]. Here the approximate orthogonality relation
is defined (for ε ∈ [0, 1)) by

u ⊥ε v ⇔
∣∣〈u | v〉

∣∣ ≤ ε‖u‖‖v‖.

The stability of the orthogonality-preserving property was proved in [5] for the
finite-dimensional case and in [16] for the general case. The results have been
generalized in various ways, in particular, in [1], [3], [9], [11], [14], [18], [19],
and [20].

Now, we will concentrate our investigations on the following condition, which
we call the approximate orthogonality-preserving property for two linear mappings
f, g : X → Y . We assume that, for some ε ∈ [0, 1),

x ⊥ y ⇒ fx ⊥ε gy, ∀x, y ∈ X. (3.2)
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Lemma 3.1. Suppose that X, Y are inner product spaces and that f, g : X → Y
are linear mappings. Then the property (3.2) is equivalent to∣∣∣〈fx | gy〉− 〈fy | gy〉

‖y‖2
〈x | y〉

∣∣∣ ≤ ε
∥∥∥fx− 〈x | y〉

‖y‖2
fy

∥∥∥‖gy‖, x, y ∈ X, y 6= 0. (3.3)

Proof. Assume (3.2), and fix two vectors x, y ∈ X, y 6= 0. Notice that x− 〈x|y〉
‖y‖2 y ⊥

y, and hence f(x− 〈x|y〉
‖y‖2 y) ⊥

ε gy and (3.3) follows. The reverse is clear. �

Proposition 3.2. Suppose that X, Y are Hilbert spaces and that f, g : X → Y
are linear mappings satisfying (3.2). If g(X) = Y , then f is continuous and
ker g ⊂ ker f .

Proof. We apply the closed graph theorem. Let xn → 0, and let fxn → z. It
follows from (3.3) that∣∣∣〈fxn | gy〉 − 〈fy | gy〉

‖y‖2
〈xn | y〉

∣∣∣ ≤ ε
∥∥∥fxn − 〈xn | y〉

‖y‖2
fy

∥∥∥‖gy‖, y ∈ X \ {0}.

Letting n→ ∞, the above inequality becomes∣∣〈z | gy〉∣∣ ≤ ε‖z‖‖gy‖, y ∈ X.

Since g(X) = Y , it means that z ⊥ε Y , and hence z = 0. Thus the graph of f
is closed and f must be continuous. We also have x ⊥ y ⇒ gx ⊥ε fy; hence,
applying again (3.3), we get∣∣∣〈gx | fy〉 − 〈gy | fy〉

‖y‖2
〈x | y〉

∣∣∣ ≤ ε
∥∥∥gx− 〈x | y〉

‖y‖2
gy

∥∥∥‖fy‖, x, y ∈ X, y 6= 0.

This for y0 ∈ ker g becomes∣∣〈gx | fy0〉
∣∣ ≤ ε‖gx‖‖fy0‖, x ∈ X,

which yields fy0 ⊥ε Y , and hence fy0 = 0. Thus ker g ⊂ ker f . �

Corollary 3.3. Suppose that X, Y are Hilbert spaces and that f, g : X → Y
are linear mappings satisfying (3.2). If f(X) = g(X) = Y , then f and g are
continuous and ker f = ker g.

3.2. Stability of the orthogonality-preserving property. Let us start with
the following observation.

Proposition 3.4. Let X, Y be inner product spaces, and let f, g, f0, g0 : X → Y
be linear mappings. Assume that f0, g0 satisfy (1.4); that is, for each x, y ∈ X,

x ⊥ y ⇒ f0x ⊥ g0y.

Suppose that f , g are sufficiently close to f0, g0, respectively; namely, that, for
an ε ∈ [0, 1] and all x, y ∈ X,

‖fx− f0x‖ ≤ ε

3
‖fx‖ and ‖gy − g0y‖ ≤ ε

3
‖gy‖. (3.4)

Then the pair (f, g) satisfies (3.2).
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Proof. According to Theorem 1.2, for some γ ∈ K, we have

〈f0x | g0y〉 = γ〈x | y〉, x, y ∈ X.

From inequalities (3.4) we get

‖f0x‖ ≤
(
1 +

ε

3

)
‖fx‖, x ∈ X, and ‖g0y‖ ≤

(
1 +

ε

3

)
‖gy‖, y ∈ X.

For x, y ∈ X, we then have∣∣〈fx | gy〉 − γ〈x | y〉
∣∣ = ∣∣〈fx | gy〉 − 〈f0x | g0y〉

∣∣
=

∣∣〈fx− f0x | gy − g0y〉+ 〈fx− f0x | g0y〉
+ 〈f0x | gy − g0y〉

∣∣
≤ ‖fx− f0x‖‖gy − g0y‖+ ‖fx− f0x‖‖g0y‖

+ ‖f0x‖‖gy − g0y‖

≤ ε

3
(2 + ε)‖fx‖‖gy‖

≤ ε‖fx‖‖gy‖,

and (3.2) follows. �

Thus, roughly speaking, if f , g are close to mappings f0, g0 satisfying the
orthogonality-preserving property, then the pair (f, g) approximately preserves
orthogonality. It is our goal to answer a question of whether the reverse is true;
that is, whether for each pair (f, g) approximately preserving orthogonality there
exists a pair (f0, g0) which satisfies exactly the orthogonality-preserving property
and is close to (f, g).

We are going to present a counterpart to the characterization in Theorem 1.2.
We will need a simple lemma.

Lemma 3.5. Let X be an inner product space, x, y ∈ X, ‖x‖ = ‖y‖ = 1, λ ∈ K,
|λ| = 1. Then

‖x+ λy‖‖x− λy‖ ≤ 2.

Proof. We have

‖x+ λy‖2‖x− λy‖2 =
(
2 + 2Re〈x | λy〉

)(
2− 2Re〈x | λy〉

)
= 4

(
1−

(
Re〈x | λy〉

)2) ≤ 4. �

For linear mappings f, g : X → Y , we will consider the following assumption
concerning their joint boundedness:

x ⊥ y ⇒ ‖fx‖‖gy‖ ≤M‖x‖‖y‖, ∀x, y ∈ X, (3.5)

with some positive number M .
Obviously, if f and g are linear and bounded mappings, then the above con-

dition is satisfied with M = ‖f‖‖g‖. On the other hand, if X is a Hilbert space
and f , g are nonzero linear mappings, and (3.5) holds true, then f and g have
to be bounded. Indeed, let x0 /∈ ker f , and let X0 := Linx0. For an arbitrary

y ∈ X⊥
0 , we have ‖g(y)‖ ≤ M‖x0‖

‖fx0‖ ‖y‖; that is, g is bounded on X⊥
0 and obviously
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also on X0. Thus g is bounded on X = X0 ⊕X⊥
0 . Similarly, one can show that f

is bounded. The reason for considering (3.5) is that for some f , g, the constant
M appearing in (3.5) may be less than ‖f‖‖g‖.

Theorem 3.6. Suppose that X, Y are inner product spaces and that f, g : X → Y
are linear mappings satisfying (3.2) and (3.5). Then, for an arbitrary y0 ∈ X such
that ‖y0‖ = 1 and γ := 〈fy0 | gy0〉,∣∣〈fx | gy〉 − γ〈x | y〉

∣∣ ≤ 4Mε‖x‖‖y‖, x, y ∈ X. (3.6)

Moreover, ∣∣〈fx | gx〉 − γ‖x‖2
∣∣ ≤ 2Mε‖x‖2, x ∈ X. (3.7)

Proof. Fix arbitrary x, y ∈ X such that ‖x‖ = ‖y‖ = 1. Let λ = 1 if x ⊥ y and

λ = 〈x|y〉
|〈x|y〉| , otherwise. Then |λ| = 1, x+λy ⊥ x−λy. Thus f(x+λy) ⊥ε g(x−λy)

and f(x− λy) ⊥ε g(x+ λy). It follows from this, (3.5), and Lemma 3.5 that∣∣〈f(x+ λy)
∣∣ g(x− λy)

〉∣∣ ≤ ε
∥∥f(x+ λy)

∥∥∥∥g(x− λy)
∥∥

≤Mε‖x+ λy‖‖x− λy‖
≤ 2Mε.

Similarly, we have ∣∣〈f(x− λy)
∣∣ g(x+ λy)

〉∣∣ ≤ 2Mε.

Using the above estimations, it follows that∣∣〈fx | gx〉 − 〈fy | gy〉
∣∣ = ∣∣〈fx | gx〉 − 〈λfy | λgy〉

∣∣
=

|〈f(x+ λy) | g(x− λy)〉+ 〈f(x− λy) | g(x+ λy)〉|
2

≤ 2Mε+ 2Mε

2
= 2Mε.

Thus we have obtained

‖x‖ = ‖y‖ = 1 ⇒
∣∣〈fx | gx〉 − 〈fy | gy〉

∣∣ ≤ 2Mε.

Now, take x, y0 ∈ X such that x 6= 0 and ‖y0‖ = 1. We then have∣∣∣〈f( x

‖x‖

) ∣∣∣ g( x

‖x‖

)〉
− 〈fy0 | gy0〉

∣∣∣ ≤ 2Mε.

With γ := 〈fy0 | gy0〉, it yields∣∣〈fx | gx〉 − γ‖x‖2
∣∣ ≤ 2Mε‖x‖2,

and hence (3.7) is proved. Now fix x, y ∈ X, y 6= 0. Define α := − 〈x|y〉
‖y‖2 . Then

x+ αy ⊥ y and, consequently,∣∣〈fx | gy〉 − γ〈x | y〉
∣∣ = ∣∣〈f(x+ αy − αy)

∣∣ gy〉− γ〈x+ αy − αy | y〉
∣∣

=
∣∣〈f(x+ αy)

∣∣ gy〉− 〈
f(αy)

∣∣ gy〉+ γ〈αy | y〉
∣∣

≤ ε
∥∥f(x+ αy)

∥∥‖gy‖+ |α| · 2Mε‖y‖2

≤Mε‖x+ αy‖‖y‖+
∣∣〈x | y〉

∣∣ · 2Mε
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≤Mε
(
|α|‖y‖+ ‖x‖

)
‖y‖+ ‖x‖‖y‖ · 2Mε

= 4Mε‖x‖‖y‖.

If y = 0, then the desired inequality holds trivially. �

Remark 3.7. The definition of γ admits that its value can be equal to 0. However,
without loss of generality one may assume that γ 6= 0. Suppose that 〈fy0 | gy0〉 =
0 for all y0 such that ‖y0‖ = 1. This would imply that 〈fx | gx〉 = 0 for all x ∈ X.
But in such a case, inequality (3.6) is satisfied with any γ′ ∈ [0, 2Mε]. Indeed,

for any x, y ∈ X, y 6= 0, and α := − 〈x|y〉
‖y‖2 , we have x + αy ⊥ y and, similarly as

above,∣∣〈fx | gy〉 − γ′〈x | y〉
∣∣ = ∣∣〈f(x+ αy)

∣∣ gy〉− α〈fy | gy〉+ γ′〈αy | y〉
∣∣

=
∣∣〈f(x+ αy)

∣∣ gy〉+ γ′〈αy | y〉
∣∣

≤
∥∥f(x+ αy)

∥∥‖gy‖+ γ′|α|
∣∣〈y | y〉

∣∣
≤Mε‖x+ αy‖‖y‖+ γ′

∣∣〈x | y〉
∣∣

≤ 4Mε‖x‖‖y‖.

Now, let us consider a particular case where f , g are linear and bounded map-
pings on a complex Hilbert space. Then the constant 4 in (3.6) can be replaced
by 1 (which turns out to be the best approximation).

Theorem 3.8. Suppose that X is a complex Hilbert space and that f, g : X → X
are linear mappings satisfying (3.2) and (3.5). Then there exists a constant γ ∈ C
such that ∣∣〈fx | gy〉 − γ〈x | y〉

∣∣ ≤Mε‖x‖‖y‖, x, y ∈ X, (3.8)

and

‖g∗f − γId‖ = min
{
‖g∗f − λId‖ : λ ∈ C

}
.

Proof. Define ϕ : C → R, ϕ(λ) := ‖g∗f − λId‖. Since ϕ is a convex mapping and
lim|λ|→∞ ϕ(λ) = ∞, then ϕ attains its minimum; that is, there exists γ ∈ C such
that

‖g∗f − γId‖ = min
{
‖g∗f + λId‖ : λ ∈ C

}
.

It is known (see [1], [12]) that, for an arbitrary linear and bounded operator
A : X → X,

min
{
‖A+ λId‖ : λ ∈ C

}
= sup

{∣∣〈Ax | y〉
∣∣ : ‖x‖ = ‖y‖ = 1, x ⊥ y

}
.

Thus we have

‖g∗f − γId‖ = sup
{∣∣〈g∗fx | y〉

∣∣ : ‖x‖ = ‖y‖ = 1, x ⊥ y
}

= sup
{∣∣〈fx | gy〉

∣∣ : ‖x‖ = ‖y‖ = 1, x ⊥ y
}

≤ ε sup
{
‖fx‖‖gy‖ : ‖x‖ = ‖y‖ = 1, x ⊥ y

}
≤Mε sup

{
‖x‖‖y‖ : ‖x‖ = ‖y‖ = 1, x ⊥ y

}
=Mε.
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Now, for arbitrary x, y ∈ X, we get from the above estimation∣∣〈fx | gy〉 − γ〈x | y〉
∣∣ = ∣∣〈g∗fx− γx | y〉

∣∣ ≤ ‖g∗f − γId‖‖x‖‖y‖
≤Mε‖x‖‖y‖. �

Below we give a direct application of Theorem 3.8 to the case f = g.

Corollary 3.9. Let X be a Hilbert space over C, and let f : X → X be a nonzero
linear mapping satisfying (3.1). Then f is continuous and there exists γ ∈ C such
that ∣∣〈fx | fy〉 − γ〈x | y〉

∣∣ ≤ ε‖f‖2‖x‖‖y‖, x, y ∈ X. (3.9)

Moreover, (1− ε)‖f‖2 ≤ |γ|.

Proof. It follows from [4, Theorem 2] that f is continuous. Applying Theorem 3.8
for f = g, one gets (3.9). For y = x, we also get |‖fx‖2 − γ‖x‖2| ≤ ε‖f‖2‖x‖2,
which yields ‖fx‖2 ≤ (|γ|+ ε‖f‖2)‖x‖2. Passing to the supremum over ‖x‖ = 1,
we get ‖f‖2 ≤ |γ|+ ε‖f‖2. �

The inequality (3.9) improves the respective ones given in [4] and [16].
Finally, we present a result concerning the stability of the orthogonality-

preserving property for two linear mappings.

Theorem 3.10. Let X, Y be Hilbert spaces, and let f, g : X → Y be linear
mappings satisfying (3.2) and (3.5). Moreover, assume that g is invertible. Then
there exists a linear mapping f0 : X → Y such that

x ⊥ y ⇒ f0x ⊥ gy, x, y ∈ X, (3.10)

and ‖f − f0‖ ≤ 4Mε‖g−1‖.

Proof. It follows from Theorem 3.6 that, with some γ ∈ K,∣∣〈fx | gy〉 − γ〈x | y〉
∣∣ ≤ 4Mε‖x‖‖y‖,

and we may assume that γ 6= 0 (see Remark 3.7). Let f1 :=
1
γ
f . Then we have

∣∣〈f1x | gy〉 − 〈x | y〉
∣∣ ≤ 4Mε

|γ|
‖x‖‖y‖,

and from Theorem 2.6 there exists f2 : X → Y such that

〈f2x | gy〉 = 〈x | y〉, x, y ∈ X,

and

‖f2 − f1‖ ≤ 4Mε

|γ|
‖g−1‖.

Now, take f0 := γf2 to get the assertion. �
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3.3. Applications. Theorems 3.6 and 3.8 yield the following result.

Theorem 3.11. Let X be an inner product space, and let f : X → X be a linear
and bounded mapping satisfying

x ⊥ y ⇒ fx ⊥ε y, ∀x, y ∈ X.

Then there exists γ ∈ K such that

‖fx− γx‖ ≤ 4ε‖f‖‖x‖, x ∈ X.

If X is a complex Hilbert space, then the above estimation can be strengthened to

‖fx− γx‖ ≤ ε‖f‖‖x‖, x ∈ X.

Proof. For the general case, we apply Theorem 3.6 with g = Id and M = ‖f‖.
For some γ ∈ K it follows that∣∣〈fx− γx | y〉

∣∣ ≤ 4ε‖f‖‖x‖‖y‖, x, y ∈ X.

For y = fx− γx, we get

‖fx− γx‖2 ≤ 4ε‖f‖‖x‖‖fx− γx‖,

and hence either ‖fx − γx‖ = 0 or ‖fx − γx‖ ≤ 4ε‖f‖‖x‖ and the assertion
follows. If X is a complex Hilbert space, then we use Theorem 3.8 and replace
the constant 4 by 1. �

In particular, for ε = 0, we get that a linear and bounded mapping f : X → X
satisfies

x ⊥ y ⇒ fx ⊥ y, ∀x, y ∈ X,

if and only if fx = γx, x ∈ X for some γ ∈ K. This assertion, however, can be
obtained without the assumption of boundedness of f (see [6, Corollary 3.6]).

The following result can be considered as a generalization of Theorem 3.11. We
assume here that X is a Hilbert space.

Theorem 3.12. Let X be a Hilbert space, and let T, U : X → X be linear and
bounded operators on X. Suppose that U is a surjective isometry and that (3.2)
holds true; that is,

x ⊥ y ⇒ Tx ⊥ε Uy, ∀x, y ∈ X. (3.11)

Then there exists γ ∈ K such that

‖T − γU‖ ≤ 4ε‖T‖. (3.12)

Moreover, if ε < 1
4
, then γ 6= 0.

In the case when X is a complex Hilbert space, there exists γ ∈ C such that

‖T − γU‖ ≤ ε‖T‖, (3.13)

and if ε < 1, then γ 6= 0.
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Proof. The condition (3.5) is satisfied for f = T and g = U with M = ‖T‖, and
hence by Theorem 3.6 we get∣∣〈Tx | Uy〉 − γ〈x | y〉

∣∣ ≤ 4ε‖T‖‖x‖‖y‖, x, y ∈ X.

Next we get, for x, y ∈ X,∣∣〈U∗Tx− γx | y〉
∣∣ ≤ 4ε‖T‖‖x‖‖y‖.

Putting U∗Tx− γx in place of y, we get, for an arbitrary x ∈ X,

‖U∗Tx− γx‖2 ≤ 4ε‖T‖‖x‖‖U∗Tx− γx‖.

Therefore, ‖U∗Tx−γx‖ ≤ 4ε‖T‖‖x‖ for x ∈ X, and hence ‖U∗T−γId‖ ≤ 4ε‖T‖.
Finally,

‖T − γU‖ = ‖U∗T − γId‖ ≤ 4ε‖T‖.
In a similar way, by Theorem 3.8, we obtain ‖T − γU‖ ≤ ε‖T‖ for K = C. �

In some sense, the reverse result is also true.

Theorem 3.13. Let X be a Hilbert space, and let T, U be linear and bounded
operators on X. Assume that U is an isometry (not necessarily surjective) and
that there exists γ 6= 0 such that

‖Tx− γUx‖ ≤ ε‖Tx‖, x ∈ X.

Then the operators T, U satisfy (3.11).

Proof. For x, z ∈ X, we have∣∣〈Tx | z〉 − 〈γUx | z〉
∣∣ = ∣∣〈Tx− γUx | z〉

∣∣ ≤ ‖Tx− γUx‖‖z‖ ≤ ε‖Tx‖‖z‖.

Putting Uy (y ∈ X) in place of z, we obtain∣∣〈Tx | Uy〉 − γ〈x | y〉
∣∣ = ∣∣〈Tx | Uy〉 − γ〈Ux | Uy〉

∣∣ ≤ ε‖Tx‖‖Uy‖, x, y ∈ X,

and the assertion follows. �

Let X be a Hilbert space over C. Let U, T ∈ B(X) be isometries. Suppose that
the first one is surjective, whereas the second one is not. It is clear that both
mappings preserve orthogonality; that is,

x ⊥ y ⇒ Ux ⊥ Uy, ∀x, y ∈ X, and x ⊥ y ⇒ Tx ⊥ Ty, ∀x, y ∈ X.

However, the pair (T, U) cannot, even approximately, preserve orthogonality (for
any ε ∈ [0, 1)).

Theorem 3.14. Let X be a complex Hilbert space. Let U, T ∈ B(X) be isometries.
Suppose that U is unitary, and assume that T is not surjective. Then there is no
ε ∈ [0, 1) such that the condition

x ⊥ y ⇒ Tx ⊥ε Uy, ∀x, y ∈ X

holds true.
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Proof. Assume, contrary to our claims, that for some ε ∈ [0, 1) there is x ⊥ y ⇒
Tx ⊥ε Uy. Applying Theorem 3.8, we get∣∣〈Tx | Uy〉 − γ〈x | y〉

∣∣ ≤ ε‖x‖‖y‖, x, y ∈ X.

Putting U∗z in place of y, we get∣∣〈Tx | UU∗z〉 − γ〈x | U∗z〉
∣∣ ≤ ε‖x‖‖U∗z‖, x, z ∈ X,

and hence (since UU∗ = Id = U∗U and ‖U∗z‖ = ‖z‖) we have∣∣〈Tx | z〉 − γ〈Ux | z〉
∣∣ ≤ ε‖x‖‖z‖

and ∣∣〈Tx− γUx | z〉
∣∣ ≤ ε‖x‖‖z‖.

Passing to the supremum over ‖x‖ ≤ 1, ‖z‖ ≤ 1, we obtain ‖T − γU‖ ≤ ε. It is
easy to notice that T ∗T = Id (but TT ∗ 6= Id) and that ‖T ∗‖ = 1. Therefore, we
have

‖Id− γT ∗U‖ = ‖T ∗T − γT ∗U‖ =
∥∥T ∗(T − γU)

∥∥ ≤ ‖T ∗‖‖T − γU‖ ≤ ε < 1.

It follows that ‖Id− γT ∗U‖ < 1, and hence γT ∗U is invertible; hence, T ∗ is also
invertible, and finally T is invertible, which is a contradiction. �

Corollary 3.15. If T, U ∈ B(X) are isometries such that T (X) $ U(X), then
there is no ε ∈ [0, 1) such that the condition

x ⊥ y ⇒ Tx ⊥ε Uy, x, y ∈ X

holds.

Proof. There is a linear surjective isometry A : U(X) → X. It is enough to con-
sider AT and AU . �
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