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Comment

Fred L. Bookstein

The elegant metric geometry of David Kendall’s
shape spaces 2%, is inherited from the Euclidean met-
ric of the spaces R™ containing the original point data.
In the applications he has sketched here, the points
in R™ are independent and identically distributed (iid)
and the metric in shape space, in turn, is symmetric
in the points, a sort of spherical distance. Point data
generated in other disciplines, however, are not always
iid; different metrics may be appropriate to those
applications. In this comment I justify a certain analy-
sis of small regions of Kendall’s shape space by using
a metric quite different from the usual Euclidean-
derived version, depict its relation to Kendall’s metric
and indicate the sort of inquiries it permits.

Morphometrics is the quantitative description of
biological form. Its data can often be usefully modeled
as sets of labeled points, or landmarks, that corre-
spond for biological reasons from organism to orga-
nism of a sample (Bookstein, 1986). We say that these
,points are biologically homologous among a series of
forms: they have identities—names—as well as loca-
tions in some Cartesian coordinate system. Any set of
landmark locations has a “size” and a “shape” that
may be construed according to Kendall’s definitions.
But the biological relations among different instances
of such configurations partake of a feature space not
effectively represented by the metric inherited from
RZor R®. ‘
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In the biological context, my style of statistical
analysis of shapes proceeds, as Kendall pointed out in
1986, within a tangent space of his 2% or 2% in the
vicinity of a sample “mean form.” (Small (1988) has
an interesting comment on this construction.) The
questions that in Kendall’s applications are asked of
an entire shape space—questions about concentration
upon the “collinearity set,” and the like—are replaced
in morphometric applications by the more familiar
concerns of multivariate statistical analysis: differ-
ences of mean shape, covariances involving shape or
factors that may underlie shape variation.

In the linearization of Kendall’s shape space that
applies to this tangent structure, the natural shape
metric is an algebraic transformation of the “Pro-
crustes metric,” the ordinary summed squared Euclid-
ean distance of two-point configurations after an
appropriate optimizing rotation and scaling. But the
Procrustes approach is not flexible enough fairly to
represent biological structure within the context of
multivariate statistical analysis. If two landmarks are
typically close together, like the pupil of the eye and
the outer corner, then we expect them to move to-
gether in their relation to more distant structures. The
half-width and the orientation of the eye are more
tightly controlled by diverse biological processes of
regulation than is, say, the distance from the eye to
the chin. These considerations lead one naturally to
search out a shape metric that weights changes in
small distances more heavily than changes in larger
ones. In 1985, David Ragozin of the University of
Washington suggested to me that the formalism of
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thin-plate splines be considered in this connection.

The suggestion has kept me quite busy ever since.
Consider (Figure 1A) an infinite thin metal sheet,

originally flat but now displaced perpendicularly to
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itself at a discrete set of points. In the figure, the
points are displaced by a rigid armature in the form
of a square (here viewed in perspective). The end
points of one diagonal of the square are displaced by

Thin-plate splines. A, the shape of an infinite thin uniform metal plate originally level, then displaced (by the

contrivance in the diagram) upward at the ends of one diagonal of a square, downward at the ends of the other diagonal. The
plate takes a shape describable as a superposition of fundamental solutions U(r) = r*log r* of its partial differential equation,
as given in the text. B, reinterpretation of the same scene as a deformation. The vertical coordinate of frame (A) has been
combined with the in-plane Cartesian coordinate along one diagonal. The square mesh of dots on the left is transformed by
this deformation into the meshwork on the right. The “bending energy distance” between the shapes in (B) is taken to be the
(idealized) physical bending energy of the equivalent displacement pattern in (A).
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equal distances upward with respect to the rest of the
plate; those of the other, downward by the same
distance.

Producing these displacements of the plate required
that physical work be done in the course of bending.
The configuration that the plate “actually”’ occupies
has the minimum of*bending energy consistent with
the four-point constraint applied by the armature. Let
us introduce the notation U(r) = rZlog r? This func-
tion satisfies the equation (92/dx* + 8%/3y?)*U « 80,
the equation governing bending of the plate when the
displacements are sufficiently small and elastic effécts
within the plane of the plate can be neglected. Under
these assumptions, the formula for the final form of
the plate can be written in terms of the function U(r):
the plate takes the shape

2(x,y) « UW{x? + [y —113) = U(V{[x + 11> +y%)
+ UV + [y + 1) - UWV{lx — 112 +y%).

The functions U(r) based at each of the four corners
of the square are taken with coefficients +1 for the
ends of one diagonal, —1 for the ends of the other, just
as were the displacements of the armature.

The metric I am suggesting for shape change is
equivalent to the bending energy of configurations like
these. We realize it in the context of morphometrics
by conflating the z axis (the perpendicular to the plate)
with one of the in-plane directions, for instance, that
of one diagonal of the armature. There results (Figure
1B) a deformation throughout the plane of that start-
ing square. Reversing this procedure, the shape differ-
ence of the two sets of points shown, the square (before
“bending”) and the kite (after “bending”), becomes
the bending perpendicular to itself of the square in
Figure 1A, and is assigried a shape “distance” repre-
senting the energy of that bending, the work required
to attach the armature to the plate. For small changes
of shape, this measure is symmetric.

The computation of this bending energy for more
general starting configurations of points than squares
proceeds along the following lines (Bookstein,
19883, b’ 1989)' Let Pl = (xb yl)’ P2 = (x2’ y2)’ * '/"
P, = (x,, ¥») be n points in the ordinary Euclidean
plane according to any convenient Cartesian coordi-
nate system. Write r;; = | P; — P;| for the distance
between points ¢ and j. Define matrices

0 Ul(rys) U(rn)
k= | Ulra) 0 Ul(rzn) . nxn;
| U(rn1) Ulraz) - - : 0
( 1 X Y1
pP= 1 2 Y2, , 3Xn;
T

and

K| P
L= , (n+3)X(n+3),
PT| 0

where T is the matrix transpose operator and 0 is a
3 X 3 matrix of 0’s.

Let VT = (vq, ---, v,) be any n vector and write
Y7 = (V7] 000). Define the vector W” = (wy, ---,
w,) and the coefficients a,, a,, a, by the equation

YL = (W7”|a,a,a,).

Use the elements of Y7L to define a function f(x, y)
everywhere in the plane

f(x,y) = +axx+ayy+ 2 sz(I Pi_ (x’y)l)
i=1
Then the following three propositions hold:
1. f(xi, y:) = vy, all .
2. The function f minimizes the nonnegative quan-

tity
aZf 2 azf 2 aZf 2
= L) ola) + )

over the class of such interpolants. This is a constant
multiple of the physical bending energy referred to

above.
3. The value of I; is proportional to

WTKW = VT(L,'KL;")V,

where L is the upper left n X n subblock of L. This
form is zero only when all the components of W are
zero: in this case, the computed map is f(x, y) =
a; + a,x + a,Y, a linear or uniform transformation.

In the present application we take V to be the 2 X
n matrix

%1 ¥yi
7 7
X 2
V= 2 y
Xn  Yn

where each (x/,y/) is a point “homologous to” (x;, ¥;)
in another copy of R% The resulting function f now
maps each point (x;, y;) to its homologue (x/,y/) and
is least bent (according to the measure I, integral
quadratic variation over all R? computed separately
for real and imaginary parts of f and summed) of all
such functions.

In effect, our metric is the bending energy of a four-
dimensional thin plate; two dimensions of plate dis-
placed in two “other” perpendicular directions. A sim-
ilar computation can be mounted in three dimensions,
using the basis function Us(r) = | r|, to represent the
bending energy of a “six-dimensional thin plate.” In
one dimension, U, (r) = | r|® gives the ordinary cubic
spline.
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The matrix L;* KL;*, which will be called the bend-
ing energy metric in the discussion to follow, is not of
full rank. It annihilates affine transformations (uni-
form shears) of the landmark configuration as a whole.
Physically, these play the role of vertical shifts and
uniform tilts of the real metal plate; under our as-
sumption of no in-plane elasticity terms, these “defor-
mations” proceed without any energy cost. In the
context of the biological applications driving this dis-
cussion, those transformations are the uniform trans-
formations lacking any local features (gradients,
growth centers or the like). The biological meaning
of bending energy is thus a sort of measure of
local information required to specify the landmark
reconfiguration.

In the context of shape change, the Procrustes
metric becomes the summed squared point displace-
ment from one form to another, which is to say, the
summed squared point displacements normal to the
thin plate in the two “additional” (nonphysical) direc-
tions. Because of the annihilation of all shears, the
metric geometry of shape space induced by bending
energy is quite different from that driven by the Pro-
crustes metric. (For instance, all parallelograms are at
energy distance zero from each other.) We may sum-
marize the differences by computing an eigenanalysis
of the bending energy metric with respect to the
Procrustes. This is just the ordinary eigendecomposi-
tion of L,;' KL, . The relative spectrum of the bending
energy matrix always has three zero eigenvalues whose
eigenvectors span the affine transformations. The re-
mainder of the spectrum is a series of what I have
named principal warps, normal modes of deformation
that may be ordered by bending energy per unit
Procrustes displacement.

An example of this spectrum is shown in Figure 2
for a configuration of seven landmarks drawn from*a
study in craniofacial syndromology (see Bookstein,
1989, Section 7.5). Frame (A) shows the mean config-
uration of these seven points in a (biologically) normal
saniple and in a sample of 14 cases of Apert Syndrome.
The eigenvectors of bending energy may be shown all
at once as distinctive patterns of simultaneous in-
plane displacement of all the landmarks in parallel
(the segments at intervals of 20° in frame (A)). Alter-
natively, they may be considered individual patterns
of displacement perpendicular to the picture, as drawn
in frames (B)-(E). Notice that the eigenvectors of
higher eigenvalue look more bent per net (Procrustes)
vertical displacement, and that the larger principal
bending modes somewhat resemble that in Figure 1,
the square-to-kite bend, at diverse scales.

The annihilation of those three degrees of freedom
for the affine changes alters the metric geometry of
shape space severely. The set of forms at constant
bending energy distance from a fixed form is not a

hypersphere but a hyperellipsoidal cylinder heading
out to “infinity”” in the tangent space. Figure 2, B-E,
may be reinterpreted as the semiaxes of sections of
this cylinder. The cylinder is not general: to each thin
plate pictured there correspond two equal semiaxes
representing the same in-plane displacements rotated
by 90°. Thus the full constant-distance locus is the
extended Cartesian product of an infinite flat hyper-
plane by a series of circles of different radii. The
changes in Figure 2, B-E, are all (Procrusteanly)
orthogonal to three dimensions of generators, the
space of all the affine transformations, which have
bending energy zero regardless of Procrustes length.
If the mean configuration of landmarks were different,
s0, too, would be this pattern of axes, the geometry of
“normal sections” of the cylinder.

The affine features of change annihilated by this
shape metric can be restored by separately measuring
that aspect using the Poincaré hyperbolic metric (see
Bookstein, 1986, 1989). There results a joint feature
space with the same dimensionality as Kendall’s 2%,
but with a metric now Galilean in the small (cf.
Yaglom, 1979), so that there is no possibility of
“rotation” between affine and bending parts; they are
incommensurate. This is analogous to the treatment
of real (physical) spacetime in Newtonian mechanics,
for which space is measured in centimeters and time
in seconds, with no possibility of interconversion by
purely geometric maneuvers. Any relation between
space and time is coded instead in a Newtonian veloc-
ity, a vector of change in space per change in time.
That is, the net vector spline L™'Y has no unitary
“length” or “direction.” Rather, its affine part has a
geometry that may usefully be taken as hyperbolic in
the large (cf. Small, 1988), and its nonlinear part W
has a geometry that is cylindrical Euclidean. These
two conceptually independent aspects of measurement
relate only by a joint distribution, such as a covariance
structure.

With the help of the bending energy metric, we can
refer to localization of biological variability and to the
apparent physical scale of that variability. Neither of
these is possible using the Procrustes metric. A useful
first step is the relative eigenanalysis of the covariance
matrix of the shape coordinates (Z, — Z,)/(Z, — Z,)
with respect to the bending energy metric. Some del-
icacies of the computation are discussed in Bookstein
(1989, Section 7.6).

For example, Figure 3 presents an analysis of the
positions of eight cranial landmarks (frame (A)) in
the skulls of 21 7-day-old male rats. (The data were
originally drawn by Henning Vilmann, the landmarks
digitized by Melvin Moss.) Our concern is with large-
scale shape regulation in this diadem of sutures around
the rapidly developing brain. Frame (B) indicates the
five principal warps of this configuration of landmarks
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FIG. 2. Spectrum of the bending energy with respect to the Procrustes metric. A, pattern of seven landmarks, and the four principal warps they
generate, as described in the text. Segments along the horizontal: principal warp of largest bending energy, 0.631 (arbitrary units). At 20°
counterclockwise of horizontal: eigenvector of second largest bending energy, 0.415. At 40°: third stiffest principal warp, eigenvector 0.242. At 60°
counterclockwise of horizontal: eigenvector of smallest nonzero bending energy, 0.139. In the interpretation as deformation these multiply any
two-vector to supply one displacement at each landmark. Also shown, by its effect upon the square grid at left, is the thin-plate spline mapping
these seven landmarks to the homologous configuration on the right. The table in the tenter presents the loadings of the x- and y- components
of this transformation upon each principal warp in turn: e.g., the y- component is mostly warp 4, the x- component the sum of warp 2 and
warp 3. The data represent mean forms, as observed in lateral cephalograms, for a clinical sample of Apert Syndrome (right) and matched
Ann Arbor normals (left). Landmarks, clockwise from upper left: sella, sphenoethmoid registration, nasion, anterior nasal spine, inferior zygoma,
pterygomaxillary fissure (for definitions, see Riolo, Moyers, McNamara and Hunter, 1974). The “interior” landmark is orbitale. The transfor-
mation includes an affine component with strains of 0.71 along and 0.93 perpendicular to the direction at 31° counterclockwise of vertical on the
left, 37° on the right. For the meaning of this example, see Bookstein (1989, Section 1.5). B-E, interpretation of each of the four eigenvectors as

its own thin-plate spline: pairs of semiaxes of the bending energy cylinder.
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F1G. 3. Relative bending energy component analysis of 8 cranial landmarks for 21 laboratory rats aged 7 days. A, midsagittal section: the
landmarks in situ. B, the five principal warps, counterclockwise from the horizontal in decreasing order of bending energy (eigenvalues 8.3, 6.2,
3.3, 1.8, and 1.1 in arbitrary units). C, the last two principal warps as in-plane displacements in shape coordinate space (two landmarks fixed).
Solid line, largest scale; dotted line, second largest scale. To each principal warp correspond two of these patterns, the one shown and its rotation
by 90° at each landmark. D, the first and second relative eigenvectors of greatest sample variance relative to bending energy: the first and second
components of scaled shape variance. Solid line, dominant relative eigenvector (eigenvalue 0.0067); dotted line, second relative eigenvector

’ (eigenvalue 0.0047).

after the fashion of Figure 2A, as parallel in-plane
displacements, and frame (C) shows the last two of
these (the bends of largest spatial scale) as in-plane
displacements from the sample mean locations in
shape coordinates (i.e., with two landmarks held fixed,
as shown). The relative eigenanalysis of the sample
shape coordinate covariance matrix with respect to
bending energy has eigenvalues of 0.0067, 0.0047,
0.0003, - - -, 0.0000. (There are ten in all, five principal

warps times two Cartesian coordinates.) Figure 3D
shows the first two of these relative eigenvectors (all
others are trivial). The first of these connotes a gen-
eralized enlargement of upper cranial structures rela-
tive to the lower. The component is of highest relative
eigenvalue in part because it has the lowest bending
energy: compare the solid segments between frames
(C) and (D). The second relative eigenvector, the
dotted pattern in Figure 3D, represents rotation of
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the upper margin of the braincase with respect to the
lower margin. It is not at all equivalent to the second
weakest principal warp (dotted lines, frames (C) and
(D)). The bending energy eigenanalysis has extracted
these large scale patterns of shape covariance by
explicitly weighting empirical covariance patterns
inversely to geometric localizability. Other equally
plausible geometric patterns, such as bending of the
upper or lower structures, are not observed to bear
any sample variance.

The example suggests the descriptive possibilities
inherent in accommodating the metric geometry of
Kendall’s shape space to a biological subject matter.
One can imagine other modifications of the metric in
response to other contexts than the biometric. For
instance, one can imagine the statistical study of the
positions of a robot arm. When the state of the linkage
is coded by the coordinates of its joints, then because
certain parts of the robot are rigid, an appropriate
measure of “distance” would be somewhat altered
from the Procrustes. In another sort of constraint,
certain “landmarks” might represent the loci of curves
in the data—boundary arcs not otherwise labeled—
and would thus be “deficient” by one coordinate; again
the Procrustes metric needs to be modified. In a study
of schools of fish, or flocks of birds, an appropriate
shape metric might be the Cartesian product of a
biological shape space by a hydro- or aerodynamic one
(for the V of migrating geese, for instance). Yét other
modifications would arise when the points of Kendall’s
space are “colored” in classes whose separate patterns
cannot be usefully studied without reference to their

Comment

Christopher G. Small

With a high standard of rigor David Kendall has
given us an interesting survey of the theory of shape
ahalysis that he has pioneered with the help of others
over 'the last decade. This work is now of sufficient
volume that the many topics discussed in this survey
can be only briefly touched upon. I certainly hope that
this paper is a stimulus to additional consideration of
this topic by statisticians. It may well be that on future
occasions the topologists will have to introduce their

Christopher G. Small is Associate Professor, Depart-
ment of Statistics and Actuarial Science, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1.

interpenetration, as in problems of multispecies ecol-
ogy. These and other possibilities represent an enrich-
ment of the metric geometry of shape space within the
global purview pursued so sparely and elegantly by
David Kendall.
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theory of shape with preparatory remarks to the effect

that it is not to be confused with the growing statistical
theory of shape.

At first glance, this paper might seem to have much
in common with the differential geometric techniques
in statistics that are associated with Amari (1985) and
others. However, despite the abstraction of some of
the theory, the methods of Kendall are essentially
data analytic rather than model theoretic: the differ-
ential geometry is on the sample space not the param-
eter space. So how much differential geometry must
the data analyst know in order to implement the
techniques that are described in this paper? The an-
swer is largely dependent on the amount of software



