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Prediction of Future Observations in

Growth Curve Models

C. Radhakrishna Rao

Abstract. The problem of predicting a future measurement on an individual
given the past measurements is discussed under nonparametric and para-
metric growth models. The efficiencies of different methods of prediction
are assessed by cross-validation or leave-one-out technique in each of three
data sets and the results are compared. Under nonparametric models, direct
and inverse regression methods of prediction are described and their relative
advantages and disadvantages are discussed. Under parametric models
polynomial and factor analytic type growth curves are considered. Bayesian
and empirical Bayesian methods are used to deal with unknown parameters.
A general finding is that much of the information for forecasting is con-
tained in the immediate past few observations or a few summary statistics
based on past data. A number of data reduction methods are suggested and
analyses based on them are described. The usefulness of the leave-one-out
technique in model selection is demonstrated. A new method of calibration
is introduced to improve prediction.

Key words and phrases: Bayesian approach, calibration, cross-validation,
empirical Bayes, factor analytic model, inverse regression, leave-one-out
method, mixed model, part correlation, polynomial model, predictive den-
sity, principal component regression.

1. INTRODUCTION

Let Y; denote a measurement taken on an individual
at time ¢;, i =1, 2, . ... A problem of great interest is
the prediction of Y,+1, Yp+2, - - - having observed the
values of Y; = y;, ---, Y, = ¥, on an individual at p
previous time points ¢; < - - - < t,. Generally, we have
previously recorded data on all the measurements
Yy, -+, Yy, Y41, --- taken on, say, n individuals
from a related or the same population to which the
individual for whom prediction is required belongs.
What is the best way of using the information in the
recorded data for constructing a prediction formula
for future observations on new individuals? The data
on the past individuals and the current (or future)
individual for whom prediction is required may be
represented as in Table 1.

There is considerable literature on this problem. We
briefly review some of the known results and discuss
some alternative approaches. We choose for illustra-
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tion three data sets: weights of 13 mice taken at seven
time points (Table 2), ramus heights (the ramus is the
ascending part of the mandible) of 20 boys taken at
four different ages (Table 3) and dental measurements
of 11 girls and 16 boys taken at four different ages
(Table 4). In each case we use the previous measure-
ments to predict the last measurement and compare
with the actual observed value to assess the accuracy
of any given method.

2. GENERAL THEORY

"To simplify the notation let us represent by vectors
U and W the two sets of variables (observed and to be
predicted),

U= (YI’ MY Yp),9
W= (Yp+l’ Yp+2’ "'),'

Then the complete data on the past n individuals can
be represented as

(Ui,: Wi,) = (yli’ .

(2.1)

‘Y ypi, yp+l,i’ yp+2,i’ ¢ ')’

(2.2)

i = 1’ ey, n y
and the measurements on the current individual by

(2.3) U:w/)
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TABLE 1
Measurements at different time points

TABLE 4
Dental measurements of 11 girls and 16 boys (Potthoff and Roy,
1964; Lee and Geisser, 1975)

Time Points
Individuals
4 e tp tp+1 to+a

Past

1 %81 oo Yp1 Yp+1,1 Yp+2,1

n Yin M Yon yp+1,n yp+2,n
Current

c Yie Yoo ? ?

The values to be predicted are indicated by ?

TABLE 2
Weights of 13 male mice measured at successive intervals of 3 days
over 21 days from birth to weaning (Williams and Izenman, 1981)

Day Day Day Day Day Day Day
3 6 9 12 15 18 21

0.190 0.388 0.621 0823 1.078 1132 1.191
0218 0.393 0.568 0.729 0.839 0.852 1.004
0.211 0.394 0549 0.700 0.783 0.870 0.925
0.209 0419 0.645 0.850 1.001 1.026 1.069
0.193 0.362 0.520 0.530 0.641 0.640° 0.751
0.201 0.361 0.502 0.530 0.657 0.762 0.888
0.202 0.370 0.498 0.650 0.795 0.858 0.910
0.190 0.350 0.510 0.666 0.819 0.879 0.929
0219 0.399 0578 0.699 0.709 0.822 0.953
10 0.225 0.400 0.545 0.690 0.796 0.825 0.836
11 0.224 0381 0.577 0.756 0.869 0.929 0.999
12 0.187 0.329 0.441 0.525 0.589 0.621 0.796
13 0278 0471 0.606 0.770 0.888 1.001 1.105

© 0030 Utk W

¢This could be a recording error, but no change was made in the
present computations.

TABLE 3
Ramus heights of 20 boys at different ages (Elston and Grizzle,
1962; Grizzle and Allen, 1969; Lee and Geisser, 1975)

8 yr 8% yr 9yr 9% yr
1 478 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4
10 45.0 47.0 47.3 48.3
11 51.2 514 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 489 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 517, 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 475 48.1 48.4
20 46.3 47.6 51.3 51.8

8 yr 10 yr - 12yr 14 yr
Girls
1 21 20 21.5 23
2 21 21.5 24 25.5
3 20.5 24 24.5 26
4 23.5 24.5 25 26.5
5 21.5 23 22.5 23.5
6 20 21 21 22.5
7 21.5 22.5 23 25
8 23 23 23.5 24
9 20 21 22 21.5
10 16.5 19 19 19.5
11 24.5 25 28 28
Boys
12 26 25 29 31
13 21.5 22.5 23 26.5
14 23 22.5 24 27.5
15 25.5 27.5 26.5 27
16 20 23.5 22.5 26
17 24.5 25.5 27 28.5
18 22 22 24.5 26.5
19 24 21.5 24.5 25.5
20 23 20.5 31 26
21 2175 28 31 31.5
22 23 23 23.5 25
23 21.5 23.5 24 28
24 17 24.5 26 29.5
25 22.5 25.5 25.5 26
26 23 24.5 26 30
27 22 21.5 23.5 25

or simply by (U’: W’) dropping the suffix c. We use
both the notations depending on the context. The
problem we discuss is the prediction of W, (or W) for
the current individual having observed U, (or U).

We assume that the measurements (U, W) on an
individual are the realizations of a stochastic process
depending on two vector parameters 3 and 6. The
parameter ( is specific to an individual (depending say
on a genetic factor) and may vary over the individuals
of a given population. The parameter é is global in
character (representing say an environmental factor),
common to all individuals of the population. We rep-
resent the probability density of (U, W) for an indi-
vidual with given 8 and specified 6 by D(U, W |8, §)
and that of 8 of the individuals of the population by
D(B|0) depending on a vector parameter 6. (D(3]8)
is in the nature of a prior density in a Bayesian
approach except that, in our context, it has reference
to the particular population from which the individ-
uals are sampled. A further prior on é and 6 would
make the set-up completely Bayesian. See, for in-
stance, Lee and Geisser (1972).

The joint density of the hypothetical (unobservable)
variable 3, the predictor variable U and the predictand



436 C. R. RAO

W for given 6 and é can be factorized in different ways
to provide conditional or predictive distributions
(pred’s) for predicting 8 and/or W in terms of observed
U and specified 6 and 6. In the following formulas, the
suffix “obs” refers to the density of observed variables
and “pred” to those to be predicted. The quantities on
the righthand side of the partition indicate condition-
ing variables and parameters.

DB, U, W|6,3)
=D(B|9)D(U, W|B, d)
= D(ﬂ I O)Dobs(UI ﬂ’ 6)

(2.4)
. Dpred(Wl Uy ﬁ, 6)
(205) = Dobs(UI 0’ B)Dpred(ﬂ9 WI U’ 0’ 6)
= Dobs(UI 0, B)Dpred(ﬁl U’ 0: 6)
(2.6) . Dpred(Wl U’ ﬂ} 6)
= Dobs(UI 0’ 6)Dpred(Wl U’ 0’ 6)
2.7)

* Dpted(ﬂl U, W, 0, 6).

The preds in (2.4) to (2.7) could be used depending on
the nature of the information available on the param-
eters 0, 6 to predict 8 and W. In this paper, we examine
the prediction of W only and note that the prediction
of the hypothetical 8, which is important in some
genetic studies (see Rao, 1953), can be done in a
similar way.

Let U. be the observation on U for the current
individual and W, the observation on W to be pre-
dicted. If 6 and 6 are known, then the appropriate pred
is

(28) Dp.ted(Wcl Uc’ 0’ 6)

as in (2.7), from which an appropriate predictor f (U.)
of W, may be obtained to minimize the expected value
of a given loss function L[W., f (U.)], when the expec-
tation is taken over future individuals drawn from the
population under consideration, i.e. a population char-

acterized by a specified D(8|6) and a specified -

D(U, W|B, é). For instance, if
LIW., f(U.)] = (W. = f(U.)P
then
) = f(U., 6, 9)

(2.9)
= f W, Dyrea (W, | U, 6, 6) dW..

If 6 and 6 are not known we have several possibilities.

2.1 BAYPRED (Bayesian Prediction)

We choose a prior density function D,(6, &) for
the unknown (0, 6) and compute the posterior den-

sity function D, (0, §) based on available data (see
Table 1),

Dpost(oy 6) .
@1.1) = Dro(®,51U;, Wi i=1, .-, n, and U,)

___ D.(8, 5)L(8, 3)
[ D.(8, 5)1(9, 5) db do’

where

1(0’ 6) = Dobs(Uclaa 6) H Dohs(l]iy WIEIOQ 6)
i=1
is the likelihood of (6, §) given all the observed data.
Then the BAYPRED of W, given U, is

D a; re (WC UC)
(2.1.2) oo !

= f Dpred(WcI Uc, 09 B)Dpost(O, 6) d0 da,

which depends only on the known U,. The predictor
derived from (2.1.2) instead of (2.8) minimizes the loss
function in a superpopulation of individuals deter-
mined by the chosen a priori density for (6, §).

Note. In deriving the posterior distribution of (4, §),
the current observation U, is also used. There may be
an advantage in not using U, especially as it enables
the derivation of the prediction function applicable to
all future observations on U.

2.2 EMPRED (Empirical Prediction)

In this procedure, instead of using the posterior
distribution (2.1.1) of (4, 8) which depends on the
chosen a priori distribution, point estimates of § and
6 are obtained from past data and substituted for true
values in the appropriate predictive distribution. For
instance, if § and é§ are maximum likelihood estimates
(mle) of 6 and 6 obtained by maximizing the likelihood

(2~2-1) Dobs(Uc I 0, 6) H Dobs(lji9 Wiloy 6)
i=1

the estimated pred called EMPRED (empirical pre-
dictive density) is

(2.2.2) Demprea(W, | U., 8, §).

II} using (2.2.2) for predicting W,, we behave as if
(9, ) is the actual value of the unknown (0, 6), so that
the accuracy of our prediction depends on how close
(9, ) is to the true value (6, 5). There seems to be no
appropriate theory for taking the estimation errors in
(8, &) into consideration especially when the same
estimate (6, §) is used repeatedly in predicting W for
future individuals. We shall see later on that it is
possible to make an assessment of the loss involved
in using any particular estimate repeatedly in future
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predictions which may be of help in making an opti-
mum choice of an estimate.

It may be of interest to ask whether W, for the
current individual could be predicted using U, only
and the known form of an individual’s stochastic
growth process depending on the individual’s own
parameter (. For this, we need the pred

(22.3) Dpred(wcl Uc’ 69 6)

as in (2.4). Because 8 is unknown, we need an estimate
such as that obtained by maximizing

(2.24) Dobs(Uc I ﬂ’ 5)9

where § is the estimate of & from (2.2.1). If § is the
estimate so derived, then the EMPRED for individual

prediction is
(2-2-5) Dempted(Wc| Uc, Ba g)~

The prediction obtained from the EMPRED in (2.2.5)
does not depend on D (3| #) and, in general, is different
from that obtained from the EMPRED in (2.2.2). The
relative advantages and disadvantages of these esti-
mates are well known (see Rao, 1975). In our present
investigation, we will be comparing the estimates ob-
tained from the EMPRED’s (2.2.2) and (2.2.5).

A Bayesian approach is to consider a prior distri-
bution of 8 and take the expectation of (2.2.3) over 3.

2.3 Point Predictor with a Model Choice

Let h(U) be a predictor of a future observation W
given U, the previous observations on an individual,
and L(W, h(U)) be the loss incurred, where W is the
observed and h(U) is its predicted value. Then the
optimum choice of A is one which minimizes

(2.3.1) E[L(W, h)],

where the expectation is taken over the PRED,
D,(W| U, 4, 6) as defined in (2.6). For instance, when
W is a scalar variable, the optimum % is the mean,
median and the mode of the PRED for the squared

error, absolute error and zero-one loss functions, re- °

spectively. Let h, (U, 6, ) be the optimum choice of h
., in (2.3.1) for given (6, 6). If (f,- 6) is not known, a
natural choice of the predictor is h, (U, 6, 5) where
@, §) is an estimate of (4, §) obtained from past
records. In practice we will be interested in assessing
the loss incurred in using particular estimates (6, 8)
for predicting W given U on future individuals drawn
from the specified population. This loss, for chosen
@, ), is

(2.3.2) R, 8; 0, 8) = E[L(W, h,(U, 6, §))],

where the expectation is taken with respect to the
joint density function Do(U, W4, ) of (U, W) as
defined in (2.7). If we consider repetitions of past

data, the overall loss can be obtained by taking a
further expectation of (2.3.2) over the distribution of
(6, §). In fact such an expectation may provide a
criterion for choosing an appropriate estimator of
(0, 8) from past data. For instance, if the mle of (6, §)
is considered, one could investigate whether there is
an asymptotic gain in correcting the mle for bias up
to terms of order (n7'). Such a possibility exists as
shown by Cox (1975) while investigating a similar
problem. (The methods for correcting mle for possible
bias are discussed in Bartlett (1953) and Rao (1963).)

In practice, the actual functional forms of the prob-
ability densities may not be known. In such a case we
may pose the problem as one of making an appropriate
choice of the predictor h(U, 6, §) from among a given
class of functions H and a given class of estimators S
of (6, ) from past data. We propose a feasible solution
to this problem through the LOO (leave-one-out) tech-
nique as described by Lachenbruch (1975) or CV
(cross-validation) as discussed in papers by Geisser
(1975a) and Stone (1974, 1977).

_Let h(U, 0, 6) be a chosen functional form and
(0, 8—s)) be an estimate of (6, 5) obtained by mini-
mizing

i—-1
3 L(W;, k(U 6, 8))
2.33) )
+ X LW, h(Uj, 6, 8)),

Jj=i+1

where L is_a given loss function and (U;, W;), i = 1,
..., n, are the past observations on the complete set
(U, W). (Note that the observation (U;, W;) does not
occur in (2.3.2).) Then we define the CVAE (cross-
vadidation assessment error)

(2.3.4) CVAE(h) =n"' Y L(W, h(U, b, b))
i=1

Finally, we choose h = h,, where

(2.3.5) CVAE(h,) = min CVAE(h)
h€H

and H is a given class of predictor functions. With
such a choice of h, we provide the predictor

(2.3.6) h, (U, 6, 8)

for future observations, where 6, § is obtained by
minimizing the full expression

(2.3.7) Y L(W;, h(Uj, 6, 6)).

j=1

(The full implication of this procedure is further ex-
plained and illustrated with reference to squared error

loss in the next section. It may also be mentioned that
the estimate (6_;), 6(—;)) could have been obtained from
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the past data omitting the observations on the ith
individual in other ways than what is suggested in
(2.3.3). Then to determine an optimum predictor, we
may have to minimize the CVAE in (2.3.5) with re-
spect to the elements of H as well as the alternative
methods of estimating (6, 6).)

In the subsequent sections, we illustrate the general
methods discussed in this section on the chosen data
sets with reference to the prediction of a single future
measurement Y,.; given the previous measurements
Yy, oo, Y.

Alternative approaches to prediction based on the
likelihood principle have been recently developed by
Hinkley (1979), Barndorff-Nielsen (1981), Butler
(1986) and others. These methods are highly para-
metric in nature and their applicability in small sam-
ples have not been fully examined.

3. LINEAR PREDICTION

In the absence of any information on the stochastic
process describing an individual’s growth, a standard
approach to the prediction problem is to consider the
joint distribution of Y,+; = Wand (Yy, ---, Y,) = U
over the individuals of the relevant population and
derive the conditional distribution of W given U for
use in prediction.

In such a case, under quadratic loss function the
best predictor is the conditional expectation of W
given U, i.e., the regression of W on U, which may
involve unknown parameters. The unknown parame-
ters could be estimated from past data and substituted
in the regression function to obtain an empirical
regression predictor.

When the exact form of the conditional distribution
of W given U is not known, it may be possible to
restrict the predictor to a given class of functions and
estimate it using past data. One such class, which is
easy to handle, is the set of linear predictors of the
form

(8.1 Vorr=bo + byYy + - + b,Y,.

The coefficients by, - - -, b, are estimated from the past
data on n individuals by the least squares method.
The value of Y,.; for the current individual with
measurements U, = (Y1, - - -, Y»c)’ is predicted by

a A

Wc = Yp+1,c

3.2)
= bo + blylc + ... + bpypc.

The performance of such a predictor has been exten-
sively studied but several problems still remain un-
solved. Can we obtain better prediction by considering
only a subset of the previous measurements, say by
discarding some of the initial measurements? What is
the best way of estimating the regression coefficients,
by least squares or ridge regression or other methods

such as James-Stein’s, aimed at reducing the com-
pound mean square error? We shall examine some of
these questions.

There are various methods recommended for selec-
tion of variables in regression. Excellent reviews can
be found in papers by Hocking (1976) and Thompson
(1978a, 1978b). In addition we have model selection
criteria by Akaike (1973). Most of these are not appli-
cable to the present problem as the sample size is
small and the object is not to find a model which
explains the observed data but to assess the relative
performances of different predictors constructed from
past data for use on future individuals. For this pur-
pose the LOO or CV method described in Section 2.3
seems to be more appropriate. This method is outlined
below in terms of quadratic loss function.

Let f(U.) = f(¥1c, - - -, ¥pc) be the true conditional
expectation of Y., given U, and Y,.,. be as defined
in (3.2) through the linear regression of Y,.; on
(Y4, ---, Y,). Then

E[(Yp+1,c - ?p+l,(.‘)2| Uc’ bO’ MY bp]
=0+ [f(U) = Yourcl,

where ¢? is the conditional variance of Y1, given U,
which may depend on U..

Let us consider a subset (s) = {Y;, ---, Y;} of the
variables Y;, - - -, Y,, fit the regression of Y,.; on the
subset

(34) Y, =0 +bPY, + --- +bPY;

(3.3)

and estimate Y, by
(85 YU =b0 + byt o by
Then

E[(Yps1e — YSL, D21 U, b, -+, b))

=g2 + [f(U.) - Y;()s-l)-l,clz'

The problem is to choose a subset (s) such that the
average of (3.6) over a given distribution of U, for
future individuals is a minimum. One choice of this
distribution is the empirical distribution of U =
(Y, ---, Y,)’ based on the past data. In such a case,
the average of (3.6) is

(3.6)

@7 n T U+ TIFWU) - Yol

1 1
In practice, we do not know ¢? and f and suitable
estimates may have to be substituted if we want to

use (3.7). An alternative approach is as follows. The
CVAE is

(38 Me) =7 I (pns = 3P
p-

where ¥, is the observed value of Y., for the jth
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individual and the second member within the brackets
in (3.8) is the predicted value of Y., from the regres-
sion of Y., on the subset Y;, --., Y; fitted to the
past data omitting the observations on the jth indi-
vidual. The optimum choice of a subset is made by
minimizing the CVAE (3.8). Note that in the above
procedure no assumption is made about f, the true
conditional expectation, and no separate estimate of
o” is made. All the other criteria such as Mallows’ C,
and the Akaike information criterion described in the
references listed above require some assumptions on f
and an estimate of ¢2, which introduce additional
errors especially in small samples and make the cri-
teria less effective.

The values of M(s) for different subsets of Y, - - -,
Y, are given in Table 5 for the three data sets. It is
seen that in all these cases, the regression based on
the immediate previous measurement or the immedi-
ate two previous measurements provides the best pre-
diction. It appears that the initial measurements do
not carry enough information given the later measure-
ments to enhance predictive efficiency by their inclu-
sion in the usual regression analysis.

In the comparisons made in Table 5 all the regres-
sions are estimated by the method of least squares.
The LOO method also enables us to examine whether
alternative methods of estimation of the regression
coefficients such as ridge and James-Stein techniques
improve prediction. Computation of the CVAE by
using such methods in a few cases showed that the
least squares method was more effective for the data
sets under consideration.

Note 1. The observed phenomenon that the pre-
dictive efficiency is enhanced by omitting the initial

TABLE 5
Cross-validation assessment error of simple linear regression
predictor
Previous measurements Direct Inverse
used regression regression
Mice data (prediction of Y, n = 13)°
Y:-Ye .095 .103
Yo-Ye 079 ° .081
Y:-Ye .047 .048
Y.~Ys 037 .040
Y:-Ye .031 .034
Ys 027 .028
Ramus data (prediction of Y, n = 20)
Y:-Ys .769 .808
Y-Y, 577 .608
Ys 566 618
Dental data (prediction of Yy, n = 27)
Y,-Y; 4.430 6.211
Y.-Y; 3.588 5.227
Ys 3.665 4.929

“The entries are 13 times actual values.

measurements can be explained by decomposing the
squared multiple correlation coefficient of Y, on Y,
Yp-1, - -+, Y1 in terms of what are called part corre-
lations (see Rao (1973), page 311),

2
p s
(3.9) [p+1][p. 1]

—_— a2 2 2
= pip+1p T Plp+1lp-1).p1 T+ * + + Pp+inn-2,-..,p]

where pfpiji.iv1,...p 18 the squared correlation be-
tween Y,.; and the residual of Y; after eliminating
the effect of Y;.1, - - -, Y,. This coefficient, called the
part correlation coefficient, is a measure of the im-
provement in predictive efficiency by the inclusion of
Y;in addition to Y.y, - - -, Y, in the regression analy-
sis. The decompositions (3.9) for the three sets of data
were as follows:

Mice data (p = 6): .9082 = .8874 + .0056 + .0019
+ .0038 + .0019 + .0076,

Ramus data (p = 3): .9370 = .9270 + .0100 + .0000,
Dental data (p = 3): .7448 = .6320 + .1093 + .0035.

The squared correlation between Y., and Y, domi-
nates in each case indicating that no improvement
can be expected by using the other measurements,
except perhaps Y,_,. In fact their inclusion introduces
more noise and decreases the efficiency of prediction
if the straightforward regression analysis is used.

Note 2. Having observed that the regression of
Yp+1 on the previous two measurements Y,, Y,-, is
sufficient for prediction, it may be of interest to ex-
amine whether the growth process for an individual
can be explained by an autoregressive type model

Yi=a+BYi+ B Y1 + e,

(3.10)
1=2,-..,p.

If the model (3.10) holds, then estimates of «, 8, and
B2 could be obtained by maximum likelihood or other
methods using all the available data. To examine the

. validity of the model (3.10), separate regressions were

fitted in the case of the mice data for Y; on Y;, Ys;
Yson Ys, Yy; ---, Y3 on Y,, Y,. The regression
coefficients were as in Table 6 indicating that the
model (3.10) may not hold. We could have also

TABLE 6
Regression of Y,.oon Y, Y,y

i a B B2

6 243 1.045 —.242
5 .035 .806 .261
4 .010 1.280 -.152
3 -.238 1.753 -.107
2 .023 2.192 —1.490
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examined the validity of the model (3.10) for predic-
tive purposes by the LOO method.

Note 3 (inverse regression). Consider U = (Y, ---,
Y,)’ and W = Y., as defined before, and let

(3.11) E(W) <=y, EWU) = p,
(3.12) Cov(‘g> = (gl;l g;z)

Then the direct linear regression function which is
used for predicting W given U is

(3.13) W=v+2u23U - p.
Now
@3.14) EWIW) =+ 2,23 2003 (W —»)

=v+ p*(W =),

where p? is the squared multiple correlation of W on
U. Then W — E(W| W) = (1 — p?)(W — ») so that
W underpredicts W when W > » and overpredicts
when W < ». Such a situation may not be desirable in
some practical applications. To overcome this feature
of the direct regression predictor, an inverse regression
predictor

(3.15) W=0uv(l-p2)+pW,

which is a modification of the direct regression esti-
mator W, is sometimes recommended. It is seen that
E(W|W) = W and W >, =, < W according as
W> = <.

The CVAE of prediction obtained by the LOO
method using inverse regression is given in Table 5
for various choices of the predictor variables. As ex-
pected these values are larger than those for direct
regression, but inverse regression provides an insur-
ance against serious bias in prediction.

4. POLYNOMIAL GROWTH CURVES

In Section 3, we have not used any model describing
an individual’s growth. In the rest of the paper, we
shall develop some growth models and study their
usefulness in prediction. Let (y;, t), t = 1, 2, ---
represent the measurements and the times at which
they are taken on an individual. Then models of the

type
4.1) ve=f({t0) +e, t=1,2,.--,

have been fitted, where ¢, are i.i.d. with a common
variance o2 and f (¢, 0) is a suitably chosen function of
t representing the growth trend depending on an in-
dividual specific parameter 6. For a measurement like
the stature of an individual, some of the forms of

f(t, 0) recommended are:
f(t, 0) = a + bt — exp(c + dt)
[Jenss and Bayley (1937)],
= k exp[—exp(a — bt)]
[Winsor (1932)],
= Ek[1 + exp(a + bt)]™?
[Wright (1926)],

k,[]. + exp(ai + bit)]_l

e

1

[Bock and Thissen (1976)].

In fitting models of the above type, the authors were
trying to characterize an individual’s growth trend
over long periods of time. But models which provide
an adequate description of the past observations may
not necessarily be suitable for predicting future obser-
vations. We shall first consider polynomial trends
which are simple to fit and which may be adequate to
describe growth over a short period of time and ex-
amine their usefulness in prediction (see Rao, 1965,
1967, 1976, 1981).

Let
4.2) ¥Ye = BoPo(t) + --- + BrPr(t),
t= 1’ 2’ "'}p?p+ 1’
where P,, P,, ---, P, are polynomials over ¢, which

may be chosen to be orthogonal for convenience in
computations. Denote

(Po(l) Pk(1)>
X = e e ,
Po(p) --- Pu(p)

(4.3)
X = (PO(p+ 1)’ Sty Pk(p+ 1)),
U; = 1y )y Ypi)s W, = p+1,is
(4.4) (y Ypi) Y,
,3i = (ﬂon Tty ﬂki)-

Then the model for the measurements on the past n
individuals can be written in the familiar Gauss-
Markoff form

Ui=X,3i+8i .
(4.5) W= a6+ m} i=1 .., n,

and the incomplete model for the current individual
in the form

(4.6) U= XB: + &
although the variable to be predicted is
(47) W, = xBc + 1.

The error components in (4.5)-(4.7) are all assumed
to be i.i.d. In this section, we shall describe various
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methods of predicting W, and compare their relative
efficiencies.

4.1 Individual Regression Predictor

In this method we consider the measurements on
the current individual only, which are subject to the
model

(4.1.1) Ue = XB. + e,

and obtain the least squares estimate of 3.,
(4.1.2) by = (X' X)X’ U..
Then, we predict W, = x8. + 7. by

(4.1.3) W, = xb?.

The predictor (4.1.3) does not make use of the past
complete sets of observations on n individuals explic-
itly. However, it depends on k, the degree of polynom-
ial fitted and on s the number of immediately previous
measurements used. (We use the same notations X, x
and U for any selection of the previous measure-
ments.) We shall see later on that it pays to omit
(ignore) some of the initial measurements to arrive at
a prediction formula. What is the optimum combina-
tion of s and k for prediction purposes? We use the
past data and apply the CVAE criterion to answer this
question.

_For the ith individual (in the past data), let
Wi(s, k) be the predicted value of the (p + 1)th
measurement using the formulas (4.1.2)-(4.1.3) by
fitting a kth degree polynomial to the s previous
measurements Y, +1,i, -+ -, Ypi. Then the CVAE is

414 M(s, k) = n 3 [W; — Wils, B,

where W; is the observed value of the (p + 1)st
measurement on the ith individual. We may then
choose that combination of (s, k) which minimizes
(4.1.4). Table 7, column (3), gives the values of
M (s, k) for different values of k and s. It is found that
in all the cases studied, the best procedure is to fit a
straight line to just the two previous measurements,
Y,-1, Yp, and extrapolate to predict Y,.;.

4.2 Regression on Polynomial Coefficients

Let us consider the past data and compute for each
individual the kth degree polynomial regression coef-
ficients fitted to the previous s measurements

(421) b =X'X)'X'U, i=1--,n

where X and U, are the appropriate matrix and vectors
for s measurements. Then we have reduced measure-

ments

(4.2.2) (W, "), 1, .-+, n,

computed from the past data, where W, is a scalar
variable and b is a (k + 1) vector variable. We fit a
multiple regression equation of W on b from the
data (4.2.2)

(4.2.3) W=ua+g'b",

where a is a scalar and g is a (k + 1)-vector and predict
W. by

(4.2.4) W.=a+g'b?,
where b is obtained in the same way as b\” in (4.2.1)
using the same combination of s and k.

The CVAE in such a case is
(4.25)  M(s, k) =nt Y (W, — W.)3,

i=1

where W, is obtained in the same way as W, consid-
ering the reduced measurements

(4.26) (W;,b?), j=1,---,i—Li+1,---,n,

i.e., omitting the combination (W;, b\). The values of
M(s, k) for different values of s and k& are given in
Table 7, column 4. The values in column 4 are smaller
than those in column 3 indicating that the method of
regression on polynomial coefficients is better than
the method of individual regression prediction.

4.3 Calibration of Individual Predictors

In Section 4.1, we fitted a polynomial of degree & to
s previous measurements of an individual and pre-
dicted the (p + 1)th value by extrapolation. Let W; be
the estimate of W; obtained by the individual regres-
sion method for individual i. Then, from the past data
we have the pairs

(431) (Wiy Wi), I'= 1’ RPN ()

from which we can estimate the regression of W on
W,

(4.3.2)

where a and g are now scalars, and use it to predict
WC b

(4.3.3) W.=a+gW.,

where W. is obtained from the measurements on the
current individual in the same way as Wi for the ith
individual.

The CVAE of such a procedure computed by the
LOO method using the past data only is given in
Table 7, column 5, for different combinations of s and
k. There appears to be some improvement over the
method of regression on polynomial regression coef-
ficients.

Note that the method employed is similar to that
of calibration, wkich rectifies any deficiency in the

W=a+gW,
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TABLE 7
CVAE of different predictors under the polynomial growth curve model

Previous Degree of Individual Regression on Calibrated Empirical
measurements  polynomial regression polynomial predictor of Bayes
used fitted predictor coefficients column 3 predictor
@ (2) 3) 4) (%) (6)
Mice data (prediction of Y;, n = 13)°
Y,-Ys 5 7.472 .095 252
4 .600 .076 235 375
3 175 .058 .093 139
2 104 .060 .037 .087
1 .206 .049 .035 194
Y.-Ye 4 2.405 .079 .235
3 241 .064 141 174
2 .095 .040 .040 075
1 .158 .043 .035 143
Ys:-Ys 3 757 .047 192
2 .096 .039 .052 .069
1 111 .039 .034 097
Y-Ys 2 229 .037 .094
1 .066 .036 .034 .054
Ys-Ys 1 .055 .031 .033
Ramus data (prediction of Y,, n = 20)
Y:-Ys 2 2.989 .769 2.172
1 584 716 .638 .498
Y-Ys 1 812 577 751
Dental data (prediction of Yy, n = 27)
Y:-Ys 2 47.398 4.430 9.483
1 3.998 3.288 3.680 2.322
Y-Ys 1 12.426 3.585 8.358

¢ Entries are 13 times the actual values.

directly predicted value due to inadequacy of the as-
sumed model and reduces the overall error.

4.4 Bayes and Empirical Bayes Predictors

The methods developed in Sections 4.1 to 4.3 did
not fully exploit the covariance structure of the mea-
surements (U., W.) induced by the linear model (4.6)
or (4.7) involving the latent variable §.. If E(8.) = v
and Cov(B.) = C(8.) =T, then

(44.1) E(U,) = Xy, E(W,) = xv,
U\ _(XTX’ + o, XTx’
(4.4.2) C(WC> = < xPXl xe/ + o,2>

. and the best linear predictor of -W, given U, is, as
derived in Rao (1975),

W, = b®,
b((,B) — bgl) — 0,2(X/X)—1
(T + X' X)) 70 — ),

where b{® is the Bayes estimator of 8. and b is the
least squares estimator.

The predictor (4.4.3) depends on v, o® and T" and
also on the choice of the degree of the polynomial and
the set of previous measurements used in the analysis.
A purely Bayesian approach to the problem when 1,

(4.4.3)

o2 and T' are unknown is considered by Young (1977)
and for the choice of the degree of the polynomial by
Halpern (1973). There are also Bayesian methods for
selection of variables. We do not attempt in this paper
to develop a strictly Bayesian approach to deal with
all the unknowns. But we shall provide an empirical
Bayes approach using the CVAE as the criterion for
taking decisions from the available alternatives.
Consider the full model for the ith individual,

(8) = (%o (2),

and obtain the usual least squares estimator and re-
sidual sum of squares,
(4.4.5) b and S%, i=1,---,n

Then we have the following estimating equations
when a kth degree polynomial is fitted to the last
(s + 1) measurements Y, i1, «++, Ypsit

2 =[n(s — E)]1S?,

(4.4.4)

4.4.6

(449 S2=8%+ ... +82,

(4.4.7) 3=n10Y + ... +bY),
r=@m-1" 3 bf_l)_ 2 bﬁ”— XY

(4.4.8) (n=D7E @ =G =)

-2 X' X+ x'x)"L
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If any diagonal element in I is zero or negative, then
the entire row and column defined by the diagonal
element are replaced by null vectors. Substituting the
estimates (4.4.6) to (4.4.8) in (4.4.3) with some changes
in the multiplying constants (see Rao, 1975), we obtain
the empirical Bayes predictor

W® = x[b® — g6*(X' X)

4.4.9 N
( ) (M +2&X'X)™)0Y - ),
where
_ _n(s—k) n—-k—-3
g_n(s—k)+2 n—1 °

Alternative estimates of ¢% v and T', which have
nice properties, are obtained by ignoring the infor-
mation on W;, i = 1, ---, n. We consider only the
incomplete models :

(4.4.10) []z = Xﬂt + &iy i = 1’ Tty n, ¢,

taking U; as the vector of s measurements y;;, j =
p—s+1, ..., pand X as the matrix appropriate to
the kth degree polynomial. From (4.4.10), we compute
the least squares estimates and the residual sum of
squares

(4.4.11)

using the same notation as in (4.4.5). Then we have
the following unbiased estimating equations:

2=[(n+1)(s—k—1)]'S?

S2=8%+ ... + 82+ 82

y=@+ 170+ - +bY +bY),

4.4.13) ) ( )b )
'+¢X’X)t

= n7'B = n [ — )60 - 7)’

l .
(bg), S2)y l=1’ e, N, C

13

(4.4.12)

4.4.14 n
( ) + 3 0P =9GP -9)1
i=1

Substituting these estimates in (4.4.3) with some

changes in the multiplying constants (see Rao, 1975), °

we obtain the empirical Bayes estimator
" (4.4.15) W® =x[b? — g(X'X)7'S*B (B — 7)),
where

_ n—k—3
T+ Ds—k—-1)+2°

(4.4.16) g

The CVAE associated with (4.4.15) for different com-
binations of s and k are given in Table 7, column 6.
Although the empirical Bayes predictor shows an im-
provement over the individual regression predictor, it
is somewhat inferior to the method of regression on
polynomial regression coefficients and the calibrated

predictor.

4.5 Mixed Model

In fitting individual polynomial growth curves, we
can allow for the possibility that the coefficients of
some of the higher order degree terms are common to
all individuals. To deal with such cases in some
generality, we consider a mixed model for the ith
individual

1= 1, ---,n,c

sy Ui=XiE+ Xobi+ ei}

Wi=x§+ %8+ m;

where ¢ is common to all individuals and 3; varies over
the individuals such that E(8;) = v and C(8;) = T.
We can assume without loss of generality that

Xl X2

X1 Xo
has orthonormal columns, for otherwise we can make
the transformation

(4.5.3) £ — Ag,

to ensure the validity of the condition (4.5.2) retaining
the non-randomness of £. We can then replace the
observations on the past individuals by the reduced
statistics

£ =X{U + xi W,
b = X;U; + x4 Wi,
St =UlU+ Wi — (¢") (60

— ®") (")

From these, we obtain the estimates of the unknowns

(4.5.2)

B; — Bg; + C¢

(4.5.4)

i=1, e, n.

(455) E=n"" 3 £, 3=n"30bY,
1
(4.5.6) c¢,62 = 2 S + i (P -6 (P - §) =8,
1 1

457 c(f+ 6 =3 b° -3)b" —5)" =B,
1

where for unbiasedness
aca=n(p+1—a —a)+a@n-1),
ca=n-—1,

a; and a, being the numbers of the components of £
and B;, respectively. From (4.5.6) and (4.5.7) an esti-
mate of T is

(4.5.8) cz'B — citSI,

where if any diagonal element is nonpositive, the
corresponding entire row and column are replaced by
null vectors.
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If all the parameters &, v, ¢% and I" are known, then
the regression of W, on U, is

W.=2:£+ 2oy + %7 X35 (XoT X35 + 02I)™
c(Ue— X1£— Xo)
=x.1§ +x2y
+ %[l — AU + 02V
VX (U — X1 — Xa),

where V = X, X,. If the parameters are not known,
we substitute the estimates obtained in (4.5.5) to
(4.5.8) and obtain an empirical predictor of W,,

We = xlé + %2

(4.5.9)

(4.5.10) + x[l — g2 V(D + 62V1))
S VIX3 (U - Xi € - Xo9),
where
¢a n—k—2
4.5.11 =
( ) £ a+2 n-—1
Note 1. There is some information on &, v, o2 and

I' in the observed measurements U, on the current
individual that we have not used. Let £, b and S.
be the simple least squares estimators of &., 8. and the
residual sum of squares obtained from the linear model

(4.5.12) Uc = XIEC + X2ﬂc + &.

If £, b and S? are of the same order of magnitude
as £, b and S%,i=1, --.-, n, then improved esti-
mators of ¢, vand o could be obtained by combining
£, 7, 6% with £2, b and S? using suitable weights.
But the computations* would be somewhat compli-
cated.

Note 2. An alternative approach is as follows. We
consider only the models

(4.5.13) Ui = XIE + Xzﬂi + &y l = 1,
where X, and X, may be chosen to satisfy the orthog-

onality condition
X ’
<X;,) (X1:X2) =TI

The reduced statistics in such a case are
£V = XU, bY=XU,
St =UiU = &) (") = ) 6),

i=1, <ee,n,C,

ey n,c,

(4.5.14)

(4.4.15)

and unbiased estimates of the unknowns are
R+D)y=@n+1DBGP+ ... +bP +b¥),

(4.5.16) M+ 1)E=(E0+ ... +£0 +£9),

n(f+62) = 6P — )60 — 7)’

4.5.17 N |
( ) + ¥ (bf’)—i)(bf“—‘y)'=3’
i=1

[n+(n+1)(p—a —as)]é?
+3 - - =8
i=1

Then an empirical Bayes predictor of W, is
(45.19) WO =x+x%[bP — gS?B7 (b — 7)),
where

n+1l—a,—2
n+2+n+1)(p—a —a)’

g=

Then we consider the pairs
(4.5.20) (W;,, W), i=1, .-, n,

where W' is obtained in the same way as W, by using
b in the place of b{, compute the regression of W
on W@,

(4.5.21) W=a+gW®,
and predict W, by
(4.5.22) W.=a+gW®

as in the calibration method discussed in Section 4.3.

5. FACTOR ANALYTIC TYPE GROWTH MODEL

We consider a more general type of growth model
(see Rao, 1958)

Y. = Buy1(t) + - -+ + Buu(t) + eu,

(5.1)
t=1’ ””p,p+ 1’

where ¥, (t), ¥2(t), - - - are suitably chosen orthogonal
functions of time, 8;;, - - -, O are regression parame-
ters specific to individual ¢ and ¢; are independent

‘errors. Writing

< W) - mm)
X 3
(5.2) vi(p) -+ va(p)
X = (‘pl(p + l)y ) lpk(p + 1)),
(5-3) Ui = (Yli’ Tty Ypi)y Wi = Yp+1,i’

(54) 6;’ = (ﬂli’ Sty ﬂki)’

we can write the models for the past data on n indi-
viduals and the current individual in the form

Ui =Xﬁ,~+e,~ .
(5.5) Wi=xl3i+m} i=1--,n,
(5.6) U.= XB:. + &
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and the variable to be predicted in the form
(5-7) Wc = ch + Ne-

The equations (5.5) to (5.7) are of the same form as
(4.4.1) to (4.4.3) except that the elements of X and x
are not specified. We discuss methods of estimating X
and x in addition to the other unknowns and use them
in predicting W..

5.1 Generalized Principal Components Regression

First we estimate X and 8y, - - -, 8,, 8. by minimizing
(5.1.1) [ (Uy:---:Un:Ue) = X(Brz -+ :8a: )l

for any unitarily invariant norm. This is a well known
problem (see Rao, 1980, 1985). This is done by finding
the singular value decomposition of the p X (n + 1)
matrix

(5-1-2) (Ul: e :Un:Uc) = >‘1P1Q1, + .- AsPst,’

where P,, P,, - -- are orthonormal p vectors and Q;,
@2, - - are orthonormal (n + 1) vectors and Ay, A\,

- are singular values. The optimum choices of X
and B;’s are

(5.1.8) X=(P: - :Py),
(5.1.4)  (Br: -+ :BnzB) = @1t -+ 1 MQL),

where k < s. Then we determine x to minimize

(5.1.5) S (Wi - xB)

which yields
(5.1.6) & = AX(WyB + - + Wb,

where A is a diagonal matrix with A,
diagonal elements, and predict W, by

(5.1.7) Wc = Ap+1,c = ﬁéc'

cee, A\ as

Note 1. 'The method described is a generalization
of what is known as the principal components regres-
sion analysis. The §3; may be recognized as the set of
k principal components for the ith individual based
on the first p measurements.

. A slight variation of the method, which is well
known, is not to include the observations on the
current individual in the estimation of X. We can then
develop a general formula applicable to all future
individuals. The method can be described as follows.
First, we find the singular value decomposition of the
p X n matrix

(5.1.8) (Ul: cee :Un) = AlPlQll + A + AsPstlv
in which case X and 8;,i =1, - - -, n, are estimated by
(5.1.9) X= (P 1Py,

(6.1.10)  (Br: -+ :Ba) = M@z -+ 1 M@r) .

Second, x is estimated by
(5.1.11) &= A (Wi + - + W,B.)
and, finally W, is predicted by

(6.1.12) W.=2b, B.=PU, ---, PU.).
Note 2. We can build a more general model of the
form

Ui=u+2i1+Xﬁi+e,}

(5.1.13) Wi=v+2z,+x6 +n

i=1, LICICIS n, C’

where u is a p vector, 2; and v are scalars and 1’ = (1,
- -+, 1). By putting z; = 0, we have the usual principal
components model. By putting u = 0, » = 0, we have
a model with an unknown additive constant. The
method of estimation of all the unknowns follows from
a general theorem given in Rao (1980, 1985). The
formulas developed for the prediction of W, from the
model (5.5) to (5.7) can then be extended to the more
general model (5.1.13).

Note 3. Suppose that we have a number of linear
models

(5114) U,‘ = Xﬂ, + ¢, 1= 1, e, n,

where in addition to 8, - - -, 8, the design matrix X
itself is unknown. The method developed in this sec-
tion enables us to estimate X, 8;, ---, 3, simultane-
ously. This admits the possibility of testing hypotheses
both on X as well as on 8.

5.2 Factor Analytic Type Regression (Method 1)

Let us consider the model (5.5) to (5.7) and estimate
X,xand B;,i=1, ---, n, by minimizing

(5.2.1) (Vlljfll v({/n) _ <f> Bi: -+ :8)

_This is achieved through the singular value decom-

position

(5.2.2) (v‘{,ll . v‘{,> = MNP + - NPQ.,
yielding the optimum X, x and 3,

(‘i:() =(Py: - Pp),

(5.24) Br:---:B8)=MQ: - : M@n)’.

Then B, is estimated by the least squares formula

(5.2.3)

(5.2.5) B. = (X'X)'X'Y.
and W, is predicted by
(5.2.6) W. = Ypuro = 26..
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As in Note 2, we can apply the above method to the
more general model (5.1.13).

Note. There are two steps in the above method:
first, that of estimating X and x using the complete
sets of measurements on the past individuals; and
second, that of estimating the regression coefficients
for the current individual for predicting the future
values. We can combine these two and formulate our
problem as one of finding W,, X, x, 81, -+, Ba, Bc
which minimize

U - UUN (X\,n .
<W/11’.. Wan>_<x>(ﬁ1°“‘~ﬂn~ﬁc)

where Uy, ---, U,, U, and Wi, ..., W, are known.
The optimum value of W, found by this method is not
the same as that given by (5.2.6). A numerical method
for solving the problem (5.2.7) is developed in Rao
and Boudreau (1985). Further investigation of this
problem is currently in progress.

(5.2.7)

b

5.3 Factor Analytic Type Regression (Method 2)

Let us consider the model (5.5) to (5.7) with the
additional assumption that 8;,i=1, - - -, n, ¢, are i.i.d.
with mean v and variance covariance matrix I'. In
such a case

U\ _(x
(5.3.1) E(W) = <x>7,

C Ui\ _ XI'X’'+e%lp XTx’
(53‘2) Wi xI‘X’ xl‘x'+a2 ’
i1=1,.--,n,c.

Our strategy is to estimate all the unknowns
(5.3.3) X,x,v,0%and T

from the observations (U;:W;), i =1, --
predict W, by the usual regression equation

(5.34) W,=xy+xTX (XTX' + o) (U. - xv)

with X, x, v, o2 and T replaced by their estimates. The
estimation of the parameters (5.3.3) have been consid-
ered by Bentler (1983) and Sorbom (1974). Because
the exact computations are a little complicated, we
suggest a simpler method that may be useful in prac-
tical applications.

Let S be the corrected sums of squares and products
matrix of order (p + 1) X (p + 1) calculated from the
(p + 1)-variate samples (past data)

Ul Y Un
W1 ’ ’ .Wn

and consider the spectral decomposition

(53.6) (n - 1)_18 = A%Plpl, + ...+ A§+1Pp+1 p+1

., n, and

(5.3.5)

with A2 = ... = A\%,;. Then an estimate of (X, x) is
given by
(5.3.7) (f) —(Py:---:Py), k=p+1

and those of ¢ and T by
(538) 2=(p+1—k)"(\j + - +2u),

N

=
I

(5.3.9)

where the off-diagonal elements in T are all zeros and
that of v by
J= (P :Pk>'<v‘{,),
where nU=U, + --- + U,and nW= W, + --- +
W...

The CVAEs for some of the methods discussed in

this section, computed through the LOO technique on
past data, are reported in Table 8.

(5.3.10)

6. SUMMARY

We considered the problem of predicting a future
measurement on an individual given the previous
measurements taken at different time points. In
practice one could have a large number of previous
measurements and their proper utilization poses an
interesting problem. Often the required information
for forecasting is contained in the previous few mea-
surements or in a small number of summary statistics
of previous measurements. In this paper, appropriate
models for growth curves are considered to derive the
summary statistics, and analyses based on them are
described.

Past records on complete sets of measurements
enable us through cross-validation or the leave-one-

out technique to choose the appropriate prediction

TABLE 8
CVAEs under the factor analytic type model
(y¢ = bl‘pl(t) +..-+ bk\l/k(t)’ t= ly ERRRY + 1)

Principal components k=1 k=2 k=3
Mice data (p = 6, n = 13)°

Regression (5.1.6) .038 .048 .043

Factor analytic

Regression (5.2.6) .038 .061 071
Ramus data (p = 4, n = 20)

Regression (5.1.6) 1.541 643 769

Factor analytic

Regression (5.2.6) 1.480 781

%The entries are 13 times the actual values.
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function from a given set of alternatives. The CVAE
provides the error rate of prediction for future individ-
uals drawn from the same population from which the
past individuals could be considered as a random
sample. The CVAEs for the different methods of pre-
diction are reported for the three problems considered
in the paper. .

The methods discussed in the paper are based on a
judicious combination of Bayesian and classical tech-
niques in statistics. Some unknown parameters are
taken as random variables and some as fixed. The
observed measurements are considered as fixed al-
though variations in them are exploited in comparing
the performances of different methods.
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