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that case the function f, represents the joint density,
g, the marginal density. The point x, represents the
center of the marginal distribution g, and y, = y,(x)
is the conditional mode of the distribution of y
given x. Of course this approximate marginalization
does not require f, to be a posterior distribution.
Phillips (1983) uses this approach to approximate the
marginal sampling distribution of various econometric
estimators.

The asymptotic properties of the saddlepoint
approximation to sampling distributions and the
Laplace approximation to marginal densities are very
similar. Both yield approximations that have errors
uniformly of order O(n") on fixed neighborhoods of
x,. Both benefit from numerical renormalization in
the sense that the absolute errors of the approxima-
tions are of order O(n~%?) in n~"2-neighborhoods of
X.. Another interpretation of this result is that the
shapes of the densities g,(-) are approximated to order
O(n~%2) by both methods.

The approximation of posterior expectations by
Laplace’s method is somewhat different. A single
number is to be approximated rather than a function.
Direct application of Laplace’s method yields the max-
imum likelihood estimate or the posterior mode as an
approximation to the posterior mean. The error of
this approximation is of order O(n™'). More accurate
approximations with an error of order O(n?) can be
obtained by using higher order terms, as described
by Lindley (1980), or by using different centers for
the expansions of numerator and denominator inte-
grals, as described in Tierney and Kadane (1986) and
Tierney, Kass and Kadane (1987).

Comment

Robert E. Kass

The world of asymptotics is beautiful and mysteri-
ous. Witness Stirling’s approximation, and recall the
first time you needed to use it. What explains the odd
yet simple formula, you may have asked, and more,
How is it that with one correction term it already
achieves 99.95% accuracy in approximating factorials
as small as 2? Marvel at Figure 1. But recognize, each
time we consider a sample of size n to be part of an
infinite sequence of observations, we are faced with
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The approximate predictive densities discussed
in Leonard (1982), Tierney and Kadane (1986) and
Davison (1986) fall somewhere between marginal
density and moment approximations. Because a pre-
dictive density is a density, its approximation would
appear to be more closely related to the approximation
of marginal and sampling densities. On the other
hand, the predictive density at a particular point can
be expressed as a posterior expectation. The result of
applying second order expectation approximation, as
in (4.1) of Tierney and Kadane (1986), is an approxi-
mation to the predictive density with an error of order
O(n™2). The order of this error term will generally not
be improved by numerical renormalization. As a result
I feel that these approximate predictive densities are
more closely related to approximate expectations than
to approximate marginal densities.

I hope that these comments have added to the
discussion in Section 6 of Professor Reid’s excellent

paper.
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an irony: limits do not depend on the first n values,
yet they are able to inform us about the behavior of
the sample. Our finite world seems tied to asymptopia,
but how?

Second-order asymptotic results continue to pro-
duce this feeling of awe and amazement in those who
aren’t yet familiar with them. Nancy Reid’s review
not only tells the saddlepoint story, it also nicely
demonstrates the similarity of method in applications
to maximum likelihood and conditional inference,
robust estimation and Bayesian analysis. My com-
ment consists of (i) a brief description of the relation-
ship between Laplace’s method and the saddlepoint
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approximation, (ii) a concern about accuracy of
approximations in data analysis and (iii) a remark
that current methodology is capable of treating special
cases, but does not yet provide satisfactory general
solutions to the basic problem of making inferences
about one parameter in the presence of others.

In his 1954 paper, Daniels provided two derivations
of the saddlepoint approximation, and Reid describes
in some detail the second, based on an Edgeworth
expansion of the “conjugate” density. I rather like the
first derivation. It begins with an inversion of the
characteristic function which, of course, is the way we
get the Edgeworth series in the first place; the method
of steepest descents is then applied to the integral
given by Reid in the paragraph preceding equation
(4). I would like to elaborate just a little on what Reid
says in that paragraph, in order to explain the con-
nection with Laplace’s method.

Suppose f is the analytic function in the exponent,
here f(z) = K(z) — zx, let z, be a saddlepoint, and let
P be the path through z, along which the imaginary
part of f is constant. Consider the integral of exp[nf(2)]
along P. Because the imaginary part of f is constant
on P, the exponential of this constant may be brought
outside the integral, leaving a real integrand. (In the
present application of steepest descents, the saddle-
point 2, is real and f(z,) is real so the constant being
taken outside the integral is 1.) It is easily shown that
this real integrand has a maximum along P at z,, and
that P is a path of steepest descent. The actual path
of the integral is distorted to coincide with P near z,
so that the value of the integral will come mainly from
contributions occurring near z,. (By the way, 2, is
chosen to be a saddlepoint rather than a maximum
because analytic functions have no maxima in open
regions of analyticity—all they have is maxima along
paths.) Once it has been assured that the integral is
dominated by contributions occurring near z,, a quad-
ratic expansion of f is substituted for f itself. This
leaves an integrand that looks like a normal density
(although with a complex argument) and it is easily
integrated, yielding (1).

The replacement of an integrand by a normal-
looking approximation, meanwhile, is the basis of
Laplace’s method. Let H be a real function on ® in
R* and let ¢ be its maximum. Expanding H as a
quadratic about ¢, we get

f exp(nH(¢)) dp = (2xn)™*| H"(¢) |%exp[nH ($)]

which has a form comparable with that in equation
(1). From these brief descriptions of Laplace’s method
and steepest descents, loosely speaking, we may con-
sider the saddlepoint approximation to be an appli-
cation of Laplace’s method in the complex plane.

Terminology varies. Some authors refer to Laplace’s
method as being applied in the complex domain; some
distinguish steepest descents from the saddlepoint
approximation, emphasizing the latter’s local nature
and its use with paths other than steepest descent,
allowing the quadratic approximation to f rather than
f itself to have constant imaginary part along the
chosen local path. Copson (1967) attributes the
saddlepoint approximation to Riemann who, he says,
used “essentially Laplace’s method” (roughly as out-
lined above). See Stigler (1986) for commentary on
Laplace’s treatment.

In any case, the Laplace and saddlepoint approxi-
mations are closely related. (Each may be used to
derive Stirling’s approximation, which Copson at-
tributes to Laplace rather than Stirling, the for-
mula derived by Stirling apparently being different
than the one most commonly used.) As a statistical
consequence, the Laplace approximation to a margi-
nal density has properties analogous to those of the
saddlepoint approximation. Thus, the good accuracy
apparent in Figure 1 of Tierney and Kadane (1986) is
like that shown in Figure 1 here.

What are we to conclude from the approximations
illustrated in each Figure 1? As far as explanations of
their accuracy are concerned, I am inclined to take
the uniform order O(1/n) error at face value. The
surprise elicited by the results, I think, is due in part
to the choice of examples. When we pick cases in
which the normal approximation is poor but not hor-
rible, uniform second-order approximations do a good
job of mopping up the remainder. Examination of the
stochastic behavior of the remainder in common
examples would probably be informative. On the other
hand, even if we accept the asymptotics as being more
than heuristic devices for deriving potentially useful
approximations, in practical work one still needs to
know whether good results are likely to be obtained
in a given example. Thus, in each new problem, a data
analyst must face the question of accuracy in finite
samples.

It is possible to get bounds on the error from the
proofs of the saddlepoint and Laplace approximations.
In the case of Stirling’s formula, this is helpful. Usu-
ally, however, the bounds are not only likely to be
inaccurate, they are also difficult to use in nontrivial
statistical examples because they depend on maximum
magnitudes of higher derivatives. Another possibility
is to develop diagnostics based on higher order asymp-
totics, although these are also likely to be complicated
and would still rely on limiting behavior.

The other available approach is to use nonasymp-
totic numerical methods, such as Gaussian quadrature
and Monte Carlo. In the saddlepoint case, one would
think that the Fast Fourier Transform might be useful
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as, perhaps, might be a complex version of Gaussian
quadrature along the path of steepest descent. These
methods would require sufficiently accurate compu-
tation of the cumulant generating function that its
second derivative matrix could be obtained. This
might present further difficulties. As we consider
checking the accuracy of Laplace’s method in Baye-
sian analysis or the saddlepoint method in conditional
or robust inference, an interesting statistical point
emerges. Although most nontrivial problems, in either
approach, will present nontrivial integrals to be han-
dled numerically, the Bayesian integrals are far easier
to evaluate. This is because they involve only the
parameter space, and not the sample space. In prac-
tice, one can envision a data analytical process in
which experience plays a role, with one or a small
number of integrals being checked by nonasymptotic
numerical methods as the need arises; when satisfied
with accuracy, the data analyst could rely on asymp-
totic approximations for much of the analysis (Kass,
Tierney and Kadane, 1988). To proceed along similar
non-Bayesian lines is more difficult, especially when
conditional inference procedures are employed.

I come now to my opinion about the implications
for statistical practice. Much progress has been made
in the use of saddlepoint and Laplace approximations,
and I am at least in partial agreement with Reid’s
conclusion that the impact of saddlepoint approxi-
mations on statistical practice will soon be felt. Most
practical problems of parametric inference, it seems
to me, fall in the category of “inference in the presence
of nuisance parameters,” with the acknowledgment
that various functions g(#), which might be compo-
nents of a parameter vector, are of simultaneous inter-
est. That is, in practice, we may wish to make
inferences about each of many such functions g(6) in
turn, keeping in mind that joint inferences are being
made, yet requiring separate statements for ease of
contemplation. Currently, the asymptotic normality
of MLE’s and the asymptotic x? distribution of the
likelihood ratio test are the workhorses of statistical
practice using parametric families. This is not only
because these first-order results are often sufficiently
accurate to be of use, but, in addition, they offer simple
and easily comprehended answers to the questions
being asked. Which alternative solutions to this basic
problem can and should be used to analyze data?

As we all know, statistical practice is largely deter-
mined by widely available statistical software. Thus,
to have an impact on practice in the near future, new

procedures must be in a form that can be easily
adapted and adopted by major software distributors.
It would not be hard to get alternative p-values for
modified likelihood ratio statistics included in com-
puter output and, if we were lucky, modified confi-
dence intervals and more accurate assessments of
coverage and posterior probabilities of the usual
Normal-based intervals might be included, too. But
can current asymptotic theory supply these?

From the non-Bayesian point of view, it appears
that second-order theory is now able to provide
improved solutions to particular problems based on
multivariate normal and generalized linear models.
Once we move away from these special cases, however,
dealing with nuisance parameters becomes more dif-
ficult, and the worries described at the end of Section
6.2 seem quite serious. Furthermore, as indicated
above, nonasymptotic numerical evaluation of the
characteristics of the procedures is also very demand-
ing. Meanwhile, for solving these general problems,
implementation of both asymptotic and nonasymp-
totic methods is more advanced for Bayesian tech-
nology than for its non-Bayesian counterpart. The
practical difficulty here, however, is that an additional
multivariate distribution (the prior) is required. There
will be progress with the Bayesian approach as flexible
families of multivariate distributions are further
developed, used and understood; the recent advances
in implementation should add impetus to this effort.

Thus, I believe there will, fairly soon, be a trickle of
data analyses using asymptotic methods based on
saddlepoint and Laplace approximations. Widespread
use in general applications, however, must wait for
further methodological advance on the old and diffi-
cult problem of handling nuisance parameters. For the
present, Nancy Reid has done a great service in pro-
viding a concise, informative review of this very active
area of statistical research.

ACKNOWLEDGMENT

This research was supported by National Science
Foundation Grant DMS-87-05646. This comment was
prepared while the author was a visiting scholar in the
Department of Statistics, Harvard University.

ADDITIONAL REFERENCES

CopsoN, E. T. (1967). Asymptotic Expansions. Cambridge Univ.
Press, Cambridge.

STIGLER, S. M. (1986). Laplace’s 1774 memoir on inverse probabil-
ity. Statist. Sci. 1 359-378.



