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Comment

T. P. Hettmansperger and James C. Aubuchon

We would like to thank David Draper for an illu-
minating discussion of some contemporary alterna-
tives to traditional data analysis. Least squares pro-
vides one of the great unifying principles of statistical
inference. Methodology derived from this principle
includes estimation, testing, confidence intervals and
multiple comparisons in experimental contexts that
range from simple univariate location models through
multivariate linear models. This unification is en-
hanced by the elegant geometry that flows from the
L, norm underlying least squares and by Gaussian
likelihoods that relate this geometry to statistical in-
ference. A benefit (or curse, depending on your point
of view) of having a single underlying principle is
widespread and extensive implementation of the least
squares methods in statistical packages. When com-
bined with modern diagnostic methods, least squares
can be the basis of thoughtful and revealing data
analysis; see Daniel and Wood (1980) for impressive
examples.

Tukey (1960) broke the spell of least squares when
he pointed out that statistical methods, optimal for a
specific underlying model, may deteriorate rapidly in
a neighborhood of the assumed model. This paved the
way for the development and acceptance of alterna-
tive, robust methods.

By replacing the L, norm by alternative norms that
generate more robust statistical methods, we retain
the unity and elegance provided by an underlying
geometry and, at the same time, achieve a more
stable and perhaps more powerful set of statistical
methods.

The L; norm generates robust and resistant meth-
ods—the sign test and the sample median in the

simple location model. However, the efficiency of the

L, with respect to the L, methods at the Gaussian
model is only 64%. If we write e;(8) = y; — xX/8, i =

, 1,...,n, for the errors in a linear model then inference
about 8 can be based on a weighted L; norm,
(1) D(B) = X R(|e(B)])]e(® |,
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where R(|e;(8)]|) is the rank of |e;(8)| among

lexB) |, ..., |e.(B)]. A bit of algebra shows that

D) = 2; e;(B) ;' e (8)
? _ (8) (8)
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and further that

o e:(8) ; e/ (8) .
(3)

- Z[R(ei(ﬁ» -2 l]eiw).

Inference can be based on (1) directly. However, for
reasons discussed below, we suggest the following
strategy. Use the second term in (2) to develop infer-
ence methods for the regression parameters in a linear
model and then use the resulting residuals and the
first term in (2) to develop inference methods for the
intercept parameter. As (3) shows, the second term of
(2) is simply a linear combination of errors with
weights equal to their centered ranks. Hence, rank-
based inference for both the vector of regression pa-
rameters and the scalar intercept parameter is directly
related to the L, norm. The resulting estimates and
tests enjoy robustness induced by the L, norm and, at
the same time, achieve a surprising efficiency with
respect to L, methods of 95.5% for an underlying
Gaussian model.

The reason for recommending the two-part strategy
over direct application of (1) is that (3) does not
depend on the intercept and does not require symme-
try of the error distribution to develop the asymptotic
theory for tests and estimates. For a given estimate of
the vector of regression parameters, minimizing the
first term in (2) is the same as applying the Wilcoxon
signed-rank procedure to the uncentered residuals,
which requires symmetry. When symmetry is in doubt
we recommend using (3) along with an L, estimate of
the intercept.

Draper has presented an interesting exposition of
two approaches that generate robust and efficient
inferences in the linear model by intervening in the
L, geometry in different ways. If we apply (3) to the
two-sample location model, the resulting estimate of
shift is the Hodges-Lehmann estimate. By casting
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the multiway layouts with several observations per
cell as a composite of two-sample shift models,
Lehmann developed new estimates of contrasts and
thus new tests. Interpretation of tests remains the
same as in least squares; only the estimates have been
changed to protect the experiments.

The second approach attacks the issue more di-
rectly. Namely, replace the L, norm by the weighted
L, norm, and proceed immediately to estimation by
minimizing the new distance measure to the model
subspaces and to testing by comparing these new
distances. The inferential strategy remains the same
but the norm (and hence metric) have been changed.
The value of the second approach lies in the breadth
of application. Models ranging from simple one-
sample location through the linear model with AOV
designs, regression designs and analysis of covariance
designs are handled in a unified way.

The implementation of this second approach re-
quires a fully developed asymptotic distribution theory
for the estimates and tests, estimation methods for a
ubiquitous scaling parameter (§ = [ f*(x) dx, where
f (x) is the density of the error distribution) and the
development of algorithms to carry out the required
computations.

Most of what is known about the estimation of
has been mentioned by Draper. We would like to close
this discussion with some additional comments and
references on the asymptotics and on computation.

In her seminal paper, Jureckova (1971) made rather
complicated assumptions about the design matrix in
order to develop the asymptotic theory for her re-
gression R-estimates. Unfortunately, in practical
problems, there is no way to check whether these
assumptions are reasonable. Subsequent authors who
built on this work adopted the same assumptions.
However, as Heiler and Willers (1979) show, the only
necessary assumption on the design matrix is the same
as for the asymptotic theory of least squares proce-
dures: Huber’s assumption that the diagonal elements
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I want to use the opportunity of discussing this
excellent exposition of rank-based methods in the
linear model in part to revive a suggestion I made in
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of the least squares projection matrix (the leverages)
tend to zero as n tends to infinity.

Published work on rank-based methods for linear
models typically suggests doing the computations via
Newton’s method (using the Hessian of the quadratic
approximation developed in the asymptotic theory).
Osborne (1985) has derived a rather different ap-
proach which takes full advantage of the fact that the
dispersion is a convex polyhedral function. This ap-
proach should be seriously considered by anyone im-
plementing these methods on the computer.

Derivation of confidence and multiple comparison
procedures through replacement of the normal theory
parameter estimates and estimated error variance by
their robust analogues is connected with the Wald test
statistic: a quadratic form in the full model estimate
of the parameter vector. To develop confidence pro-
cedures which would be tied to the drop-in-dispersion
test statistic, one would have to find, for example, all
values of the parameter vector which could not be
rejected by the test. This presents a rather difficult
computational problem which, we believe, has not
been attacked as yet.

In closing, we would like to reiterate the fact
that both approaches described by Draper have been
implemented. Fortran routines are available from
Draper for the L,ehmann methods and from J. W.
McKean at Western Michigan for the Jaeckel and
Hettmansperger-McKean methods, while an experi-
mental rank regression command will be available in
Release 6 of Minitab for many computer systems. It
is hoped that people will subject these methods to the
ultimate test: real data.
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a review paper on robust methods generally (Bickel,
1976). This approach may have some computational
advantages over the Jaeckel-McKean-Hettmansper-
ger (I would add Jureckova-Koul to the list) approach
and relates the methods more closely to classical
analysis of variance. The idea is to first fit the full



