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A General Concept of Being a Part of a Whole

Andrzej Pietruszczak

Abstract The transitivity of the relation of part to whole is often questioned.
But it is among the most basic principles of mereology. In this paper we present
a general solution to the problem of transitivity of parthood which may be satis-
factory for both its advocates and its opponents.

We will show that even without the transitivity of parthood one can define—
basic in mereology—the notion of being a mereological sum of some objects.
We formulate several proposals of general approaches to the concept of being a
part of a whole, none of which contains any existential assumptions. By adding
the transitivity of parthood we obtain an axiomatization of “existentially neutral”
(or “nonexistential”) mereology.1

1 Philosophical Introduction and Preliminaries

Mereology arose as a theory of collective sets (or mereological sums). It was for-
mulated by the Polish logician Stanisław Leśniewski [2]. Collective sets are certain
wholes composed of parts. In general, the concept of a collective set can be de-
fined with the help of the relation of part to whole, and mereology may therefore be
considered as a theory of “the relation of part to whole” (from the Greek: meros—
part).

In everyday speech, the expression “part” is usually understood as having the
sense of the expressions “fragment,” “piece,” “bit,” and so forth. Under each such
interpretation, the relation of part to whole has two properties.

(a) No object is its own part.
(b) There are no two objects such that the first could be part of the second and

the second part of the first.
Thanks to (a), we have no difficulty in interpreting the phrase “two objects” in (b).
One can see that it concerns “two different” objects. The sentences (a) and (b) state,
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respectively, that the relation of part to whole is irreflexive and antisymmetric:
Àxx is part of x; (irrPP)

Àx;y.x ¤ y ^ x is part of y ^ y is part of x/: (antisPP)
The conjunction of (irrPP) and (antisPP) is logically equivalent to the sentence below:

Àx;y.x is part of y ^ y is part of x/: (asPP)
The sentence (asPP) states that the relation of part to whole is asymmetric. It is a
known result that a relation is asymmetric if and only if it is irreflexive and antisym-
metric.

In general, the relation of part to whole is acyclic in the following sense:
Àx;y1;:::;yn

.x is part of y1 ^ y1 is part of y2 ^ � � � ^ yn is part of x/: (acPP)
Notice that from (acPP) we obtain (asPP) and consequently also (irrPP) and (antisPP).

In the literature concerning mereology, the phrase “proper part” is often used in-
stead of the expression “part” we have so far been using. The practice has become
established of using “part” in a new sense, in which it embraces any given object
together with its parts in the everyday sense of that word. Each part of an object
distinct from the object itself is called a proper part. We shall also be using this ter-
minology. With this new meaning, the expression “part” meets a condition contrary
to (irrPP), for from the definition it follows directly that every object is its own (im-
proper) part. We obtain moreover that no object is its own proper part. If, however,
one understands the phrase “two objects” in the sense of “two different objects,” then
“part” understood in this way is antisymmetric.

Leśniewski [2] accepted that the relation of a proper part to whole is asymmetric,
(asPP), and transitive, that is, that any (proper) part of a (proper) part of a given object
is also its (proper) part. Formally:

8x;y;z.x is a proper part of y ^ y is a proper part of z
H) x is a proper part of z/: (tPP)

Notice that (irrPP) and (tPP) entail (acPP) and consequently also (asPP). Of course, by
(tPP), we obtain as well that the relation of part to whole is reflexive, antisymmetric,
and transitive:

8x;y;z.x is part of y ^ y is part of z H) x is part of z/: (tP)
In support of the property (tPP) the following example was given: my left arm is

a proper part of my body, which entails that my left hand is also a proper part of my
body. Rescher [6, p. 10] shows however that in the general case, the transitivity of
the relation of part to whole is essentially problematic. He provides the following
counterexample: a nucleus is a proper part of a cell, a cell is a proper part of an
organ, but this nucleus is not a proper part of this organ.

Yet Simons [7, pp. 107–8] shows that the concept of part with transitivity corre-
sponds to the spatiotemporal inclusion and in that sense it is true that a nucleus is
a proper part of an organ. Simons states that the fact that the word “part” has an
additional meaning does not undermine the mereological concept of part, because it
is not being claimed that the mereological concept includes all the meanings of the
word “part” but rather those that are fundamental and of greatest importance. He
says that the transitivity of the relation of being part of causes no special difficulties
when we refer to spatiotemporal relations, including those between events.
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Various interesting opinions concerning the problem of the transitivity of part-
hood are presented, among others, in Johansson [1], Lyons [3], Rescher [6], Varzi
[9], Vieu [10].

In the sequel, let U be any nonempty (distributive) set of objects (universe of
discourse). In general, for any binary relation R in U , we shall agree that instead of
hx; yi 2 R (resp., hx; yi … R) we will write x R y for short (resp., x 6R y). We will
also write x R y R z instead of x R y ^ y R z. The converse of R is the relation
MR ´ ¹hx; yi 2 U � U W y R xº. Moreover, for any subset X of U , let RjX be the
restriction of the relation R to the set X ; that is, RjX ´ R \ .X �X/.

We say that R is, respectively, reflexive, irreflexive, symmetric, antisymmetric,
asymmetric, transitive, and acyclic if and only if R satisfies, respectively,

8x2Ux R x; (rR)
Àx2Ux R x; (irrR)

8x;y2U .x R y H) yR x/; (sR)
Àx;y2U .x ¤ y ^ x R yR x/; (antiR)

Àx;y2Ux R yR x; (asR)
8x;y;z2U .x R yR z H) x R z/; (tR)

8n>0Àx2Ux R
n x; (acR)

where R1 D R and for any n > 0, RnC1 D Rn ı R, that is, for any x; y 2 U :
x RnC1 y iff 9z2U .x R

n z ^ z R y/.
We put IdU ´ ¹hx; xi W x 2 U º. Obviously, by suitable definitions we obtain the

following.

Lemma 1.1 For any binary relation R in U ,
1. if R is irreflexive and transitive, then R is acyclic;
2. if R is acyclic, then R is asymmetric;
3. R is asymmetric if and only if R is irreflexive and antisymmetric;
4. R [ IdU is reflexive;
5. R is irreflexive if and only if R D .R [ IdU / X IdU D R X IdU ;
6. R is asymmetric if and only if R is irreflexive and R [ IdU is antisymmetric;
7. if R is asymmetric, then R D .R [ IdU / X . MR [ IdU /, where MR [ IdU D

SR [ IdU ;
8. if R is transitive, then R [ IdU is transitive.

2 The First Two Axioms

Let@ be the binary relation of being a proper part of holding between objects fromU :

@´
®
hx; yi 2 U � U W x is a proper part of y

¯
:

We will consider some class of frames of the form U D hU;@i, where U is a
nonempty set and @ is a binary relation on U , which satisfies some conditions. Of
course, the relation @ is to represent the relation of being a proper part in the set U .2

In this paper we will not be assuming that the relation @ is transitive. Therefore
we must assume the following (see Lemma 1.1).
(A1) The first axiom: the relation @ is acyclic.

From this axiom we obtain the conditions (ac@), (as@), (anti@), and (irr@).
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For any x; y 2 U , a path from x to y is any finite sequence .u0; u1; : : : ; un/, such
that n > 0, x D u0, y D un, and ui @ uiC1, for i D 0; : : : ; n� 1. Moreover, for any
x 2 U and S 2 2U a path from x to S is any path from x to some member of S .

For any frameU which satisfies (A1) we have the following.

Fact 2.1 If .u0; u1; : : : ; un/ is a path from x to y, then x ¤ y. Consequently,U
is cycle-free; that is, there is no path from a point to itself.

We assume only that the relation @ is locally transitive in the following sense:
8x;y2U

�
x @ y H) for any path .u0; u1; : : : ; un/ from x to y,

@ is transitive on the set ¹u0; u1; : : : ; unº
�
: (lt@)

(A2) The second axiom: the relation @ is locally transitive.
By definitions and (A2) we obtain the following.

Lemma 2.2 For any x; y such that x @ y, for any path .u0; u1; : : : ; un/ from x

to y, and for all i; j 2 ¹0; : : : ; nº, if i < j , then ui @ uj .

3 Maximal Closed Transitive Sets

We assume that a frameU D hU;@i satisfies (A1) and (A2).
We say that a subset X of U is closed with respect to @ if and only if for all

x; y 2 X , every path from x to y is included in X .3
We shall define the family ��U of subsets of U which are closed with respect to

@ and in which the relation @ is transitive:
��U ´ ¹X 2 2

U
W X is closed with respect to @ and @jX is transitiveº:

Let v be the binary relation of being part of holding between objects from U , that
is, v´ @ [ IdU ; for any x; y 2 U :

x v y
df
” x @ y _ x D y:

By the definition, v is reflexive. From asymmetry of @ we obtain antisymmetry of v.
In the paper we use set-theoretical notation. In this way we avoid using too many

connectives and quantifiers. So for any x 2 U we put

PP.x/´ ¹y 2 U W y @ xº; zPP.x/´ ¹y 2 U W x @ yº;
P.x/´ ¹y 2 U W y v xº; MP.x/´ ¹y 2 U W x v yº:

Lemma 3.1 For any x 2 U , the sets P.x/ and MP.x/ belong to ��U .

Proof Let x be an arbitrary member of U . First, we show that @jP.x/ is transitive.
Let y; z; u 2 P.x/ and y @ z @ u. Then, by (irr@), (as@), and the assumption, the
points y, z, and u are pairwise different and y ¤ x ¤ z. If u D x (i.e., y @ z @ x),
then y @ x, by the first assumption. If u ¤ x (i.e., y @ z @ u @ x), then @ is
transitive on the set ¹y; z; u; xº, because y @ x and @ is locally transitive. Hence
y @ u.

Second, we show that P.x/ is closed with respect to @. Let y; z 2 P.x/
and .u0; u1; : : : ; um/ be any path from y to z. Then, by (ac@), y ¤ z. Since
y @ u1 @ � � � @ um�1 @ z v x, so also y ¤ x, by (ac@), (as@), or (irr@). Thus, either
.y; u1; : : : ; um�1; z; x/ or .y; u1; : : : ; um�1; x/ is a path from y to x. Because @
is locally transitive, so @ is transitive on the set ¹y; u1; : : : ; um�1; z; xº. Hence, by
Lemma 2.2, this set is included in P.x/.
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Similarly, we can prove that for any x 2 U , the set MP.x/ belongs to ��U .

In the standard way we may prove the following lemma.

Lemma 3.2 Let C be any chain in ��U (i.e., totally ordered subset of ��U with
respect to the relation of inclusion). Then

S
C 2 ��U . In other words, every chain

in h��U;�i has an upper bound.

Let ���U be a subfamily of the family ��U composed of those sets which are
maximal with respect to the relation of inclusion, that is,

���U WD ¹X 2 ��U W ÀY2��UX ¨ Y º:

From Lemma 3.2 and the Kuratowski–Zorn lemma we obtain the following.

Theorem 3.3 Every set from ��U is included in some set from���U .

From Lemma 3.1 and Theorem 3.3 we obtain the following.

Corollary 3.4

1. For any x 2 U there isM 2���U such that P.x/ �M .
2. For any x 2 U there isM 2���U such that MP.x/ �M .
3. For all x; y 2 U , if y @ x, then there isM 2���U such that x; y 2M .
4. We have ; …���U ¤ ;.

From (A1) and (A2), for each setM from���U , the pair hM;@jM i is a strictly par-
tially ordered set; that is, the relation @jM is transitive and irreflexive (asymmetric).
Moreover,M is closed with respect to @.

4 The Third Axiom

For an arbitrary subset X of U we put

max@.X/´
®
x 2 X WzPP.x/ \X D ;

¯
;

min@.X/´
®
x 2 X W PP.x/ \X D ;

¯
:

The elements of max@.X/ (resp., min@.X/) will be called maximal elements (resp.,
minimal elements) in the set X .
(A3) The third axiom: the family���U meets the following condition.

For anyM;M 0 2���U , ifM ¤ M 0, then eitherM \M 0 � max@.M/ or
M \M 0 � max@.M 0/.

Remark 4.1 If we suppose that in an irreflexive frameU D hU;@i the relation @
is transitive, then���U D ¹U º, soU automatically fulfills the axioms (A1)–(A3)
(as well as the stronger version of the third axiom given in Remark 4.13).

In the next section we will give some auxiliary facts. In Section 4.2 we will give an
equivalent version of the third axiom (see Theorem 4.12). Moreover, in Section 4.3,
we will give a stronger version (A3s) of the third axiom. This stronger version may
be more intuitive than axiom (A3). However (A3) is strong enough to prove all facts
(from Section 4.1) that will be used in the rest of the paper. Finally, in Remark 4.15
we informally describe axiom (A3).
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4.1 Some auxiliary facts We will use the following auxiliary definitions and facts,
where we consider any frameU D hU;@i satisfying the first three axioms.

Let �, G, and N be, respectively, the overlapping relation, the proper overlapping
relation, and the disjointness relation, which hold between objects from U :

x � y
df
” 9z2U .z v x ^ z v y/;

x G y
df
” x ¤ y ^ x a y ^ y a x ^ 9z2U .z @ x ^ z @ y/;

x N y
df
” : x � y:

By definition, the relations �, G, and N are symmetric; � is reflexive; G and N are
irreflexive. Moreover, by definition, for any x; y 2 U we have

x � y ” x D y _ x @ y _ y @ x _ 9z2U .z @ x ^ z @ y/

” x D y _ x @ y _ y @ x _ x G y: (1)
So @ � v � � and G � �.

Notice that by (as@), (irr@), and definitions for any x; y 2 U we obtain
x @ y ” x N y _ x G y _ y @ x: (2)

Now letM be an arbitrary set from���U . For any x; y 2 U we put

x �M y
df
” x; y 2M ^ 9z2M .z v x ^ z v y/;

x GM y
df
” x; y 2M ^ x ¤ y ^ x a y ^ y a x ^ 9z2M .z @ x ^ z @ y/;

x NM y
df
” x; y 2M ^: x �M y:

By definition, the relations �M , GM , and NM are symmetric and we have the follow-
ing.
Lemma 4.2 For anyM from���U ,

1. @jM � vjM � �M � �jM , GM � GjM � �jM , GM � �X and N jM � NM ,
2. �jM � �M iff G jM � GM iff NM� NjM ,4
3. all members of the set min@.M/ are pairwise in the relation NM ,
4. 8x;y;z2M .z �

M y ^ z v x H) y �M x/.
Proof Ad 4. From the transitivity of @jM we have the transitivity of vjM .

Lemma 4.3 We have 8x;y2U .y @ x H) 9
1
M2���U

x; y 2 M/. Thus, for any
x; y 2 U such that y @ x we can put5

Mx
y ´ .šM/x; y 2M 2���U:

Proof Let y @ x. Then, by Corollary 3.4, for some M 2 ���U we have
x; y 2 P.x/ � M . Let M 0 2 ���U and x; y 2 M 0. We show that M 0 D M .
Indeed, ifM 0 ¤M , then by (A3) either ¹x; yº � max@.M/ or ¹x; yº � max@.M 0/,
a contradiction.

Lemma 4.4 We have 8M2���U8x;y2M .y @ x H) P.x/ [ MP.y/ �M D Mx
y/.

Proof Let x; y 2 M 2 ���U and y @ x. First, suppose that z @ x. Then, by
Corollary 3.4, for someM 0 2 ���U: z; x 2 P.x/ � M 0. So also y 2 M 0. Thus,
by Lemma 4.3,M 0 DM ; that is, z 2M . Moreover, since x; y 2M , soM D Mx

y .
Second, suppose that y @ z. Then, by Corollary 3.4, for some M 00 2 ���U:

y; z 2 P.z/ � M 00. We show thatM 00 D M ; that is, z 2 M . Indeed, ifM ¤ M 00,
then by (A3) either y 2 max@.M/ or y 2 max@.M 00/, a contradiction.
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By Lemmas 4.3 and 4.4 we obtain the following.

Corollary 4.5 We have 8x2U .PP.x/ ¤ ; H) 91
M2���U

P.x/ � M/. Thus, for
any x 2 U such that PP.x/ ¤ ; we can put

Mx
´ .šM/P.x/ �M 2���U:

Moreover, for any y 2 PP.x/ we haveMx
y D Mx .

Corollary 4.6 We have 8x;y2U .y @ x ) 91
M2���U

.P.x/ [ MP.y/ � M D

Mx
y D Mx//.

By Lemmas 4.3 and 4.4, and Corollaries 4.5 and 4.6 we obtain the next corollary.

Corollary 4.7 We have 8M22���U8x2MXmin@.M/M D Mx .

Corollary 4.8 We have the following.
1. 8M2���U8x2M .PP.x/ \M ¤ ; H) PP.x/ �M/,
2. 8M2���U8x2M .PP.x/ ª M H) x 2 min@.M//,
3. 8M2���U8x2M .zPP.x/ \M ¤ ; H)zPP.x/ �M/,
4. 8M2���U8x2M .zPP.x/ ª M H) x 2 max@.M//.

Corollary 4.9 IfM \M 0 � max@.M/, then .M \M 0/Xmin@.M 0/ � min@.M/.

Proof Let (a)M \M 0 � max@.M/, (b) x 2 M , (c) x 2 M 0, (d) x … min@.M 0/.
Then, by (c) and (d), for some y 2M 0 we have y @ x. Therefore, by (a)–(c), y …M .
So x 2 min@.M/, by Corollary 4.8(2).

Lemma 4.10 We have 8M2���U8x;y2M .x NM y ^ x � y H) x; y 2

min@.M//.

Proof Let x NM y and x � y. Then for some z 2 U : z v x, z v y, and z … M .
Hence x ¤ z ¤ y, that is, z @ x and z @ y. Therefore x; y 2 min@.M/, by
Corollary 4.8(2).

By Corollaries 3.4 and 4.8(1) we obtain the following.

Lemma 4.11 We have 8x;y2U .x G y H) Mx D My ^ x GM
x
y/.

Proof Let x G y. Then for some u: u @ x and u @ y. Hence u 2 Mx and u 2 My .
We show that Mx D My . Indeed, if Mx ¤ My , then, by (A3), u 2 max@.Mx/ or
u 2 max@.My/, a contradiction. In consequence x GMx

y.

4.2 An equivalent version of (A3) We can give the following equivalent version of
the third axiom.

Theorem 4.12 Let a frameU D hU;@i satisfy the first three axioms. Then
(A30) for anyM;M 0 2 ���U , ifM ¤ M 0, then eitherM \M 0 � max@.M/ \

min@.M 0/ orM \M 0 � min@.M/ \max@.M 0/.
Since min@.M/ \ max@.M 0/ � M \M 0 and max@.M/ \ min@.M 0/ � M \M 0,
so in (A30) we haveD in the place of �.

Moreover, (A30) entails (A3). Thus (A3) and (A30) are equivalent in the class of
all structures satisfying (A1) and (A2).
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Proof Let U D hU;@i satisfy the first three axioms, and letM;M 0 2 ���U be
such thatM ¤ M 0. By (A3),M \M 0 � max@.M/ orM \M 0 � max@.M 0/. So
we consider the following three alternative cases:

(i) M \M 0 � max@.M/ \max@.M 0/,
(ii) M \M 0 � max@.M/ andM \M 0 ª max@.M 0/,
(iii) M \M 0 ª max@.M/ andM \M 0 � max@.M 0/.

Ad (i) LetM\M 0 � max@.M/\max@.M 0/. We prove thatM\M 0 � min@.M/

orM \M 0 � min@.M 0/.
Suppose towards contradiction that M \ M 0 ª min@.M 0/ and M \ M 0 ª

min@.M/. Then there is x0 2M \M
0 such that x0 … min@.M/. HenceM D Mx0 ,

by Corollary 4.7. Moreover, there is y0 2M \M
0 such that y0 … min@.M 0/. Hence

M 0 D My0 . So we have Mx0 ¤ My0 and x0 ¤ y0. Since x0; y0 2 max@.M/, so
x0 a y0 and y0 a x0. Moreover, : x0 G y0, by Lemma 4.11. Hence x0 N y0, by (1).
From Corollary 4.9 we have x0 2 min@.M 0/ and y0 2 min@.M/.

Now we prove that P.x0/ [ P.y0/ 2 ��U . Then, by Theorem 3.3, we ob-
tain M 00 2 ���U such that P.x0/ [ P.y0/ � M 00. So, by Corollary 4.5,
M DM 00 DM 0 and we obtain a contradiction.

First, we prove that @jP.x0/[P.y0/ is transitive. Let z; u; v 2 P.x0/ [ P.y0/

and z @ u @ v. By (ac@), v ¤ z ¤ u ¤ v and v a z. We show that for any
˛; ˇ 2 ¹z; u; vº the following cases are not possible: (a) ˛ 2 P.x0/ and ˇ 2 P.y0/;
(b) ˇ 2 P.x0/ and ˛ 2 P.y0/. Hence we have that for any ˛; ˇ 2 ¹z; u; vº, either
˛; ˇ 2 P.x0/ or ˛; ˇ 2 P.y0/. Thus z @ v, because the sets P.x0/ and P.y0/ belong
to ��U , by Lemma 3.1.

Suppose that there are ˛; ˇ 2 ¹z; u; vº such that ˛ 2 P.x0/ and ˇ 2 P.y0/. Then
˛ ¤ ˇ, ˛ @ y0, and ˇ @ y0, because x0 N y0. If ˛ D z and ˇ D u (resp., ˇ D v),
then x0 w z @ u v y0 (resp., x0 w z @ u @ v v y0). Thus we have a path from z to
y0 and z; y0 2 Mx0 . So this path is included in Mx0 . Hence z @ y0, so we obtain a
contradiction: x0 � y0. If ˛ D u and ˇ D v, then x0 w u @ v v y0 and we obtain
a contradiction again: x0 � y0. If ˛ D u and ˇ D z, then y0 w z @ u v x0 and we
have a path from z to x0 and z; x0 2 My0 . So this path is included in My0 . Hence
z @ x0, and we obtain a contradiction again: x0 � y0. Analogously, we show that
the rest of subcases from (a) and the cases (b) are also not possible.

Second, we prove that P.x0/ [ P.y0/ is closed with respect to @. Let z; u 2
P.x0/[P.y0/ and .u0; u1; : : : ; um/ be any path from z to u, for somem > 1. Then,
by (ac@), z ¤ u. If either z; u 2 P.x0/ or z; u 2 P.y0/, then this path is included,
respectively, in P.x0/ or P.y0/, by Lemma 3.1.

Besides, we prove that the following two cases are not possible: z 2 P.x0/ and
u 2 P.y0/; z 2 P.y0/ and u 2 P.x0/. Indeed, in the first case x0 w z @ u1 @ � � � @
um v y0. So we have a path from z to y0 and z; y0 2 Mx0 . Thus, this path is
included in Mx0 . Hence z v y0. Therefore we obtain a contradiction: x0 � y0.
Analogously, we show that the second case is also not possible.

Ad (ii) Let M \M 0 � max@.M/ and M \M 0 ª max@.M 0/. Hence there is
y0 2 M \M

0 such that y0 2 max@.M/ and y0 … max@.M 0/. So there is y1 2 M
0

such that y0 @ y1.
We prove that M \ M 0 � min@.M 0/. Suppose towards contradiction that

M \M 0 ª min@.M 0/. Then there is x0 2 M \M
0 such that x0 2 max@.M/ and
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x0 … min@.M 0/. So there is x1 2 M
0 such that x1 @ x0 and x0 2 min@.M/, by

Corollary 4.9.
Moreover, by Lemma 4.3, since M ¤ M 0, x0; y0 2 M \ M

0, x1; y1 2 M
0,

x1 @ x0, and y0 @ y1, so x0 a y0, y0 a x0, and x1; y1 …M .
We haveM 0 D Mx0 D My1 , P.x0/ � M

0, P.y1/ � M
0, and MP.y0/ � M

0 (see
Lemma 4.4, Corollary 4.5). SozPP.y0/ � M 0 XM , MP.y0/ \ .M XM

0/ D ; D

P.x0/ \ .M XM
0/, and PP.x0/ �M

0 XM .
Now we consider some auxiliary claims.

Claim A There is a path from x1 toM XM 0.

Proof Suppose towards contradiction that for any u 2 M XM 0 there is no path
from x1 to u. We put

P´ ¹u 2 U W u is a member of some path from x1 toM \M 0º:
Since x1 @ x0, so x1 2 P XM . We prove thatM [ P 2 ��U .

First we show that M [ P is closed with respect to @. Let x; y 2 M [ P and
.u0; u1; : : : ; un/ be any path from x to y, for some n > 1. (Let us denote this path
by Œx � � �y� for short.) We have x ¤ y. We show that the path Œx � � �y� is included in
M [ P.

Notice that either x … M or y ¤ x1. Otherwise we have a path .x; : : : ; x1; x0/

which is included inM . But since x; x0 2 M andM 2 ��U , we have a contradic-
tion: x1 2 M and x1 … M . Moreover, either x … P or y ¤ x1, because there is no
path from x1 to x1. Below we consider all possible cases for x and y.

If x; y 2M , then the path Œx � � �y� is included inM , sinceM 2 ��U .
If x 2 M and y 2 P XM , then y ¤ x1 and we have a path .x1; : : : ; y; : : : ; v/

from x1 to M \ M 0. So we have also a path .x; : : : ; y; : : : ; v/ which is included
inM . Hence Œx � � �y� is also included inM .

If x D x1 and y 2 M , then y 2 M \M 0, by the assumption towards contradic-
tion. So we have a path .x1; u1; : : : ; un�1; y/ from x1 toM \M 0. Hence Œx � � �y� is
also included in P.

If x 2 PX.M[¹x1º/ and y 2M , then we have a path .x1; : : : ; x; : : : ; v/ from x1

toM \M 0. So we have also a path .x1; u1; : : : ; x; : : : ; un1
; y/ from x1 toM \M 0,

by the assumption towards contradiction. Hence Œx � � �y� is included in P.
If x D x1 and y 2 P XM , then y ¤ x1 and we have a path .x1; w1; : : : ; wk ; y;

: : : ; v/, where v 2 M \M 0. So we obtain also a path .x1; u1; : : : ; un�1; y; : : : ; v/

from x1 toM \M 0. Hence Œx � � �y� is included in P.
If x 2 P X .M [ ¹x1º/ and y 2 P X .M [ ¹x1º/, then we have two paths

.x1; : : : ; x; : : : ; v/ and .x1; : : : ; y; : : : ; w/, where v;w 2 M \ M 0. So we have
a path .x1; : : : ; x; u1; : : : ; un�1; y; : : : ; w/ from x1 to M \ M 0. Thus Œx � � �y� is
included in P.

Second, we prove that the relation @jM[P is transitive. Let x; y; z 2 M [ P and
x @ y @ z. By (ac@), z ¤ x ¤ y ¤ z and z a x. Moreover, we notice that the
following cases are not possible:

(a) x 2M and either y 2 P XM or z 2 P XM ,
(b) y 2M and z 2 P XM ,
(c) x 2 P XM and y; z 2M .

Indeed, in the case when x 2 M and z 2 P XM , we have a path .x1; : : : ; z; : : : ; v/

from x1 to M \M 0. So we create a path .x; y; z; : : : ; v/ which is included in M .
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Thus, we obtain a contradiction. Similarly, we show that the rest of the subcases
from (a) are not possible. In the case (b) we have a path .x1; : : : ; z; : : : ; w/ from
x1 to M \ M 0. So we create a path .y; z; : : : ; w/ from y to M \ M 0, which is
included inM . So we obtain a contradiction: z 2 M . In the case (c) we have a path
.x1; : : : ; x; : : : ; v/ from x1 toM \M 0. So we create a path .x1; : : : ; x; y; z/. By the
assumption towards contradiction, y; z 2M \M 0. Yet this is incompatible with the
main assumption, which says thatM \M 0 � max@.M/.

Thus only the following three cases are possible. In the first case, if x; y; z 2 M ,
then x @ z, since the relation @jM is transitive. In the second, if x; y 2 P XM and
z 2 M , then we have two paths .x1; : : : ; x; : : : ; v/ and .x1; : : : ; y; : : : ; w/ from x1

toM \M 0. Since x1 2 M
0 andM 0 2 ��U , so these paths are included inM 0 and

x; y 2M 0. Notice that we also have a path .x1; : : : ; y; z/. So z 2M\M 0, by the as-
sumption towards contradiction. Therefore x @ z, because the relation @jM 0 is tran-
sitive. In the third, if x; y; z 2 P XM , then we have three paths .x1; : : : ; x; : : : ; v/,
.x1; : : : ; y; : : : ; w/ and .x1; : : : ; z; : : : ; u/ from x1 toM \M 0. Since x1 2 M

0 and
M 0 2 ��U , so these paths are included inM 0 and x; y; z 2M 0. Hence x @ z.

Thus, we prove that M [ P 2 ��U . Hence, by Theorem 3.3, for some
M 00 2 ���U we have M [ P � M 00. So M D M 00, because M 2 ���U .
Hence we obtain a contradiction: P �M , so x1 2M .

Claim B For all v 2 MP.y0/ and u 2M XM 0 there is no path from v to u.

Proof Otherwise there is a path which has either the form .y0; v; : : : ; u/, if
v ¤ y0, or .y0; : : : ; u/, if v D y0. In both cases this path is included in M . So
we obtain a contradiction: y0 @ u. (In the first case we also have a contradiction:
v 2M .)

Claim C For any u 2M XM 0 there is a path from u tozPP.y0/.

Proof Suppose that there is u 2 M XM 0 such that for any v 2zPP.y0/ there is
no path from u to v. Hence there is no path from u to y0. Then, by Claim B and
Lemma 3.1, MP.y0/ [ ¹uº 2 ��U . Thus, by Theorem 3.3, for some M 00 2 ���U
we have MP.y0/ [ ¹uº � M 00. So M 0 D M 00, by Corollary 4.5. Hence we obtain a
contradiction: u 2M 0.

Now, by Claim A, there is a path .x1; : : : ; u/ from x1 to u, for some u 2 M XM 0.
By Claim C, there is a path .u; : : : ; v/ from u to v, for some v 2zPP.y0/ � M 0.
Hence we obtain a path .x1; : : : ; u; : : : ; v/ from x1 to v. Since x1; v 2 M

0 and
M 0 2 ���U , so this path is included in M 0. Hence we have a contradiction:
u 2M 0 and u …M 0.

Ad (iii) Let M \M 0 ª max@.M/ and M \M 0 � max@.M 0/. Similarly, as in
the case (ii) we can prove thatM \M 0 � min@.M/.

Thus,M \M 0 � max@.M/\min@.M 0/ orM \M 0 � min@.M/\max@.M 0/.

4.3 A stronger version of (A3) In the following remark we give a stronger version of
the third axiom. Next we present only additional remarks and an example.

Remark 4.13 Notice that the frame that is depicted in the diagram in Figure 1
satisfies axioms (A1)–(A3) (plus also two axioms (A4) and (A5) given below). Of
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Figure 1

course, for this diagram the relation @, represented by !, is locally transitive and
acyclic.

Remember that @ is not transitive. Therefore we have���U D ¹M1;M2;M3º,
where M1 D ¹1234; 4; 123º, M2 D ¹4; 123; 12; 3º, and M3 D ¹4; 12; 3; 1; 2º;
M1 \ M2 D ¹4; 123º D min@.M1/ D max@.M2/; M2 \ M3 D ¹4; 12; 3º D

min@.M2/ D max@.M3/;M1 \M3 D ¹4º D min@.M1/ \max@.M3/.
We can see that the frame does not fulfill the following condition, which is

stronger than axiom (A3).
(A3s) The family���U meets the following condition:

for anyM andM 0 from���U , ifM ¤ M 0 andM \M 0 ¤ ;, then either
max@.M/ DM \M 0 D min@.M 0/ or min@.M/ DM \M 0 D max@.M 0/.

Example 4.14 In connection with Rescher’s counterexample (see the introduc-
tion, p. 360), it is possible to find an example of a set U , for which���U ¤ ¹U º
and the sets from ���U intersect. For example, we put U ´ O [ C [ N [ A,
where O is a set of one-celled and many-celled organisms, C is the set of cells in
organisms from O , N is the set of nuclei of cells from C , and A is the set of other
parts of cells from C . We have ���U D ¹M1;M2º, where M1 ´ O [ C and
M2 ´ C [ N [ A. Then the members of C are maximal elements in the set M2

and minimal in the setM1; M1 \M2 D C D min@.M1/ D max@.M2/. Thus, the
stronger version of the third axiom is fulfilled. Obviously, it is the case only if, after
Rescher, we admit that @ is not transitive in U .

As was mentioned before, the stronger version (A3s) of the third axiom may be more
intuitive; however (A3) is strong enough to prove all facts (from Section 4.1) that are
used in the rest of the paper. The following remark provides an informal motivation
for (A3) and (A3s).

Remark 4.15 Succinctly, the axioms (A3s) and (A3) break the universe up into
���U’s that intersect only on their extreme boundaries.

Let M;M 0 2 ���U , M ¤ M 0, x; y 2 M , x; z1; z2 2 M
0, and y @ x @

z1 @ z2. Then, in relation to the remarks in [3], x is maximal inM (resp., minimal
inM 0) with respect to @ such that we can say correctly that x has y (resp., z1 has x
and z2 has x). For example, the sentences below are correct.
� This orchestra (z2) has a violin section (z1). z1 @ z2

� This orchestra (z2) has a violinist (x). x @ z2
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� This violinist (x) has a heart (y). y @ x

However, the following sentences are semantically weird.
� This orchestra has this violinist’s arm.
� This violin section has this violinist’s heart.

We can assume that an orchestra is a system, in which its musicians and con-
ductor are minimal elements with respect to @. One can say that it is also a closed
system, since all musicians are pairwise disjoint (exterior). Additionally, the fifth
axiom, given below, is fulfilled. It says that: for any M 2 ���U all members of
the set min@.M/ are pairwise in the relation N (what is equivalent to NM � N; see
Lemma 8.1). Moreover, any musician is also a closed system of their body parts, in
which the musician is a maximal element with respect to @.

5 Two Versions of the Fourth Axiom: Conditions of Separation

Let U D hU;@i satisfy axioms (A1)–(A3). Further, we will consider the following
conditions of separation (supplementation):

8x;y2U

�
x @ y H) 9z2U .z v x ^ z N y/

�
; (SSP)

8x;y2U

�
y @ x H) 9z2U .z @ x ^ z N y/

�
; (WSP)

8x;y2U

�
x G y H) 9z2U .z @ x ^ z N y/

�
; (SPG)

and its “partial versions” for everyM from���U:

8x;y2M

�
x @ y H) 9z2M .z v x ^ z N

M y/
�
; (SSPM )

8x;y2M

�
y @ x H) 9z2M .z @ x ^ z N

M y/
�
; (WSPM )

8x;y2M

�
x G y H) 9z2M .z @ x ^ z N

M y/
�
: (SPM

G )
The above conditions are characteristic for the notion of being part of in its mereo-
logical use, i.e., when it is transitive (see, e.g., [5], [7]). In this case the sentences
(SSP) and (WSP) are called by Simons in [7], respectively, strong supplementation
principle and weak supplementation principle. Notice that @jM is transitive for every
M 2���U .

Before giving the forth axiom we will analyze relations that hold between the
above conditions of separation.

First, notice that by definitions, (irr@), and (as@), using (2), we obtain the follow-
ing.

Lemma 5.1 We have the following.
1. (SSP), (as@), and definitions entail (WSP).
2. (SSP) and definitions entail (SPG).
3. (WSP), (SPG), and definitions entail (SSP).
4. The claims 1–3 do hold also in their “partial versions”, that is, when

(SSP), (WSP), and (SPG) are replaced, respectively, by (SSPM ), (WSPM ),
and (SPM

G ).

Second, from (A1)–(A3) we obtain the following.

Lemma 5.2 LetU satisfy (A1)–(A3). Then
1. if (SSP) holds, then (SSPM ) holds for everyM from���U;
2. if (SSPM ) holds for everyM from���U , then (SPG) also holds.
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Figure 2

Proof Ad 1. LetM 2���U , x; y 2M , and x @ y. We have that either x NM y

or x �M y. In the first case we have our thesis. In the second case, for some u 2M ,
u v x and u v y. Hence, by the assumption, x ¤ u, that is, u @ x. Moreover, by
(SSP), there exists part z of x, which has no common part with y. Hence, by the
assumption, x ¤ z, that is, z @ x. Thus, by Corollary 4.8(1), z 2 M . Moreover,
z NM y, since N � NM .

Ad 2. Let x G y. Then, by Lemma 4.11, Mx D My and x GMx
y. Moreover, since

x @ y, so by .SSPMx
/ for some z 2 Mx , z v x and z NMx

y. Hence z ¤ x, so z @ x.
We show that z N y. Indeed, suppose that for some u0 we have u0 v z and u0 v y.
Then u0 2 P.y/ � My D Mx . And this leads to a contradiction: z �Mx

y.

Fact 5.3 There is a frameU for which:
(a) the axioms (A1)–(A3) are true,
(b) for everyM from���U the condition (SSPM ) holds,
(c) (WSP) and (SSP) are false.

Thus (WSP), and in consequence (SSP), do not follow from (A1)–(A3) and (SSPM )
for everyM 2���U .

Proof We consider a frame U D hU;@i that is depicted on the diagram in Fig-
ure 2. Of course, for this diagram the relation @, represented again by!, is locally
transitive and acyclic.

We have that���U D ¹M1;M2º, where M1 D ¹123; 12; 23º and M2 D ¹12;

23; 1; 2; 3º. So the family���U meets (A3), (A3s), .SSPM1/, and .SSPM2/.
Moreover, we have 23 @ 123, but there is no z 2 U such that z @ 123 and z N 23,

since 12 � 23. Hence (WSP) and (SSP) are false inU.

We introduce two versions of the fourth axiom:
(A4) U satisfies (SSP) (in a strong version),

(A4w) (SSPM ) holds for everyM 2���U (in a weak version).
We prove that on the basis of (A1)–(A3) the axiom (A4) is stronger than (A4w)

(see Lemma 5.2 and Fact 5.3). In Section 8 we assume the fifth axiom, (A5), which
makes axioms (A4) and (A4w) equivalent (see Theorem 8.5).

From (A4) we obtain the proper parts principle (see [7]):

8x;y2U

�
; ¤ PP.x/ � PP.y/ H) x v y

�
: (PPP)

Indeed, let ; ¤ PP.x/ � PP.y/. Then x � y. Suppose that x @ y. Then, by
(SSP), for some z, z v x and z N y. Hence z ¤ x, so z @ x. Thus also z @ y, a
contradiction.
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Figure 3

Similarly, from (A4w) for every M 2 ���U we obtain the following “partial
version” of PPP:

8x;y2M

�
; ¤ PP.x/ \M � PP.y/ H) x v y

�
: (PPPM )

Now for any x 2 U andM 2���U we put
O.x/´ ¹y 2 U W y � xº;

OM .x/´ ¹y 2 U W y �M xº:

Notice that P.x/ � O.x/, so from (SSP) we have the following sentence:
8x;y2U

�
P.x/ � O.y/ H) x v y

�
;

8x;y2U

�
O.x/ � O.y/ H) x v y

�
:

(SSP�)

Finally, since for eachM 2���U the pair hM;@jM i is a separative strict partial
order, by (SSPM ), Lemma 4.2(4), and P.x/ \M � OM .x/ we obtain

8x;y2M

�
x v y ” P.x/ \M � OM .y/

�
;

8x;y2M

�
x v y ” OM .x/ � OM .y/

�
:

(SSPM
? )

Referring to Lemma 4.2 and endnote 4 let us notice the following fact.

Fact 5.4 There is a frameU for which:
(a) the axioms (A1)–(A4) are true,
(b) for someM 2���U , �M ¨ �jM , GM ¨ GjM , and NjM ¨ NM .

Proof This frame is depicted in the diagram in Figure 3. Of course, for this dia-
gram the relation @ is locally transitive and acyclic. We have���U D ¹M1;M2º,
where M1 D ¹1234; 12; 23; 4º and M2 D ¹12; 23; 1; 2; 3; 4º. So in this frame the
family���U satisfies axioms (A3) and (A3s). Moreover, (SSP) is also true in this
frame. Finally, 12 � 23, but 12 NM1 23.

6 “Partial Principle of Monotonicity”: An Equivalent Version of (A4w)

LetU D hU;@i satisfy axioms (A1)–(A3). To make the expressions shorter we put
for anyM 2���U and S 2 2U ,S

O.S/´ ¹x 2 U W 9u2Su � xº;S
OM .S/´ ¹x 2 U W 9u2Su �

M xº:

Of course,
S

O.;/ D ; D
S

OM .;/,
S

OM .S/ �M , and
S

OM .S/ �
S

O.S/.
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The lemma below indicates a condition equivalent to the axiom (A4w).

Lemma 6.1 For everyM 2���U ,
1. the transitivity of @jM and (SSPM ) entail the following “partial principle of

monotonicity”:

8x;y2M8S22M

�
S � P.y/ ^ P.x/ \M �

S
OM .S/ H) x v y

�
I (MPM )

2. (SSPM ) follows from (MPM ) and the reflexivity of vjM .

Proof Ad 1. Let x; y 2 M , S � M \ P.y/ and 8z2M .z v x ) 9u2Su �
M z/.

Then 8z2M .z v x ) 9u2M .u v y ^ u �M z//. Hence, by Lemma 4.2(4), we
obtain 8z2M .z v x) z �M y/. Hence x v y, by (SSPM ).

Ad 2. For any x; y 2M we put S ´ ¹yº.

From Lemma 6.1 we obtain the following.

Theorem 6.2 On the basis of (A1)–(A3),

.A4w/ ” (MPM ) holds, for everyM 2���U .

7 Mereological Sums

The crucial notion of mereology is that of mereological sum. By defining it we want
to say what it means that some object is a mereological sum (or a collective class) of
all members of some distributive class of objects.

Remark 7.1 In mereology, assuming that the relation @ is transitive on U , we
consider the following definition of being a sum of all elements of a given set (see,
e.g., [5], [7]):

x sumcl S
df
” S � P.x/ �

S
O.S/: (dfsumcl)

If x sumcl S , then we say that x is a mereological sum of all members of the set S .
Since we have not assumed the transitivity of the relation @, we have to modify the
above definition.

Suppose that the frame U D hU;@i satisfies axioms (A1)–(A3) and (A4w). We
define the following binary relation sum in U � 2U :

x sumS
df
” S � P.x/ ^ 8M2���U

�
P.x/ �M H) P.x/ �

S
OM .S/

�
:

(dfsum)

By Corollary 3.4 the above definition of mereological sum is correct.
Notice that we obtain the following.

Lemma 7.2 For any x 2 U and S 2 2U , we have the following:
1. if x sumcl S or x sumS , then S ¤ ;;
2. x sumcl ¹xº, x sumcl P.x/, x sum ¹xº, and x sum P.x/;
3. x sumcl PP.x/ iff PP.x/ ¤ ; iff x sum PP.x/.

Proof By the reflexivity of v, we have ¹xº � P.x/ ¤ ;, P.x/ � O.x/, and
P.x/ � OM .x/, for anyM 2���U such that P.x/ �M .

Ad 1. If x sumcl S , then ; ¤ P.x/ �
S

O.S/ and consequently S ¤ ;,
since

S
O.;/ D ;. If x sumS , then by Corollary 3.4 for some M 2 ���U we
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have P.x/ � M . So ; ¤ P.x/ �
S

OM .S/, and consequently S ¤ ;, sinceS
OM .;/ D ;.
Ad 2. We have ¹xº � P.x/ � O.x/ D

S
O.¹xº/ �

S
O.P.x//. So

x sumcl ¹xº and x sumcl P.x/. Moreover, for anyM 2���U such that P.x/ �M ,
¹xº � P.x/ � OM .x/ D

S
OM .¹xº/ �

S
OM .P.x//. So x sum ¹xº and

x sum P.x/.
Ad 3. If PP.x/ ¤ ;, then PP.x/ � P.x/ �

S
OM .PP.x// �

S
O.PP.x//, for

anyM 2���U such that P.x/ �M . So x sumcl PP.x/ and x sum PP.x/.

Remark 7.3

1. If we suppose that in U D hU;@i the relation @ is transitive, then
���U D ¹U º. So �M D �U D �, and we obtain the “classical defi-
nition” of mereological sum, that is, we obtain sum D sumcl.

2. In the general case the relation sumcl is not suitable even for axioms
(A1)–(A4) and (A3s). For example, in the frame in Figure 3, we have
1234 sumcl ¹23; 4º.

Moreover, for axioms (A1)–(A3), (A3s), and (A4w) in the frame in Figure 2, we
have 123 sumcl ¹12º, 12 sumcl ¹12º, 123 sumcl ¹23º, and 23 sumcl ¹23º.

3. We obtain sum D sumcl, if we assume the fifth axiom as we do in Section 8
(see Theorem 9.1).

The definition of mereological sum is so complicated, since the case PP.x/ D ;
is possible. The following lemma indicates a simplified version of the definition of
mereological sum.

Lemma 7.4 For all x 2 U and S 2 2U , we have the following.
1. If PP.x/ D ;, then x sumS iff S D ¹xº iff x sumcl S .
2. If PP.x/ ¤ ;, then P.x/ � Mx and, moreover,

x sumS ” S � P.x/ �
S

OMx
.S/:

Proof Ad 1. Let PP.x/ D ;. Then P.x/ D ¹xº and by Lemma 7.2(1), if x sumcl S

or x sumS , then ; ¤ S � P.x/ D ¹xº. Moreover, by Lemma 7.2(2), x sumcl ¹xº

and x sum ¹xº.
Ad 2. Let PP.x/ ¤ ;. Then Mx is the unique set in���U which includes P.x/,

by Corollary 4.5.

So the following corollary holds.

Fact 7.5 We have sum � sumcl.

Proof Suppose that x sumS . If PP.x/ D ;, then x sumcl S , by Lemma 7.4(1). If
PP.x/ ¤ ; then, by Lemma 7.4(2), ; ¤ S � P.x/ � Mx and P.x/ �

S
OMx

.S/.
So also in this case we have that x sumcl S , because

S
OMx

.S/ �
S

O.S/.

Remark 7.6 From (A1)–(A4) it does not follow that sumcl � sum. For example,
for the frame in Figure 3 we have 1234 sumcl ¹23; 4º, but : 1234 sum ¹23; 4º.

By definitions and Lemma 7.2(1), for any x 2 U and S 2 2U we can prove the
following equivalence:

x sumS ” ;¤ S � P.x/ ^ 8M2���U

�
P.x/ �M ) PP.x/ �

S
OM .S/

�
:
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Indeed, for ) we use Lemma 7.2(1) and (dfsum). For ( suppose that P.x/ �
M 2 ���U . Then there is u0 2 S � P.x/; so for some u 2 S � M we have
u �M x. So, by (dfsum), x sumS .

Thus, by the above fact and Lemma 7.4 we have the following.

Fact 7.7 If PP.x/ ¤ ;, then

x sumS ” ;¤ S � P.x/ ^ PP.x/ �
S

OMx
.S/:

Now notice that, by the above facts and Lemmas 5.1 and 7.2(2), we obtain the fol-
lowing.

Fact 7.8 The axioms (A1)–(A3) and (A4w) entail
8x;y2U

�
x sum ¹yº ” x D y

�
:

Proof Let x sum ¹yº and x ¤ y. Then y @ x and y; x 2 Mx . Moreover, by
.WSPMx

/, for some z 2 Mx , z @ x, and z NMx
y. This is a contradiction, because

z @ x and x sum ¹yº entail y �Mx
z.

Remark 7.9

1. From (A1)–(A3) and (WSP) we obtain
8x;y2U

�
x sumcl ¹yº ” x D y

�
:

2. But for (A1)–(A3), (A3s), and (A4w), for the frame in Figure 2, we have
123 sumcl ¹12º, 12 sumcl ¹12º, 123 sumcl ¹23º, and 23 sumcl ¹23º.

As the second corollary from Lemma 6.1 we have the following fact.

Fact 7.10 The axioms (A1)–(A3) and (A4w) entail
8x;y2U8S22U .x sumS ^ y sumS H) x D y/: (f-sum)

Proof Let x sumS and y sumS . If PP.x/ D ; or PP.y/ D ;, then S D ¹xº or
S D ¹yº, by Lemma 7.4. Hence x D y, by Fact 7.8.

Let PP.x/ ¤ ; ¤ PP.y/, and suppose that x ¤ y. Then ; ¤ S � P.x/ \
P.y/ � Mx \My . We show that Mx D My .

Suppose that Mx ¤ My . Then either P.x/ \ P.y/ � min@.Mx/ \max@.My/ or
P.x/ \ P.y/ � max@.Mx/ \ max@.My/, by (A30). Hence y a x and x a y. But
x � y, so x G y, by (1) and definitions. Therefore Mx D My , by Lemma 4.11.

Thus we obtain x; y 2 Mx , S � P.x/, Mx \ P.x/ �
S

OMx
.S/, S � P.y/, and

Mx \ P.y/ �
S

OMx
.S/. Hence x v y and y v x, by Lemma 6.1. So, by (antiv),

we obtain a contradiction: x D y.

For any x 2 U and S 2 2U , we say that x is the supremum of all elements of a set S
(we will write for short: x supS ) iff x is the least upper bound of all elements of S .
Formally, we define the binary relation sup in U � 2U :

x supS
df
” S � P.x/ ^ 8y2U

�
S � P.y/) x v y

�
:

From (antiv) we obtain that for any x; y 2 U and S 2 2U ,
x supS ^ y supS H) x D y: (f-sup)

Lemma 7.11 For all x 2 U and S 2 2U we have the following:
1. x sup; iff 8u2Ux v u;
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2. if PP.x/ D ;, then: x supS iff S D ¹xº or both S D ; and 8u2Ux v u;
3. if PP.x/ ¤ ;, then P.x/ � Mx and, moreover,

x supS ” S � P.x/ ^ 8y2Mx

�
S � P.y/) x v y

�
:

Proof Ad 2. Let PP.x/ D ;. For), if x supS , then S � P.x/ D ¹xº. So if
S ¤ ¹xº, then S D ;. For(, first x sup ¹xº. Second, we use 1.

Ad 3. Let PP.x/ ¤ ;. Then Mx is the unique set in���U which includes P.x/.
) By definitions. For(, notice that, by assumptions, S ¤ ;. Indeed, if S D ;,
then for any y 2 Mx , x v y, and consequently we have a contradiction: PP.x/ ¤ ;,
and for any y 2 PP.x/ � Mx , x v y. We show that for any u such that S � P.u/
either u 2 Mx or x v u. Suppose that S � P.u/, u … Mx , and x @ u. Then u a x
and ; ¤ S � PP.x/ \ PP.u/, so x G u. Hence, by Lemma 4.11, Mx D Mu and
u 2 Mx .

In [4, p. 78] it is proved that if @ is transitive, then (SSP) is equivalent to the inclusion
sumcl � sup. Below we generalize it without assuming the transitivity of @.

Theorem 7.12 On the basis of (A1)–(A3), the axiom (A4w ) is equivalent to the
following inclusion: sum � sup.

Proof ) Let x sumS . We consider two cases.
First, let PP.x/ D ;. Then S D ¹xº and x sup ¹xº, by Lemmas 7.4 and 7.11.
Second, let PP.x/ ¤ ;. Then P.x/ � Mx and S � P.x/ �

S
OMx

.S/,
by Lemma 7.4(2). Suppose that y 2 Mx and S � P.y/. Then, since P.x/ �S

OMx
.S/, we have x v y, by (MPM ). Therefore x supS , by Lemma 7.11(3).

( LetM 2���U , x; y 2 M and P.x/ \M � OM .y/. We prove that x v y,
so we obtain (SSPM ). We consider two cases.

First, let PP.x/ D ; or PP.x/ ª M . Then x 2 min@.M/, by the assumption or
Corollary 4.8(2). Hence x v y, by (rv), definitions, and assumptions.

Second, let ; ¤ PP.x/ � M . Then P.x/ � M , so M D Mx . Now, by
Lemma 7.4(2), we prove that x sumS , where S ´ Mx \ P.x/ \ P.y/. Since
S � P.x/, we must show that P.x/ �

S
OMx

.S/. Let z 2 P.x/. Then, by the
assumption, z �Mx

y; that is, for some u 2 Mx we have u v z and u v y. So also
u v x, by transitivity of vjMx . Hence u 2 S and u �M z, by (rv).

Now, by the assumption, x supS . Therefore x v y, since S � P.y/.

From (f-sup) and Theorem 7.12 we obtain the following.

Corollary 7.13 The axioms (A1)–(A3) and (A4w ) entail

8x;y2U8S22U .x sumS ^ y supS H) x D y/:

Remark 7.14 1. There is a separative strict partial order hU;@i such that the
following sentence is false:

8S22UX¹;º8x2U .x supS ) x sumS/: (�)

Thus (�) does not follow from (A1)–(A4) (nor from (A1)–(A5); see Section 8). We
consider a separative strict partial order which is depicted in the diagram in Fig-
ure 4. Notice that the set ¹1; 2º has the upper bound equal to 123, while it has no
mereological sum.
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Figure 4

Figure 5

2. Lack of (�) among the theorems of a theory seems to be a good option, if we
want to have a theory free from existential assumptions. The diagram in Figure 4
shows that in the absence of (�) there does not have to exist an object being a mere-
ological sum of two objects (e.g., of 1 and 2; of 2 and 3; of 1 and 3), even in the case
when these objects are parts of some third object (e.g., 123 in the structure consid-
ered). On the other hand, the presence of (�) in a theory would entail existence of
sums of the listed pairs of objects. Thus, enriching a theory with (�) would force us
to “close” the structure from Figure 4 with sums of 1 and 2; 2 and 3; 1 and 3. The
structure obtained in this way would be the one in Figure 5.

8 The Fifth Axiom

By Lemma 4.2 for every M 2 ���U we have NjM � NM , �M � �jM , and all
members of the set min@.M/ are pairwise in the relation NM . Before introducing the
fifth axiom let us notice the following.

Lemma 8.1 The axioms (A1)–(A3) imply that for anyM 2���U the following
conditions are equivalent:

(a) all members of the set min@.M/ are pairwise in the relation N,
(b) NM � NjM ,
(c) �jM � �M .
(d) GjM � GM .

Proof (a) ) (b) Let x NM y (so x; y 2 M ). If : x NjM y, then x � jM y. So
x; y 2 min@.M/, by Lemma 4.10. Hence, by (a), we have x N y, and consequently
also x NjM y. Therefore x N jM y.
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(b)) (a) By Lemma 4.2(3), all members of the set min@.M/ are pairwise in the
relation NM , so we use (b).

(b), (c), (d) Lemma 4.2(2).

We now assume the following fifth axiom:
(A5) everyM from���U , satisfies the (equivalent) conditions from Lemma 8.1.

Example 8.2 Referring again to Example 4.14, the members of C (cells) are min-
imal in the set M1. All cells are pairwise in the relation N. Similarly, it is also the
case for the members of N [ A (nuclei of cells and other parts of cells) which are
minimal in the setM2.

Fact 8.3 There is frame for which
(a) the axioms (A1)–(A4) are true;
(b) (A5) is false.

Thus, axioms (A1)–(A4) do not imply (A5).

Proof This frame is depicted in the diagram in Figure 3. Axiom (A5) is false in
this frame, since 12; 23 2 min@.M1/, but 12 � 23.

Now we show that the axioms (A1)–(A3) and (A5) entail that the axioms (A4) and
(A4w) are equivalent. To this end we prove the following lemma.

Lemma 8.4 The axioms (A1)–(A3), (A4w ), and (A5) entail (WSP).

Proof Let y @ x. Then x; y 2 Mx , by Lemma 4.3. Moreover, x @ y, by (as@).
Hence, by .SSPMx

/, there is z 2 Mx such that z v x and z NMx
y. We have that

z ¤ x, that is, z @ x. Moreover, z N y, by the fourth axiom and Lemma 8.1.

Thus, by Lemmas 5.1, 5.2, and 8.4 we obtain the following.

Theorem 8.5 The axioms (A1)–(A3) and (A5) imply that (A4) and (A4w ) are
equivalent.

Now notice what follows.

Theorem 8.6

1. The axioms (A1)–(A3) and (A5) imply that for anyM 2���U ,

�jM D �M and NjM D NM :

2. The axioms (A1)–(A5) imply that for anyM 2���U ,

8x;y2M

�
x v y ” 8z2M .z � x) z � y/

�
: (SSPM

??)

Proof Ad 1. This is proved by Lemmas 4.2(1) and 8.1.
Ad 2. This is proved by (SSPM

? ) and 1.

Remark 8.7 If we suppose that in an irreflexive frame U D hU;@i the relation
@ is transitive, then���U D ¹U º, so this frame automatically fulfills the axioms
(A1)–(A3) and (A5) (see Remark 4.1). Assuming then an additional axiom (SSP)
(i.e., (A4)), we will consider a theory of these separative strict partial orders in which
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Figure 6

the following condition holds:

8x;y2U

�
x v y ” 8z2U .z � x) z � y/

�
:

In this theory we assume “the classical definition” of mereological sum (see Re-
mark 7.1).

Remark 8.8 Notice that (SSP) is not entailed by (irr@) and (t@) nor by (A1)–(A3)
and (A5). Hence (A4) is independent from (A1)–(A3) and (A5) (see Remarks 4.1
and 8.7). Indeed, we consider a strict partial order which is depicted in a diagram on
the left in Figure 6. This frame is not separative; that is, it does not satisfy (WSP) or
(SSP).

Moreover, in the right part of Figure 6 we consider another frame U in which
(A1)–(A3) and (A5) are true but (A4) is false. In this case���U D ¹¹2; 3º; ¹1; 2ºº.

9 Mereological Sums for Axioms (A1)–(A5)

By Lemma 7.4 and Theorem 8.6, in a theory based on axioms (A1)–(A5) we have
the “classical definition” of mereological sum.

Theorem 9.1 The axioms (A1)–(A5) imply

sum D sumcl:

Proof �: This is proved by Fact 7.5.
�: Let x sumcl S ; that is, let S � P.x/ �

S
O.S/. First, if PP.x/ D ;, then

we use Lemma 7.4(1). Second, if PP.x/ ¤ ;, then S � P.x/ � Mx . Hence
8y2Mx .y v x ) 9u2S u �jMx y/. So P.x/ �

S
OMx

.S/, by Theorem 8.6(1). We
finish the proof by applying Lemma 7.4(2).

Notes

1. Theories presented in the paper do not have any axioms postulating existence of mereo-
logical sums (or collective sets). A sum postulated by such axioms may seem to be an ad
hoc object. For example, it does not have to be the case that two objects being both parts
of some third object have their mereological sum (for details see Remark 7.14). In the
theories presented in this paper, only those mereological sums exist which are obtainable
solely by the suitable definitions.

2. This is not, however, Leśniewski’s approach. As Tarski notes, “it should be emphasized
that mereology, as it was conceived by its author (i.e., Leśniewski), is not to be regarded
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as a formal theory where primitive notions may admit many different interpretations”
(see [8, p. 334]).

3. We say that a path .u0; u1; : : : ; un/ is included in a subset X iff ¹u0; u1; : : : ; unº � X .
Moreover, we will say that a point u is a member of a path .u0; u1; : : : ; un/ iff
u 2 ¹u0; u1; : : : ; unº.

4. Note that �M (resp., GM , NM ) does not have to be identical with �jM (resp., G jM , NjM )
(see, e.g., diagrams in Figures 2 and 3).

5. The quantifier 91 means “there is exactly one.” Throughout the paper we use the descrip-
tion operator š to form the expression p.šM/'.M/q, which is the individual constant “the
only setM such that '.M/.” To use it, first we have to prove that there exists exactly one
setM such that '.M/, formally, p91

M
'.M/q; that is, the formula '.M/ must fulfill the

following condition: p9M .'.M/ ^ 8M 0.'.M/)M DM 0//q.
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