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Abstract. Let A and B be Banach algebras, let θ : A → B be a continuous
Banach algebra homomorphism, and let I be a closed ideal in B. Then the
l1-direct sum of A and I with a special product becomes a Banach algebra,
denoted by A ./θ I, which we call the generalized semidirect product of A
and I. In this article, among other things, we first characterize derivations on
A ./θ I and then we compute the first cohomology group of A ./θ I when
the first cohomology groups of A with coefficients in A and I are trivial. As
an application we characterize the first cohomology group of second duals of
dual Banach algebras. Then we provide a nice characterization of the first
cohomology group of A ./id A. Furthermore, we calculate the first cohomology
group of some concrete Banach algebras related to locally compact groups.

1. Introduction and preliminaries

Let A be a Banach algebra, and let X be a Banach A-bimodule. A derivation
from A into X is a bounded linear map satisfying

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A).

For each x ∈ X, we denote by adx the derivation D(a) = a · x − x · a for all
a ∈ A, which is called an inner derivation. We denote by Z1(A,X) the space of
all derivations from A into X and by B1(A,X) the space of all inner derivations
from A into X. The first (Hochschild) cohomology group of A with coefficients in
X, denoted by H1(A,X), is the quotient space Z1(A,X)/B1(A,X). This group
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gives a considerable information about the structure of A. Let n ∈ N ∪ {0}.
A Banach algebra A is called n-weakly amenable (weakly amenable in case n = 1)
if H1(A,A(n)) = 0, where A(n) is the nth dual space of A (A(0) = A) which is
canonically an A-bimodule (see [5]).

Although the first cohomology group for Banach algebras has been studied
extensively for many years, there are still few techniques available for explicitly
calculating the various first cohomology groups. Generally, the best that one
might hope for is to be able to determine whether or not a particular cohomology
group is trivial. The triviality of the first cohomology group of A with coefficients
in A for some classes of Banach algebras are already known. For example, if A
is a von Neumann algebra, a commutative C∗-algebra, a W ∗-algebra, or a simple
unital C∗-algebra (i.e., A has no proper closed two-sided ideal), thenH1(A,A) = 0
(see [14]). I. M. Singer and J. Wermer [15] have shown that if A is a semisimple
commutative Banach algebra, then H1(A,A) = 0. For a locally compact group
G, V. Losert [12] showed that H1(M(G),M(G)) = 0, where M(G) denotes the
measure algebra of G. It is known that if A is commutative and weakly amenable
and X is a symmetric Banach A-bimodule (a · x = x · a for each a ∈ A and
x ∈ X), then H1(A,X) = 0.

In [8], B. E. Forrest and L. W. Marcoux calculated the first cohomology group
of triangular Banach algebras. Analogously, in a joint work with A. R. Medghalchi
[13], we calculated the first cohomology group of module extension Banach al-
gebras. Motivated by these earlier investigations, in this article, we study the
first cohomology group of those Banach algebras that have a semidirect product-
like structure, which we call the generalized semidirect product construction and
denote by A ./θ I.

The organization of this article is as follows. In Section 2, we introduce the
Banach algebra Anθ I and give some examples of this construction. In Section 3,
we first characterize derivations on A ./θ I and then we compute the first coho-
mology group of A ./θ I when the first cohomology group of A with coefficients
in A and I vanish. As an application, we provide a characterization of the first
cohomology group of second duals of dual Banach algebras and that of φ-Lau
products of Banach algebras. We also show that H1(M(G), L1(G)) = 0 for each
locally compact group G. Section 4 is devoted to the characterization of the first
cohomology group of the special case A ./id A.

2. The Banach algebra A ./θ I

Let A and B be Banach algebras; let θ : A → B be a continuous Banach
algebra homomorphism, where, without loss of generality, we can assume that
‖θ‖ ≤ 1; and let I be a closed ideal in B. Then the subset

C =
{(

a, θ(a) + i
)
: a ∈ A, i ∈ I

}
of A × B is a Banach algebra under the pointwise product and the l1-norm.
Algebraists call C the amalgamated algebra of A with B along I with respect to θ
(see, e.g., [7] and references therein). It can be easily seen that the algebra C is
also a Banach algebra under the norm ‖(a, θ(a) + i)‖ = ‖a‖+ ‖i‖. For all a ∈ A
and i ∈ I, we have
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)∥∥

1
= ‖a‖+

∥∥θ(a) + i
∥∥

≤ ‖a‖+ ‖θ‖‖a‖+ ‖i‖
≤

(
‖θ‖+ 1

)(
‖a‖+ ‖i‖

)
=

(
‖θ‖+ 1

)∥∥(a, θ(a) + i
)∥∥.

So, by the open mapping theorem, two norms ‖ · ‖1 and ‖ · ‖ are equivalent on C.
We also consider the Banach algebra D = {(a, i) : a ∈ A, i ∈ I}, the l1-direct

sum of A and I, with the following product formula:

(a, i) · (a′, i′) =
(
aa′, θ(a)i′ + iθ(a′) + ii′

)
.

Now the mapping ϕ : (C, ‖ · ‖) → D by ϕ((a, θ(a) + i)) = (a, i) is an isometric
isomorphism of Banach algebras. Therefore, D and C are the same objects in
the category of Banach algebras. We are going to work on the Banach algebra D
rather than C and denote it by A ./θ I. Since the semidirect product of Banach
algebras has the same structure (see Example 2.1 below), we call A ./θ I the
generalized semidirect product of A and B along I with respect to θ. It can be
easily seen that A ∼= A× {0} is a closed subalgebra of A ./θ I, that I ∼= {0} × I

is a closed ideal of it, and that A./θI
I

∼= A. Also, A ./θ I is commutative if and
only if A and θ(A) + I are commutative.

The Banach algebra A ./θ B has been considered and studied by some authors
(see, e.g., [1], [3], [10]). This class does not contain any concrete Banach algebra to
our knowledge. So it seems that the Banach algebra A ./θ B is not so interesting.
On the other hand, there are many classes of concrete Banach algebras having a
generalized semidirect product structure, where I is a proper ideal of B.

Example 2.1.

(i) If θ = 0, then A ./0 I is nothing other than the Cartesian product of A
and I.

(ii) Let A be a nonunital Banach algebra. Then A# = C⊕A, the unitization
of A, is the generalized semidirect product of C with A# along A with
respect to the homomorphism θ : C → A# defined by θ(λ) = (λ, 0).

(iii) Let A be a Banach algebra, and let X be a Banach A-bimodule. The
module extension Banach algebra corresponding to A and X, denoted by
S = A ⊕X, is the l1-direct sum of A and X equipped with the product
formula (a, x) · (a′, x′) = (aa′, ax′ + xa′) for a, a′ ∈ A and x, x′ ∈ X. Then
S is the generalized semidirect product of A with S along X with respect
to the injection θ : A → S defined by θ(a) = (a, 0). We remark that the
class of module extension Banach algebras includes the class of triangular
Banach algebras.

(iv) Let A be a Banach algebra, and let φ be a nonzero character on A. Then
A ./φ C is the Banach algebra with the underlying Banach space A⊕1 C
and the product

(a, λ) · (a′, λ′) =
(
aa′, φ(a)λ′ + φ(a′)λ+ λλ′).

Note that here we have assumed that I = B = C and θ = φ.
(v) Let A and B be Banach algebras, and let φ be a nonzero character on A.

Then A ./θ B, the generalized semidirect product of A with B# along
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B with respect to the homomorphism θ : A → B# defined by θ(a) =
(φ(a), 0), is a Banach algebra with the underlying Banach space A ⊕1 B
and the following product formula:

(a, b) · (a′, b′) =
(
aa′, φ(a)b′ + φ(a′)b+ bb′

)
.

This is the so-called φ-Lau product of Banach algebras A and B and is
denoted by A⊕φB (see [16]). This class includes the class of Lau algebras
introduced in [11].

(vi) Another interesting example is the semidirect product of two Banach al-
gebras. Indeed, let B be a Banach algebra, let A be a closed subalgebra
of B, and let I be a closed ideal in B. If ι : A → B is the inclusion map,
then the Banach algebra C = A ./ι I is An I, the semidirect product of
A and I (see [6, p. 8]). The special semidirect product C = B n I has
been interesting for algebraists and is studied by many authors. Here we
give some important examples of Banach algebras that can be recognized
as semidirect products.
(a) Let A be a dual Banach algebra with predual A∗, and consider A∗∗,

the second dual of A equipped with the first (or second) Arens prod-
uct. It is shown in [6, Theorem 2.15] that A∗∗ = A n A⊥

∗ , where
A⊥

∗ = {F ∈ A∗∗ : F = 0 on A∗}. We remark that every von Neu-
mann algebra, the measure algebra M(G), and the Fourier–Stieltjes
algebra B(G) of a locally compact group G, as well as the second
dual of an Arens regular Banach algebra, are examples of dual Ba-
nach algebras.

(b) The measure algebra of a locally compact group G, M(G), has a
semidirect product structure. In fact, we haveM(G) = l1(G)nMc(G),
where l1(G) and Mc(G) denote the space of discrete measures and
continuous measures in M(G), respectively.

(c) The Banach algebra A ./id A is nothing other than An A.

3. Derivations on A ./θ I

In this section, we first characterize derivations on A ./θ I and then give a
characterization of H1(A ./θ I, A ./θ I).

If A is a Banach algebra and X and Y are Banach A-bimodules, then we denote
by HomA(X,Y ) the space of continuous A-bimodule homomorphisms from X
into Y .

Proposition 3.1. Let the only A-bimodule homomorphism T : I → A vanishing
on I2 be T = 0, where I is an A-bimodule via θ. Then D ∈ Z1(A ./θ I, A ./θ I)
if and only if

D(a, i) =
(
DA(a), DA,I(a) +DI(i)

)
(a ∈ A, i ∈ I),

where

(i) DA ∈ Z1(A,A),
(ii) DI ∈ Z1(I, I),
(iii) DA,I ∈ Z1(A, I),
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(iv) DI(iθ(a))−DI(i)θ(a) = iθ(DA(a)) + iDA,I(a) for all a ∈ A and i ∈ I,
(v) DI(θ(a)i)− θ(a)DI(i) = θ(DA(a))i+DA,I(a)i for all a ∈ A and i ∈ I.

Moreover, D = ad(a,i) if and only if DA = ada, DA,I = adi, and DI = adi+θ(a).

Proof. Let ιA : A → A ./θ I and ιI : I → A ./θ I be canonical injections, let
pA : A ./θ I → A and pI : A ./θ I → I be canonical projections, and set

DA = pA ◦D ◦ ιA, DI = pI ◦D ◦ ιI ,
DA,I = pA ◦D ◦ ιI , and DA,I = pI ◦D ◦ ιA.

Then

D(a, i) =
(
DA(a) +DI,A(i), DA,I(a) +DI(i)

)
(a ∈ A, i ∈ I).

Let (a, i), (a′, i′) ∈ A ./θ I. Then

D
(
(a, i) · (a′, i′)

)
= D

(
aa′, θ(a)i′ + iθ(a′) + ii′

)
=

(
DA(aa

′) +DI,A

(
θ(a)i′ + iθ(a′) + ii′

)
,

DA,I(aa
′) +DI

(
θ(a)i′ + iθ(a′) + ii′

))
.

On the other hand,

(a, i) ·D(a′, i′) +D(a, i) · (a′, i′)
= (a, i) ·

(
DA(a

′) +DI,A(i
′), DA,I(a

′) +DI(i
′)
)

+
(
DA(a) +DI,A(i), DA,I(a) +DI(i)

)
· (a′, i′)

=
(
aDA(a

′) + aDI,A(i
′), iθ

(
DA(a

′)
)
+ iθ

(
DI,A(i

′)
)

+ θ(a)DA,I(a
′) + θ(a)DI(i

′) + iDA,I(a
′) + iDI(i

′)
)

+
(
DA(a)a

′ +DI,A(i)a
′, θ

(
DA(a)

)
i′ + θ

(
DI,A(i)

)
i′

+DA,I(a)θ(a
′) +DI(i)θ(a

′) +DA,I(a)i
′ +DI(i)i

′).
Putting i = i′ = 0, one obtains

DA(aa
′) = aDA(a

′) +DA(a)a
′

and

DA,I(aa
′) = θ(a)DA,I(a

′) +DA,I(a)θ(a
′) = a ·DA,I(a

′) +DA,I(a) · a′.

Therefore, DA ∈ Z1(A,A) and DA,I ∈ Z1(A, I).
By letting a = 0 and i′ = 0 (a′ = 0 and i = 0), we find that DI,A ∈ HomA(I, A).
By setting a = a′ = 0 we getDI,A(ii

′) = 0, and so, by the assumption,DI,A = 0.
This result, along with a = a′ = 0, gives

DI(ii
′) = iDI(i

′) +DI(i)i
′;

that is, DI ∈ Z1(I, I). Now put a = 0 and i′ = 0. Then

DI(i · a′) = DI

(
iθ(a′)

)
= DI(i)θ(a

′) + iθ
(
DA(a

′)
)
+ iDA,I(a

′).

Similarly, by substituting a′ = 0 and i = 0, we obtain

DI(a · i′) = DI

(
θ(a)i′

)
= θ(a)DI(i

′) + θ
(
DA(a)

)
i′ +DA,I(a)i

′.
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If D = ad(a,i), for some a ∈ A and i ∈ I, then

D(a′, i′) = ad(a,i)(a
′, i′) = (a′, i′) · (a, i)− (a, i) · (a′, i′)

=
(
a′a, θ(a′)i+ i′θ(a) + i′i

)
−

(
aa′, θ(a)i′ + iθ(a′) + ii′

)
=

(
a′a− aa′,

(
θ(a′)i− iθ(a′)

)
+
(
i′
(
i+ θ(a)

)
−

(
i+ θ(a)

)
i′
))

=
(
ada(a

′), adi

(
θ(a′)

)
+ adi+θ(a)(i

′)
)
.

Therefore, DA = ada, DA,I = adi, and DI = adi+θ(a). �

Proposition 3.2. Let T : I → I be a derivation that is also an A-bimodule
homomorphism. Then D : A ./θ I → A ./θ I defined by D(a, i) = (0, T (i))
is a derivation. Moreover, D is inner if and only if there exist a ∈ Z(A) and
i ∈ Zθ(A)(I) such that T = adi+θ(a), where Z(A) is the algebraic center of A and
Zθ(A)(I) = {i ∈ I : θ(a)i = iθ(a) for all a ∈ A}.

Proof. This is a straightforward verification. �

We write CA(I, I) for the subspace {T : I → I : T = adi+θ(a), a ∈ Z(A), i ∈
Zθ(A)(I)} of Z1(I, I) ∩ HomA(I, I). Note that if θ(A) + I is commutative, then
CA(I, I) = {0}.

Theorem 3.3. Let H1(A,A) = H1(A, I) = 0, and let the only A-bimodule homo-
morphism T : I → A vanishing on I2 be T = 0. Then, as vector spaces, we have

H1(A ./θ I, A ./θ I) ∼=
Z1(I, I) ∩ HomA(I, I)

CA(I, I)
.

Proof. Define the mapping η : Z1(I, I) ∩ HomA(I, I) → H1(A ./θ I, A ./θ I) by
η(T ) = [DT ], where DT ∈ Z1(A ./θ I, A ./θ I) is defined by DT (a, i) = (0, T (i))
and [DT ] denotes the equivalence class of DT in H1(A ./θ I, A ./θ I). By Propo-
sition 3.2, η is well defined and clearly it is linear. To show that η is surjective,
let D be a derivation on A ./θ I. Then, by Proposition 3.1, D is of the form

D(a, i) =
(
DA(a), DA,I(a) +DI(i)

)
(a ∈ A, i ∈ I).

Since H1(A,A) = H1(A, I) = 0, there exist b ∈ A and j ∈ I such that DA = adb

and DA,I = adj. Set T = DI − adθ(b) − adj, which is a derivation on I. Let us
check that T is an A-bimodule homomorphism by noting that I is an A-bimodule
via θ. Let a ∈ A and i ∈ I. Then by condition (v) in Proposition 3.1,

T (a · i) = T
(
θ(a)i

)
= DI

(
θ(a)i

)
− adθ(b)

(
θ(a)i

)
− adj

(
θ(a)i

)
= θ(a)DI(i) + θ

(
adb(a)

)
i+ adj(a)i− adθ(b)

(
θ(a)i

)
− adj

(
θ(a)i

)
= θ(a)DI(i) + θ(a)θ(b)i− θ(b)θ(a)i+ θ(a)ji− jθ(a)i− θ(a)iθ(b)

+ θ(b)θ(a)i− θ(a)ij + jθ(a)i

= θ(a)DI(i) + θ(a)
(
θ(b)i− iθ(b)

)
+ θ(a)(ji− ij)

= θ(a)DI(i)− θ(a) adθ(b)(i)− θ(a) adj(i)

= θ(a)T (i) = a · T (i).
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Likewise, T (i · a) = T (i) · a for a ∈ A and i ∈ I. We now have

D(a, i)−DT (a, i) =
(
adb(a), adj(a) + adj+θ(b)(i)

)
= ad(b,j)(a, i),

and so [D] = [DT ]. This shows that η(T ) = [D]; that is, η is surjective. Now we
calculate the kernel of η:

ker η =
{
T ∈ Z1(I, I) ∩ HomA(I, I) : [DT ] = [0]

}
=

{
T ∈ Z1(I, I) ∩ HomA(I, I) : DT is inner

}
=

{
T ∈ Z1(I, I) ∩ HomA(I, I) : T = adi+θ(a), a ∈ Z(A), i ∈ Zθ(A)(I)

}
= CA(I, I),

where we used Proposition 3.2 in the third equality. Therefore, as vector spaces,
we have

H1(A ./θ I, A ./θ I) ∼=
Z1(I, I) ∩ HomA(I, I)

CA(I, I)
. �

We remark that if I2 = I, especially if I is weakly amenable or if I has a
one-sided approximate identity, then the only A-bimodule homomorphism T :
I → A that satisfies T |I2 = 0 is T = 0.

Let G be a locally compact group, let M(G) be the measure algebra of G,
let L1(G) be the group algebra of G which has a bounded approximate identity,
let l1(G) be the space of discrete measures in M(G), let Mc(G) be the space of
continuous measures in M(G), and let Ms(G) be the subspace of M(G) consisting
of singular measures with respect to the Haar measure on G. The measure algebra
is a Banach algebra under the convolution product of measures, L1(G) andMc(G)
are closed ideals of M(G), l1(G) is a closed subalgebra of M(G), and Ms(G) is
a closed G-invariant subspace of M(G). Also, M(G) = L1(G) if and only if
M(G) = Mc(G), if and only if M(G) = l1(G), and if and only if G is discrete.
Furthermore, we have the following decomposition as linear spaces:

M(G) = l1(G)⊕1 Mc(G) = l1(G)⊕1 L
1(G)⊕1 Ms(G)

(see [4, Theorem 2.3.36]). As we mentioned in Example 2.1(vii), as Banach alge-
bras we have M(G) = l1(G)nMc(G).

Example 3.4. Let G be a locally compact group. We know thatH1(l1(G), l1(G)) =
0 (see [12]). We show that H1(l1(G), L1(G)) = 0. Let D : l1(G) → L1(G) be a
derivation. Then, as readily checked, D̃ : M(G) → M(G) defined by D̃(µ) =
D(µd) is a derivation, where µ = µd + µa + µs, µd ∈ l1(G), µa ∈ L1(G), and
µs ∈ Ms(G). Since H1(M(G),M(G)) = 0, there is ν ∈ M(G) such that D̃ = adν .
So, for each µ ∈ M(G),

D(µd) = D̃(µ) = D̃(µd) = µd ∗ ν − ν ∗ µd

= (µd ∗ νd − νd ∗ µd) + (µd ∗ νa − νa ∗ µd) + (µd ∗ νs − νs ∗ µd).

Since D(µd) − (µd ∗ νa − νa ∗ µd) ∈ L1(G) ∩ (l1(G) ⊕ Ms(G)) = {0}, we have
D = adνa , showing H1(l1(G), L1(G)) = 0. Now let D : L1(G) → L1(G) be a
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derivation which is also an l1(G)-module homomorphism. Then, by [12], there is
µ ∈ M(G) such that D = adµ. If f ∈ L1(G) and x ∈ G, then

δx ∗ f ∗ µ− δx ∗ µ ∗ f = δx ∗D(f) = D(δx ∗ f) = δx ∗ f ∗ µ− µ ∗ δx ∗ f,

and so δx ∗ µ ∗ f = µ ∗ δx ∗ f , where δx is the Dirac measure at x. Let (eα) be
a bounded approximate identity for L1(G). Then δx ∗ µ ∗ eα = µ ∗ δx ∗ eα and
since eα → δe in the w∗-topology of M(G) = C0(G)∗, we have δx ∗ µ = µ ∗ δx for
each x ∈ G, where e is the identity of G and C0(G) is the space of continuous
functions on G vanishing at infinity. It follows from the strict density of l1(G) in
M(G) that µ ∈ Z(M(G)). Hence D = adµ = 0. Therefore, by Theorem 3.3, we
have

H1
(
l1(G)n L1(G), l1(G)n L1(G)

)
= H1

(
l1(G) ./ι L1(G), l1(G) ./ι L1(G)

)
= 0,

where ι : l1(G) → M(G) is the inclusion map. Similarly,

H1
(
l1(G)nM(G), l1(G)nM(G)

)
= H1

(
l1(G) ./ι M(G), l1(G) ./ι M(G)

)
= 0.

Example 3.5. Let G be a locally compact group. We claim that the only l1(G)-
bimodule homomorphism T : Mc(G) → l1(G) vanishing on Mc(G)2 is T = 0,

although Mc(G)2 6= Mc(G) in general. In fact, we show that Homl1(G)(Mc(G),
l1(G)) = 0. Let T : Mc(G) → l1(G) be an l1(G)-bimodule homomorphism. Define
T̃ : M(G) → M(G) by T̃ (µ) = T (µc), where µ = µd + µc, µd ∈ l1(G), and
µc ∈ Mc(G). Since l1(G) is a subalgebra of M(G) and Mc(G) is an ideal in M(G),
T̃ is an l1(G)-module homomorphism and T̃ |l1(G) = 0. Because of strict density
of l1(G) in M(G), Homl1(G)(M(G),M(G)) is equal to HomM(G)(M(G),M(G)),
and the latter is isomorphic to Z(M(G)) since M(G) is unital. Thus, there is
ν ∈ Z(M(G)) such that T̃ (µ) = µ ∗ ν for each µ ∈ M(G). Hence,

T (µc) = T̃ (µ) = T̃ (µc) = µc ∗ ν ∈ l1(G) ∩Mc(G) = {0},

and so T = 0. Now we claim that H1(l1(G),Mc(G)) = 0. Let D : l1(G) →
Mc(G) be a derivation. Then D̃ : M(G) → M(G) defined by D̃(µ) = D(µd) is
a derivation, too. Therefore, there is ν ∈ M(G) such that D̃ = adν . So, for each
µ ∈ M(G),

D(µd) = D̃(µd) = µd ∗ ν − ν ∗ µd = (µd ∗ νd − νd ∗ µd) + (µd ∗ νc − νc ∗ µd).

Since D(µd)− (µd ∗ νc − νc ∗ µd) ∈ Mc(G) ∩ l1(G) = {0}, we have D = adνc and
hence H1(l1(G),Mc(G)) = 0.

It can be easily verified that Cl1(G)(Mc(G),Mc(G)) = 0. Therefore, by Theo-
rem 3.3, we have

H1
(
l1(G)nMc(G), l1(G)nMc(G)

)
= Z1

(
Mc(G),Mc(G)

)
∩ Homl1(G)

(
Mc(G),Mc(G)

)
.

Similar to Example 3.4, we observe that

Z1
(
Mc(G),Mc(G)

)
∩ Homl1(G)

(
Mc(G),Mc(G)

)
= {0},

and thus
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H1
(
l1(G)nMc(G), l1(G)nMc(G)

)
= 0.

In particular, by noting that M(G) = l1(G)nMc(G), we get H1(M(G),M(G)) =
0, which is unfortunately used in the calculation of H1(l1(G),Mc(G)) above. So,
if one could show that H1(l1(G),Mc(G)) = 0 by another technique that does not
rely on the innerness of derivations on M(G), then this would solve the derivation
problem of Johnson (see [4, Question 5.6.B, p. 746]), which is solved by V. Losert
in [12] (a short proof is given in [2]).

Example 3.6. Let G be a locally compact group such that H1(L1(G), L1(G)) = 0
(e.g., G can be a discrete group or an abelian group). Let i : L1(G) → M(G) be
the usual inclusion map. Then a similar calculation as in Examples 3.4 and 3.5
shows that

H1
(
L1(G) ./i M(G), L1(G) ./i M(G)

)
= 0.

In [12], V. Losert proved that derivations from L1(G) to M(G) are inner. We
show that derivations from M(G) to L1(G) are also inner, which is needed in
next example.

Lemma 3.7. Let G be a locally compact group, and let

M0(G) =
{
ν ∈ M(G) : µ ∗ ν − ν ∗ µ ∈ L1(G) for all µ ∈ M(G)

}
.

Then M0(G) = Z(M(G)) + L1(G).

Proof. Without loss of generality we may assume thatG is nondiscrete. Obviously,
L1(G)+Z(M(G)) ⊆ M0(G). Let ν ∈ M0(G). Then ν = νd+νa+νs for some νd ∈
l1(G), νa ∈ L1(G), and νs ∈ Ms(G). Since Ms(G) is invariant under translations
by elements of G, for each x ∈ G we have δx ∗ νs, νs ∗ δx ∈ Ms(G). Thus

(δx ∗ ν − ν ∗ δx)− (δx ∗ νa − νa ∗ δx) = δx ∗ (νd + νs)− (νd + νs) ∗ δx
= (δx ∗ νd − νd ∗ δx) + (δx ∗ νs − νs ∗ δx)
∈ L1(G) ∩

(
l1(G)⊕Ms(G)

)
= {0},

and so δx ∗ (νd + νs) = (νd + νs) ∗ δx for all x ∈ G. Since l1(G) is dense in M(G)
with respect to the strict topology, it follows that νd+ νs ∈ Z(M(G)). Therefore,
ν ∈ L1(G) + Z(M(G)). �

Theorem 3.8. Let G be a locally compact group. Then H1(M(G), L1(G)) = 0.

Proof. Let Φ : Z1(M(G), L1(G)) → M(G)

Z(M(G))+L1(G)
be defined by Φ(D) = [µ],

where D = adµ for some µ ∈ M(G), and [µ] denotes the equivalence class of

µ ∈ M(G) in the quotient space M(G)

Z(M(G))+L1(G)
. It is easy to see that kerΦ =

B1(M(G), L1(G)). So

H1
(
M(G), L1(G)

) ∼= M0(G)

Z(M(G)) + L1(G)
,

and hence by Lemma 3.7, H1(M(G), L1(G)) = 0. �
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Example 3.9. Let G be a locally compact group. By Theorem 3.8, all of the condi-
tions of Theorem 3.3 hold. By Wendel’s theorem [4, Theorem 3.3.40],
HomM(G)(L

1(G), L1(G)) = Z(M(G)). Thus, the only derivation D : L1(G) →
L1(G) which is an M(G)-bimodule homomorphism is D = 0. Therefore, by The-
orem 3.3, H1(M(G)n L1(G),M(G)n L1(G)) = 0.

Corollary 3.10. Let A be a dual Banach algebra with predual A∗. As we explained
in Example 2.1(vi), A∗∗ = AnA⊥

∗ = A ./ι A⊥
∗ . So, if H1(A,A) = H1(A,A⊥

∗ ) = 0
and the only A-bimodule homomorphism T : A⊥

∗ → A vanishing on (A⊥
∗ )

2 is
T = 0, then

H1(A∗∗, A∗∗) ∼=
Z1(A⊥

∗ , A
⊥
∗ ) ∩ HomA(A

⊥
∗ , A

⊥
∗ )

CA(A⊥
∗ , A

⊥
∗ )

.

Example 3.11. Let A = l1 be the usual Banach sequence algebra which is a
commutative dual Banach algebra under pointwise multiplication with predual
A∗ = c0. Then (l1)∗∗ = l1 n c⊥0 . We show that l1 satisfies conditions of Corol-
lary 3.10 and then calculate H1((l1)∗∗, (l1)∗∗). Since l1 is a commutative weakly
amenable Banach algebra and l1 and c⊥0 are symmetric l1-bimodules, we have
H1(l1, l1) = H1(l1, c⊥0 ) = 0. It can be easily shown that F �G = G�F = 0
for all F ∈ c⊥0 and G ∈ (l1)∗∗, where � denotes the first Arens product. Thus,
if T : c⊥0 → l1 is an l1-bimodule homomorphism, for all a ∈ l1 and F ∈ c⊥0 we
have 0 = T (a�F ) = a�T (F ) = a · T (F ), which implies T = 0. Therefore, by
Corollary 3.10, we have

H1
(
(l1)∗∗, (l1)∗∗

)
=

Z1(c⊥0 , c
⊥
0 ) ∩ Homl1(c

⊥
0 , c

⊥
0 )

Cl1(c
⊥
0 , c

⊥
0 )

.

Since the action of (l1)∗∗ on c⊥0 is trivial, Cl1(c
⊥
0 , c

⊥
0 ) = 0 and every bounded linear

map on c⊥0 is a derivation and an l1-module homomorphism; that is, Z1(c⊥0 , c
⊥
0 ) =

Homl1(c
⊥
0 , c

⊥
0 ) = B(c⊥0 ), where B(c⊥0 ) is the space of all bounded operators on

c⊥0 . Hence

H1
(
(l1)∗∗, (l1)∗∗

)
= B(c⊥0 ).

Example 3.12. Let A be a dual Banach algebra with predual A∗ such that
H1(A,A) = H1(A,A∗∗) = 0 (e.g., A can be a von Neumann algebra or the
group algebra of a discrete group), and let the only A-bimodule homomorphism
T : A⊥

∗ → A vanishing on (A⊥
∗ )

2 be T = 0. We show that A satisfies the
conditions of Corollary 3.10. So we have to show that H1(A,A⊥

∗ ) = 0. Let
D : A → A⊥

∗ be a derivation. Then ι ◦ D : A → A∗∗ is also a derivation, where
ι : A⊥

∗ → A∗∗ is the inclusion map. Since H1(A,A∗∗) = 0, there is F ∈ A∗∗ such
that ι ◦D = adF . Let F = F1 + F2, where F1 ∈ A and F2 ∈ A⊥

∗ . Thus, for each
a ∈ A, D(a) = (a · F1 − F1 · a) + (a · F2 − F2 · a). Since A⊥

∗ is an ideal in A∗∗,
a · F1 − F1 · a = D(a)− (a · F2 − F2 · a) ∈ A⊥

∗ and so a · F1 − F1 · a = 0 for each
a ∈ A. Hence D = adF2 , which shows that H1(A,A⊥

∗ ) = 0.

As an application, let A be a von Neumann algebra such that the only A-
bimodule homomorphism T : A⊥

∗ → A vanishing on (A⊥
∗ )

2 is T = 0. Since A∗∗ is
also a von Neumann algebra, we have H1(A∗∗, A∗∗) = 0. Therefore, Z1(A⊥

∗ , A
⊥
∗ )∩

HomA(A
⊥
∗ , A

⊥
∗ ) = CA(A

⊥
∗ , A

⊥
∗ ); that is, every derivation D : A⊥

∗ → A⊥
∗ which
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is an A-bimodule homomorphism is of the form ada+F where a ∈ Z(A) and
F ∈ ZA(A

⊥
∗ ).

3.1. Derivations on A ⊕φ B. In the following theorem, we reformulate Theo-
rem 3.3 for A⊕φB. We write Bφ for the Banach algebra B as a symmetric Banach
A-bimodule with the action a · b = b · a = φ(a)b for a ∈ A and b ∈ B. Also, σ(A)
denotes the space of nonzero characters of A.

Theorem 3.13. Let H1(A,A) = H1(A,Bφ) = 0, and let the only A-bimodule
homomorphism T : Bφ → A vanishing on B2 be T = 0. Then, as vector spaces,

H1(A⊕φ B,A⊕φ B) ∼= H1(B,B).

Proof. It is enough to note that HomA(Bφ, Bφ) = B(Bφ) and CA(Bφ, Bφ) =
B1(Bφ, Bφ). �

Corollary 3.14. Let A be a weakly amenable commutative Banach algebra, φ ∈
σ(A), and let B be a Banach algebra such that the only A-bimodule homomor-
phism T : Bφ → A vanishing on B2 is T = 0. Then H1(A ⊕φ B,A ⊕φ B) =
H1(B,B).

Without any assumption on A and B, we have the following theorem.

Theorem 3.15. H1(B,B) embeds in H1(A ⊕φ B,A ⊕φ B), and so H1(A ⊕φ

B,A⊕φ B) 6= 0 if H1(B,B) 6= 0.

Proof. For D ∈ Z1(B,B), define D̃ : A ⊕φ B → A ⊕φ B by D̃(a, b) = (0, D(b)).

Then D̃ is a derivation, and it is inner if and only if D is inner. Now the mapping
D 7→ D̃ from Z1(B,B) into Z1(A⊕φB,A⊕φB) gives the desired embedding. �

Corollary 3.16. Let A and B be commutative Banach algebras. If H1(B,B) 6= 0,
then A⊕φ B is not n-weakly amenable for each n ∈ N.

Proof. This follows from Theorem 3.15 and [5, p. 23]. �

Example 3.17. Let A = l1, let B = c0 or l∞, and let φ ∈ σ(l1). Then H1(l1, l1) =
H1(l1, c0) = H1(c0, c0) = H1(l1, l∞) = H1(l∞, l∞) = 0, and so by Theorem 3.13,

H1(l1 ⊕φ c0, l
1 ⊕φ c0) = H1(l1 ⊕φ l

∞, l1 ⊕φ l
∞) = 0.

Example 3.18. Let X be a locally compact Hausdorff space, and let C0(X) be the
space of continuous functions on X vanishing at ∞. Then H1(C0(X), C0(X)) = 0
because C0(X) is a commutative semisimple C∗-algebra. Let B be an arbitrary
square dense Banach algebra, and let φ ∈ σ(C0(X)) = X. Then, by noting that
C0(X) is a commutative weakly amenable Banach algebra and that Bφ is a sym-
metric Banach C0(X)-bimodule, we have H1(C0(X), Bφ) = 0 and thus

H1
(
C0(X)⊕φ B, C0(X)⊕φ B

) ∼= H1(B,B).

Moreover, if B is commutative and H1(B,B) 6= 0, then C0(X) ⊕φ B cannot be
n-weakly amenable for any n ∈ N.
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Example 3.19. Let G be a locally compact abelian group, and let A = L1(G) and
B = M(G). Then, for any φ ∈ σ(L1(G)),

H1
(
L1(G)⊕φ M(G), L1(G)⊕φ M(G)

)
= 0.

Example 3.20. Let G be a locally compact group, let A = A(G) be the Fourier
algebra of G, and let B = VN(G) be the von Neumann algebra of G. Let also
φ ∈ σ(A(G)) = {εx : x ∈ G}, where εx : A(G) → C is the evaluational func-
tion at x. Since A(G) is a commutative semisimple Banach algebra, by [15],
H1(A(G),A(G)) = 0. Now, if the connected component of the identity in G is
abelian, then, by [9], A(G) is weakly amenable and so H1(A(G),VN(G)φ) = 0.
Therefore,

H1
(
A(G)⊕φ VN(G),A(G)⊕φ VN(G)

) ∼= H1
(
VN(G),VN(G)

)
= 0.

4. Derivations on A ./id A

In this section, we characterize explicitly the first cohomology group of A ./id A
in terms of that of A.

Proposition 4.1. Let D : A → A be a derivation. Then D̂ : A ./id A → A ./id A
defined by D̂(a, b) = (D(a), D(b)) is a derivation. Moreover, D̂ is inner if and

only if D is inner. In this case, D̂ = ad(a,b) if and only if D = ada and b ∈ Z(A).

Proof. It can be routinely checked that D̂ is a derivation. Now, if D̂ = ad(a,b),
then, for each c, d ∈ A,(

D(c), D(d)
)
= (ca− ac, cb+ da+ db− ad− bc− bd)

=
(
ada(c), adb(c) + ada(d) + adb(d)

)
.

So D = ada, and by putting d = 0 we get adb(c) = 0 for all c ∈ A; that is,
b ∈ Z(A). Now the fact that b belongs to Z(A) implies adb = 0 and the proof is
complete. �

Theorem 4.2. H1(A,A) embeds in H1(A ./id A,A ./id A), and so H1(A ./id

A,A ./id A) 6= 0 if H1(A,A) 6= 0.

Proof. The mapping D 7→ D̂ from Z1(A,A) into Z1(A ./id A,A ./id A) gives the
desired embedding by Proposition 4.1. �

Corollary 4.3. Let A be a commutative Banach algebra such that H1(A,A) 6= 0.
Then the Banach algebra A ./id A cannot be n-weakly amenable for each n ∈ N.

Now we characterize H1(A ./id A,A ./id A) in a more general case. A Banach
algebra A is termed left (right) faithful if aA = 0 (Aa = 0) for some a ∈ A implies
a = 0.

Proposition 4.4. Let A be a left (or right) faithful Banach algebra, and let the
only A-bimodule homomorphism T : A → A vanishing on A2 be T = 0. Then
D ∈ Z1(A ./id A,A ./id A) if and only if

D(a, b) =
(
D1(a), D2(a) +D1(b) +D2(b)

)
(a, b ∈ A),



DERIVATIONS ON SEMIDIRECT PRODUCTS 521

for some D1, D2 ∈ Z1(A,A). Moreover, D = ad(a,b) if and only if D1 = ada and
D2 = adb.

Proof. This proposition follows from the faithfulness of A and condition (iv) (or
(v)) of Proposition 3.1. �

Theorem 4.5. If A is left (or right) faithful and A2 is dense in A, then, as vector
spaces, we have

H1(A ./id A,A ./id A) ∼= H1(A,A)⊕H1(A,A).

Proof. Define η : Z1(A,A)⊕ Z1(A,A) → H1(A ./id A,A ./id A) by η(D1, D2) =
[D], where D ∈ Z1(A ./id A,A ./id A) is defined by

D(a, b) =
(
D1(a), D2(a) +D1(b) +D2(b)

)
,

and [D] denotes the equivalence class of D in H1(A ./id A,A ./id A). By Propo-
sition 4.4, η is a well-defined surjective linear map and

ker η =
{
(D1, D2) ∈ Z1(A,A)⊕Z1(A,A) : [D] = [0]

}
=

{
(D1, D2) ∈ Z1(A,A)⊕Z1(A,A) : D is inner

}
=

{
(D1, D2) ∈ Z1(A,A)⊕Z1(A,A) : D1 and D2 are inner

}
= B1(A,A)⊕ B1(A,A),

which implies

H1(A ./id A,A ./id A) ∼= H1(A,A)⊕H1(A,A)

as vector spaces. �

Corollary 4.6. If A has a left (or right) approximate identity, then the Banach
algebra A ./id A has automatically continuous derivations if and only if A has
automatically continuous derivations.

Example 4.7. Let G be an infinite locally compact group. Then

H1
(
M(G) ./id M(G),M(G) ./id M(G)

)
= 0

and

H1
(
A(G) ./id A(G), A(G) ./id A(G)

)
= 0.
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