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Mereology on Topological and Convergence Spaces

Daniel R. Patten

Abstract We show that a standard axiomatization of mereology is equivalent
to the condition that a topological space is discrete, and consequently, any model
of general extensional mereology is indistinguishable from a model of set the-
ory. We generalize these results to the Cartesian closed category of convergence
spaces.

1 Introduction

In 1981, Clarke [6] proposed an axiomatization of mereology—the study of the re-
lationship between part and whole—with one primitive connection: two regions are
connected if they intersect. Some ten years later Randell, Cui, and Cohn [15] weak-
ened this definition of connection by requiring only that the topological closures of
the two regions intersect. Although Casati and Varzi [5] discuss several approaches
to mereology, their “favored strategy” uses this definition of connection; in turn, they
define parthood in terms of connection: one thing is a part of another if and only if
anything connected to the former is also connected to the latter. In contrast, Guarino,
Carrara, and Giaretta [8] used this definition of connection but chose, for reasons un-
clear, not to define parthood in terms of connection—an uneconomical choice since
it increases the number of primitives in the theory.

Although those cited above have examined thoroughly the relational logic implied
by the mereotopological axioms, they have neglected the topological consequences
of these same axioms. In this paper, we remedy this oversight in two ways. First, we
determine the topological structures determined by the mereotopological axioms of
[15]; in particular, we show that the definition of Randell, Cui, and Cohn is equivalent
to the condition that a topological space is discrete. Second, we generalize this result
to CONV, the Cartesian closed category of convergence spaces, of which TOP, the
category of topological spaces, is a full subcategory.1
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2 Mereology on Topological Spaces

Conventional treatment of mereology begins by defining the binary relations con-
nection, as in [15], and parthood, with the condition that parthood is a partial order.
We take an ostensibly different, but in fact equivalent, approach: rather than explic-
itly require parthood to be a partial order, we define connection to be an extensional
relation.2

Definition 2.1 Let .X; T / be a topological space. Let j be an extensional binary
relation on 2X � ¹;º such that AjB if and only if the topological closures of A and
B intersect; formally, we write

.8A/.8B/
�
AjB , cl.A/ \ cl.B/ ¤ ;

�
: (1)

Two subsets A and B of X are connected if and only if AjB . We refer to j as the
connection relation.

Proposition 2.2 The connection relation is reflexive and symmetric.

Proof Suppose that A and B are nonempty subsets of a topological space X .
(Reflexivity) Since cl.A/ \ cl.A/ D cl.A/ ¤ ;, it follows that AjA.
(Symmetry) If AjB , then cl.B/\ cl.A/ D cl.A/\ cl.B/ ¤ ;, and thus BjA.

Connection is not an equivalence relation: it is not transitive. To see this, consider
the following counterexample. Suppose that X has the discrete topology and that
; ¤ A � B � X . Since every set of a discrete space is closed, it follows that
cl.B/ \ cl.X � A/ D B \ .X � A/ ¤ ;; thus Bj.X � A/. Likewise AjB because
cl.A/ \ cl.B/ D A \ B ¤ ;. But it is not the case that Aj.X � A/; otherwise
A \ .X � A/ D cl.A/ \ cl.X � A/ ¤ ;, which is absurd.

Definition 2.3 Let .X; T / be a topological space. Let� be a relation on 2X �¹;º

such that
.8A/.8B/

�
A � B , .8C/.C jA! C jB/

�
: (2)

A subset A of X is a part of a subset B of X if and only if A � B . We refer to � as
the parthood relation.

Proposition 2.4 The parthood relation is a partial order.

Proof Suppose that A, B , and C are nonempty subsets of a topological space X .
(Reflexivity) Since .8C/.C jA! C jA/, it follows that A � A.
(Transitivity) Let A � B and B � C . If DjA, then by definition of parthood

DjB , and soDjC . Therefore A � C .
(Antisymmetry) Let A � B and B � A. By definition of parthood, it follows that

.8C/.C jA$ C jB/. Thus, by hypothesis, we have A D B .

Notice that connection need not be extensional for parthood to be reflexive and tran-
sitive; connection, however, must be extensional for parthood to be antisymmetric.
To see this, suppose that the parthood relation is antisymmetric, but do not require
that connection to be extensional. Let A and B be subsets of a topological space X .
Suppose that .8C/.C jA$ C jB/. By definition of parthood, it follows that A � B
and B � A. Thus, by hypothesis, we have A D B . Therefore, if we require parthood
to be a partial order, then we must require connection to be extensional.

While it is conceivable that additional topological constraints could guarantee
parthood to be antisymmetric, no separation axiom will suffice. To see this, suppose
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that connection is defined as above but without the requirement that it be extensional.
Consider the standard topology onR. LetA D ¹1=n W n 2 ZCº, and letB D A[¹0º.
Then cl.A/ D B D cl.B/, and so both A � B and B � A. But A ¤ B . Since R is a
T6-space, we conclude that no separation axiom implies antisymmetry of parthood.

Definition 2.5 A mereology is a triple .X; T ;�/ in which .X; T / is a topological
space and� is a parthood relation.3 When no reasonable confusion is likely, we refer
to .X; T ;�/ by X .

We now ask two questions. Given a mereology .X; T ;�/, what is the structure of T ?
Conversely, which topological spaces are candidates for mereologies? To motivate
an answer, we study a simple example.

Example 2.6 Consider X D ¹a; b; cº, and let .X; T ;�/ be a mereology. Which
of the nine nonhomeomorphic topologies on X can T be?

If T D ¹;; ¹aº; Xº, then cl.¹bº/ D ¹b; cº D cl.¹cº/, and so for any A � X

both Aj¹bº and Aj¹cº; thus ¹bº � ¹cº and ¹cº � ¹bº, which implies that ¹bº D ¹cº,
which is absurd.

Of the eight remaining topologies, we can apply minor variations of this reduc-
tio ad absurdum to all but the discrete topology, which is, as is easily verified, a
mereology.

Not only can we generalize the argument given in Example 2.6 to show that every
mereology is discrete, but we can also show that every discrete topological space is
a mereology.

Theorem 2.7 A topological space is a mereology if and only if it is discrete.

Proof LetX be a topological space. It suffices to show that the connection relation
is extensional if and only if X is discrete.

(Necessity) LetX have the discrete topology. Suppose thatA andB are subsets of
X and that C jA if and only if C jB for every subset C of X . If x 2 A, then ¹xº � A.
Since X is discrete, it follows that cl.¹xº/ \ cl.A/ D ¹xº \ A ¤ ;; thus ¹xºjA, and
so by hypothesis ¹xºjB , which implies that ¹xº \ B D cl.¹xº/ \ cl.B/ ¤ ;, from
which we infer that x 2 B . An exactly similar argument shows that x 2 A whenever
x 2 B . Therefore A D B .

(Sufficiency) Let the connection relation be extensional. Without loss of general-
ity, suppose that A is a nonempty subset ofX . Since cl.cl.A//\cl.A/ D cl.A/ ¤ ;,
it follows that cl.A/jA and Aj cl.A/, and so by hypothesis cl.A/ D A. Thus every
subset of X is closed; that is, as a topological space X is discrete.

In view of Theorem 2.7, we can simplify Definition 2.1 by replacing (1) with

.8A/.8B/.AjB , A \ B ¤ ;/: (3)

As a consequence, we obtain a corollary to Theorem 2.7.

Corollary 2.8 If A and B are nonempty subsets of a mereology X , then A � B if
and only if A � B .

Proof Let A and B be nonempty subsets of a topological space X .
(Necessity) Suppose that A � B . If C jA for some subset C of X , then

C \ B � C \ A ¤ ;. Thus C jB , and therefore A � B .
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(Sufficiency) Suppose that A � B . If x 2 A, then ¹xº � A, and so ¹xº \ A D ;,
which implies that ¹xºjA; thus ¹xºjB , from which it follows that ¹xº \ B ¤ ;, and
so x 2 B . Therefore, we conclude that A � B .

Corollary 2.8 shows that the parthood relation is equivalent to the subset relation and
thereby effectively demonstrates the equivalence of mereology and set theory. We
can obtain a stronger result than this, namely, the equivalence of general extensional
mereology and set theory. To proceed, we present several definitions and intermedi-
ate results.

Definition 2.9 Let X be a mereology. Let < be a binary relation on 2X � ¹;º

such that
.8A/.8B/

�
A < B , .A � B ^ A ¤ B/

�
: (4)

A subset A of X is a proper part of a subset B of X if and only if A < B . We refer
to < as the proper parthood relation.

Proposition 2.10 The proper parthood relation is asymmetric and transitive.

Proof Let A, B , and C be subsets of a mereology X .
(Asymmetry) To the contrary, suppose that A < B and B < A. By definition

of proper parthood, it follows that A � B , B � A, and A ¤ B . By antisymmetry
of parthood, however, we see that A D B , in contradiction to the former result.
Therefore, we conclude that B 6< A.

(Transitivity) Suppose that A < B and B < C . By definition of proper parthood,
it follows that A � B , B � C , A ¤ B , and B ¤ C . By transitivity of parthood, we
see that A � C . If A D C , then B � A, and so antisymmetry of parthood implies
that A D B , in contradiction to the result that A ¤ B . Thus A ¤ C , and therefore
A < C .

Definition 2.11 Let X be a mereology. Let ˇ be a binary relation on 2X � ¹;º

such that
.8A/.8B/

�
Aˇ B , .9C/.C � A ^ C � B/

�
: (5)

Two subsets A and B ofX overlap if and only if AˇB . We refer toˇ as the overlap
relation.

While reflexive and symmetric, the overlap relation is not transitive. In view of
Theorem 2.7, it follows that two sets overlap if and only if they intersect.

Definition 2.12 (see [5]) Let A and B be subsets of a mereology X . The weak
supplementation principle asserts that if A is a proper part of B , then there is a part
of B not overlapping A. Formally, we write

.8A/.8B/
�
A < B ! .9C/.C � B ^ :.C ˇ A//

�
: (6)

The strong supplementation principle asserts that unless B is a part of A there is a
part of B not overlapping A. Formally, we write

.8A/.8B/
�
:.B � A/! .9C/.C � B ^ :.C ˇ A//

�
: (7)

Proposition 2.13 The strong supplementation principle implies the weak supple-
mentation principle.
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Proof Suppose that the strong supplementation principle holds in a mereology X .
Let A and B be subsets of X such that A < B . By definition of proper parthood, it
follows that A � B and A ¤ B . By the antisymmetry of parthood :.B � A/. By
hypothesis, therefore, we conclude that there exists a subset C ofX such that C � B
and :.C ˇ A/.

Observe that the proof of Proposition 2.13 does not require connection to be exten-
sional. If, on the other hand, connection is extensional, then the strong supplementa-
tion principle will hold in every mereology.

Proposition 2.14 The strong supplementation principle holds in every mereology.

Proof LetX be a mereology, and suppose that:.B � A/ for some nonempty sub-
setsA andB ofX . By Corollary 2.8, it follows that:.cl.B/ � cl.A//, which implies
that there exists an x 2 X such that x 2 cl.B/ and x … cl.A/. By the former con-
junct we have cl.¹xº/ � cl.B/, and so by Corollary 2.8 again we infer that ¹xº � B;
by the latter conjunct and Theorem 2.7, we have cl.¹xº/\ cl.A/ D ¹xº\ cl.A/ D ;,
and so :.¹xºjA/, which implies that :.¹xº ˇ A/.

Definition 2.15 (see [5]) The general sum of all sets satisfying a predicate ' is
the set

†' D �A8B
�
Aˇ B $ 9C.'C ^ C ˇ B/

�
: (8)

Proposition 2.16 Let X be a mereology. If †' exists, then it is the supremum of
ˆ D ¹A � X j 'Aº.

Proof First, we establish that U D †' is an upper bound of ˆ. By (8), we have

U ˇ C $ 9B.'B ^ B ˇ C/: (9)

Suppose that 'S holds. An instance of the contrapositive of the strong supplementa-
tion principle is

.8A/.A � S ! Aˇ U/! S � U: (10)
If A � S , then Aˇ S , and so by (9) it follows that AˇU ; thus by (10) we infer that
S � U .

Now we show that U is the least upper bound of ˆ. Let V be any other upper
bound of ˆ. An instance of the strong supplementation principle is

:.U � V /! .9A/.A � U ^ :Aˇ V /: (11)

Thus, if :.U � V /, then there exists an A such that A � U and :.A ˇ V /. The
former conjunct implies that AˇU , and so by (9) there exists B such that 'B holds
and B ˇ A. Since B ˇ A, there exists E such that E � B and E � A; because
V is a least upper bound of ˆ, it follows that B � V , and so E � V and E � A,
which implies that A ˇ V , in contradiction to :.A ˇ V /. Therefore, we conclude
that U � V .

Finally, we define a general extensional mereology (sometimes referred to as GEM
in the literature). If connection is extensional, then any mereology is a general ex-
tensional mereology.

Definition 2.17 (see [5]) A general extensional mereology is a mereology X in
which the weak supplementation principle holds and †' exists for every relation '
on X .
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Theorem 2.18 Every mereology is a general extensional mereology.

Proof Let X be a mereology. By Theorem 2.7, it follows that X is a discrete
topological space. Since the supremum of ¹A � X j 'Aº is

S
'AA, which always

exists, it suffices to show that
S

'AA satisfies Definition 2.15.
If
S

'AA and B overlap, then there exists C � X that is a subset of both
S

'AA

and B . Now C intersects some A for which 'A holds. Since A \ C is a subset of
both A and B , it follows that A \ C is a part of both A and B , and so A and B
overlap.

Conversely, suppose that B � X and B overlaps with some C � X such that
'C . Since B intersects C , it follows that B intersects

S
'AA, and so B and

S
'AA

overlap.

3 Mereology on Convergence Spaces

The results of the previous section show that general extensional mereology reduces
to set theory. To prevent this reduction, we might relax the definition of connection;
it is not obvious, however, in which way we should do this, for we cannot remove ex-
tensionality from connection without simultaneously removing antisymmetry from
parthood. Alternatively, we observe that TOP, the category of topological spaces,
is a full subcategory of CONV, the category of convergence spaces; subsequently,
we can amend the definition of mereology to be over convergence spaces rather than
topological spaces. Since topological spaces are “coarser” structures than conver-
gence spaces, the “finer” structure of the latter might prevent reduction of general
extensional mereology to set theory, not unlike the way that increasing microscopic
resolution allows the observation of formerly indistinguishable features.

We present, for the reader’s convenience, those concepts from the theory of con-
vergence spaces used throughout our discussion. For wider coverage of convergence
spaces we refer the reader to [1]. To begin, we consider filters, which albeit large,
abstract objects, are easily defined.4

Definition 3.1 LetX be a set. A nonempty collection F of subsets ofX is a filter
if and only if

1. ; … F ,
2. A 2 F and A � B implies B 2 F , and
3. A 2 F and B 2 F implies A \ B 2 F .

If A is a subset of X , then the filter ¹BjA � B � Xº denoted by ŒA� is the principal
filter generated by A. For the point filter ¹xº we write Œx� to abbreviate Œ¹xº�. We
denote the set of all filters on X by ˆ.X/. When F � G , we say that F is finer than
G and G is coarser than F .

Some authors5 allow filters to contain the empty set; in that case, they usually distin-
guish between improper and proper filters, that is, those filters that contain the empty
set and those that do not.

Every filter is contained in some ultrafilter; in fact, each filter is the intersection
of those ultrafilters that contain it. Free filters, which cannot be exhibited since their
existence depends on the axiom of choice, do not contain any finite sets.6

Whereas a topology is a unary relation that defines the open subsets of a set, a
convergence structure is a binary relation between a set and its filters that determines
which filters “converge” to which points.
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Definition 3.2 Let X be a set. A convergence structure is a relation # between
ˆ.X/ and X such that for every x 2 X and F ;G 2 ˆ.X/,

1. Œx� # x,
2. F # x and F � G implies G # x, and
3. F # x and G # x implies F \ G # x.

A convergence space is a pair .X;#/ in which X is a set and # is a convergence
structure. When no reasonable confusion is likely, we refer to .X;#/ by X . We read
F # x as “F converges to x.”

Observe that the finite intersection property of convergence spaces implies that
F \ Œx� converges to x whenever F converges to x. Thus, in view of Definition 3.1,
the filter F must contain some set that contains x. For concision, we say that F is
“located” at x.

There are several extant notions of convergence spaces. For example, [3] and [9]
do not require convergence structures to satisfy the finite intersection property—such
a space is called a generalized convergence space, whereas our definition, which co-
incides with that of [1], is called a limit space.7 Although the two formulations of
convergence space coincide when they are pseudotopolgoical, there are some dis-
tinctions: for example, finite limit spaces are pretopological, but finite generalized
convergence spaces need not be pretopological.8

Definition 3.3 Let X be a convergence space. For every x 2 X , the neighbor-
hood filter of x is the set

Nx D

\®
F 2 ˆ.X/

ˇ̌
F # x

¯
:

Every element of Nx is a neighborhood of x. A set is open if and only if it is a
neighborhood of each of its members.

Definition 3.4 Let X be a convergence space. The closure of a subset A of X is
the set

cl.A/ D
®
x 2 X

ˇ̌
.9F /.F # x ^ A 2 F /

¯
:

A set A is closed if and only if cl.A/ D A.

Definition 3.5 Let .X; T / be a topological space. For every x 2 X , define Ux ,
the set of all topological neighborhoods of x. The topological convergence structure
on X is defined by

F # x if and only if F � Ux :

A convergence space is topological if and only if it has the topological convergence
structure.

Example 3.6 Definitions 3.3 and 3.4 coincide with the usual topological notions
when the convergence space is itself topological. Although closure, as defined in
Definition 3.4, is extensive and preserves both binary unions and the empty set, it
does not satisfy all of the Kuratowski closure axioms; in particular, closure is not an
idempotent operation.9 To see this, define a convergence structure10 onX D ¹0; 1; 2º
by the equivalences

F # 0, F � Œ¹0; 1º�;

F # 1, F � Œ¹1; 2º�;

F # 2, F � Œ¹0; 2º�:
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The only nonempty closed set ofX isX itself; equivalently, the only nonempty open
set of X is X itself. In particular cl.cl.¹0º// D cl.¹0; 2º/ D X . Thus, the closure
operator of convergence spaces, called the Katětov closure operator, does not satisfy
the Kuratowski closure axioms.11

Example 3.7 Since TOP is a full subcategory of CONV, every topological space
is a convergence space; the converse, however, does not hold. To see this, sup-
pose that .Y;#/ is a topological convergence space on Y D ¹0; 1; 2º; that is, some
topology T induces the convergence structure #. It follows that U0 D Œ¹0; 1º� and
U1 D Œ¹1; 2º�. Thus ¹0; 1º and ¹1; 2ºmust both be open in .Y; T /, and so ¹1º is open
in .Y; T /, which implies that ¹1º is a neighborhood of 1 in .Y; T /, from which we
infer that ¹1º 2 U1; but ¹1º … Œ¹1; 2º�. Therefore Y is not a topological convergence
space.12

Since we wish to generalize Theorem 2.7, we need a correct formulation of a discrete
convergence space. Propositions 3.9 and 3.10 show that Definition 3.8 is, indeed,
such a formulation.

Definition 3.8 A convergence space X is discrete if and only if A is finer than
Œx� whenever A converges to x in X .

Proposition 3.9 Every subset of a discrete convergence space is closed.

Proof Let X be a discrete convergence space. If x 2 cl.;/, then ; 2 Œx� since
Œx� # x. This, however, contradicts the condition that ; does not belong to any filter;
thus x … cl.;/ or, equivalently, cl.;/ D ;. Suppose that A is a nonempty subset of
X . If x 2 A, then ¹xº � A, and so A 2 Œx�. Since Œx� # x, it follows that x 2 cl.A/;
thus A � ŒA�. Conversely, if x 2 cl.A/, then there exists a filter F converging to
x that contains A. By hypothesis Œx� � F , which implies that A \ x ¤ ;, and so
x 2 A; thus cl.A/ � A.

Proposition 3.10 A convergence space is discrete if and only if it is a discrete
topological space.

Proof (Necessity) Let .X; T / be a discrete topological space. We must show that
.X; T / induces a discrete convergence structure on X . For each x 2 X , define Nx

to be the collection of all neighborhoods of x. Define a convergence structure .X;#/
onX by F # x if and only if F � Nx . Since .X; T / is discrete, every subset ofX is
open in T ; in particular ¹xº is open in T , and so ¹xº 2 Nx . Thus, if F converges to
x, then F contains ¹xº, which implies that F is the point filter Œx�; therefore, .X;#/
is discrete.

(Sufficiency) Let .X;#/ be a discrete convergence space. We must show that
.X;#/ is topological for the discrete topology T on X . By hypothesis F # x if and
only if Œx� � F . Since Ux D Œx� for every x 2 X , it follows that F # x if and only
if F � Ux . Therefore .X;#/ is topological and, in particular, discrete.

Having assembled the necessary verbal apparatus, we can now state the main result
of the paper.

Theorem 3.11 A convergence space is a mereology if and only if it is discrete.

Proof Let X be a convergence space. It suffices to show that the connection rela-
tion is extensional if and only if X is discrete. The argument is exactly similar to the
proof of Theorem 2.7.
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If we generalize the definition of connection from TOP to CONV, then all results of
the previous section hold mutatis mutandis.13

4 Conclusions

We have investigated mereology14 on topological and convergence spaces. Theo-
rem 2.7 establishes that every mereology, as defined by Definition 2.5, is a discrete
topological space; likewise, Theorem 3.11 shows that every mereology defined on a
convergence space must be a discrete convergence space. The latter result allows us
to generalize Theorem 2.18 to convergence spaces: thus, every mereology defined
on a convergence space is a general extensional mereology, that is, a mereology in
which the weak supplementation principle holds and the general sum exists for each
predicate of the mereology.

A topological space is simply a subcollection of the power set of the underlying
set; a discrete topological space, then, is the entire power set. Thus, our work demon-
strates that general extensional mereology is indistinguishable from set theory—not
a surprising result when one considers that general extensional mereology was devel-
oped in pursuit of an alternative to set theory. We attribute this reduction (of general
extensional mereology to set theory) to the extensionality imposed on connection (or,
equivalently and more conventionally, the antisymmetry imposed on parthood); the
results of Section 3 show that the reduction is not a topological consequence since it
also occurs in CONV of which TOP is a full subcategory.

One possible objection to our work is that it assumes the elements of a mereology
are sets. While we concede this point, we also answer that the assumption arises not
from any peculiarity of our work but from the mereotopological axioms in [15]. In
particular, the axioms require that the topological closures of two connected regions
intersect; but the only objects that have topological closures are indeed sets.

Notes

1. See Mac Lane [11] on category theory, and in particular, Blair et al. [3] on the categories
CONV and TOP. See Kelley [10] or Munkres [13] on topology. Although we provide
some of the basic definitions of convergence spaces, we refer the reader to Beattie and
Butzmann [1] for a fuller treatment of convergence spaces.

2. A relation R on a set S is extensional if and only if a D b whenever Rca $ Rcb for
every a, b, and c 2 S .

3. In view of Definition 2.1 and Proposition 2.4, the parthood relation must be a partial
order. Moreover, the topological space .X; T / completely determines .X; T ;�/.

4. For further discussion on filters, see Bourbaki [4]; for a historical treatment of their
development, see Mashaal [12].

5. For example, Heckmann [9].

6. See [4] for further discussion.
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7. Our definition also coincides with that of Binz [2]. See Preuß [14] for classification of
convergence spaces.

8. A pseudotopological (or Choquet) space is a convergence space in which a filter F con-
verges to x if and only if every ultrafilter finer than F also converges to x; a pretopolog-
ical space is convergence space in which the neighborhood filter of x converges to x.

9. For details on the Kuratowski closure axioms, see [10].

10. We can view this particular space as a reflexive digraph. See [3] for more on this valu-
able, yet largely unexplored, perspective.

11. For properties of the Katětov closure operator, see Dikranjan [7].

12. A simpler, though less pedagogically fruitive, argument is that since the Katětov closure
operator is not idempotent on X , the convergence space X cannot be topological.

13. There is at least one other approach to this generalization of connection from TOP to
CONV. Instead of using limit spaces, we could have used general convergence spaces
and, in place of Theorem 3.11, prove that a convergence space is a mereology if and only
if it is postdiscrete and pretopological (see [3]).

14. In particular, we investigated mereology with a connection relation, often referred to
as mereotopology. Since we also extended the definition of connection to convergence
spaces, we were reluctant to use that term, while hoping that context could resolve any
ambiguities.
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