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Thus if the dimension can be reduced, the design in
the remaining dimensions is still reasonably good. The
optimal designs depicted in Johnson, Moore and
Ylvisaker (1988) do not tend to project uniformly.

We prefer the sequences of Faure (1982) to
the Halton-Hammersley sequences. The Halton-
Hammersley sequences are usually based on the first
d prime numbers, whereas Faure uses the same prime
number (the smallest prime r = d) on each axis. When
n = r* the Faure sequences exercise each input vari-
able in much the same way Latin hypercube designs
do. Moreover for k = 2 they exercise pairs of input
variables in that, for any given pair of inputs, one can
partition their domain into r? squares and find r*2
points in each square. Similarly there are equidistri-
bution properties for three or more axes. The equidis-
tribution properties of the Halton-Hammersley
sequences are different for each marginal subcube,
depending on the associated primes. We have found
that with n = r? and r =5 or 7 that the Faure sequences
appear to lie on planes in three dimensions. This is
alleviated by replacing each digit b in the base r
representation of the Faure sequence by o(b) where o
is a permutation of 0, ..., r — 1. The permutation
does not alter the equidistribution properties. One can
inspect three-dimensional scatterplots to make sure
that a given permutation is effective.

PARAMETER ESTIMATION

We would like to mention a quick way of estimating
0 ..., 6; in the covariance given by the authors’

Comment

Anthony O’Hagan

The authors are to be congratulated on their lucid

and wide-ranging review. Like others before, I have
independently rediscovered many of the ideas and
results presented here. I therefore sincerely hope that
the greater prominence given to those ideas and results
by this excellent paper will enable future researchers
to start well beyond square one. I first have some
comments concerning the derivation of the basic es-
timator (7), and I will then discuss the model and the
practical implementation of the methods from my own
experience.

Anthony O’Hagan is Senior Lecturer and Chair,
Department of Statistics, University of Warwick,
Coventry CV4 7AL, United Kingdom.
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equation (9) with p = 1. When the function Y(x) is
nearly additive, we can estimate the main effects using
scatterplot smoothers. This corresponds to the inner
loop of the ACE algorithm in Breiman and Freidman
(1985). Let g; denote the estimate of the jth main
effect. A very smooth gj(-) is evidence that 6;
is small and a rough g;(-) suggests that 6; is
large. The roughness may be assessed by %, =
Y2.(g (i/m) — g ((i — 1)/m))* where the domain of g;
has been rescaled to [0, 1]. The expected value of .%;
may be expressed in terms of 6; through 6,, for fixed
o. The d equations in d unknowns can be solved
iteratively. The likelihood can be used to choose be-
tween the answers from several different values of m.
This avoids a high dimensional search for 6, . .., 6.
The first time we tried it, we got better parameter
values (as measured by likelihood) than we had found
by searching. Alternatively it suggests starting values
for such a search.
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The authors mention three derivations of (7). In a
classical framework, it is the MLE if the process
Z(-) is Gaussian, and relaxing this assumption it is
the BLUP, minimizing (2). Thirdly, it is the posterior
mean of Y(x) in a Bayesian analysis with a Gaussian
Z(-) and a uniform prior on 8. It is first worth pointing
out that with a proper multivariate normal prior
8 ~ N(b, B) and known ¢Z the posterior mean of Y (x)
has the same form as (7), but with 8 replaced by the
posterior mean of 3, i.e.,

B = (F'R'F + o*B™)(F'R'FB3 + ¢2 B™).

The interpretation of (7), as comprising the fitted
regression model plus smoothed residuals, still holds.

We can also dispense with normality in the Baye-
sian framework, using a similar device to (2). The
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same estimator may be derived as the Bayes Linear
Estimator (BLE), which also minimizes (2), but to
distinguish the different derivations it is important to
recognize the conditioning. The BLUP minimizes,
over the class of y(x) which are unbiased and linear
in Y,

(+1) E[{y(x) — Y0F|B, o°],

conditioning on the parameters being mandatory in
classical statistics. In contrast, we can think of the
posterior mean of Y(x) in general as minimizing (un-
constrained) the posterior expected squared error

(x2) E[{y(x) — Y(x)}?| Y,].

When all diAstributions are normal, the posterior mean
is (7) with g replaced by 8 and happens to be linear in
Y,. The BLE minimizes

(x3) E[{y(x) — Y(0)}*].

over the class of y(x) which are linear in Y,. Only
first- and second-order moments need be specified,
and the solution is again (7) with 3 replaced by 8 and
reduces strictly to (7) if B~ — 0. We can consider
(*3) as the expected MSE, i.e., the expectation of (1)
with respect to the prior distribution of the parame-
ters. We can also consider it as the prior expected
squared error, i.e., the expectation of (*2) with respect
to the preposterior distribution of Y.

There are therefore two Bayesian derivations of (7),
paralleling its two classical derivations, in the case of
a diffuse prior distribution for 8. With proper prior
information about 8 and known ¢2, both yield the
same structure as (7) but with 3 replacing B. With
unknown o2, the posterior mean will no longer be
linear in Y,. The BLE solution is no longer obviously
appropriate, but see the variance-modified BLE of
Goldstein (1979). The BLE has also, incidentally, been
rediscovered several times (see O’Hagan, 1987 and
references therein).

My own work on design and analysis of error-free
data has been in the context of numerical integration,
where the objective has been to make inference about
the integral of Y(.). This work is described in
O’Hagan (1988). My motivation and practical experi-
ence lies in the case where Y(-) is an unnormalized
density function over R This is because, in a Baye-
sian analysis of a complex problem, the posterior
density is generally an intractable function and is only
known up to a normalizing constant. Integrating the
density to obtain this normalizing constant is there-
fore the first task in analyzing the posterior informa-
tion. This is a very specific context, and my main
comment on the model is that context is very impor-
tant. My context implies that Y(-) is non-negative

and will tail away to zero in all directions fast enough
to be integrable. I therefore set Y (x) = T'(x) g(x), where
g(-) is a fixed, proper density function on R? and
T(-) is now assumed to follow a model identical to
(1). This is very different to assuming (1) for the
original process Y(-). There is always prior informa-
tion about the shape of Y(-). To some extent this is
captured in the regression part of (1), but if Y(-) is
constrained then we need a model that recognizes
both the constraint and the fact that the variability
of Y(-) must be reduced when it comes close to the
constraint.

My experience with using this model, although very
limited, reinforces many of the authors’ comments. I
simulated a wide range of posterior densities, in one
dimension only, as mixtures of normal or ¢ distribu-
tions, applied my Bayesian quadrature rules with var-
ious p, # and polynomial regression terms, and
calculated sample MSEs. Like the authors, I found
that there was generally no benefit in using the regres-
sion terms, apart of course from a constant term. Since
my functions were quite smooth, it is not surprising
that p = 2 performed better than p = 1.

The authors remark that the apparent precision of
prediction is dramatically increased by decreasing 6. I
found this too and proposed a general value of 6§ = 1
for my specific context. I did not attempt to estimate
p and 6, but unknown p and 6 are not easy to handle
within the full Bayesian framework. The authors’
maximum likelihood estimates easily translate into
posterior modes, assuming uniform prior distributions
for these parameters. However, merely substituting
these estimates into the rest of the analysis is an
approximation to the full Bayesian analysis, at best,
and is bound to underestimate posterior uncertainty
about Y(.)

For design, my optimality criterion was different
from any suggested by the authors. I was interested
in posterior variance of the integral. Just as
var(X + Y) # var(X) + var(Y) in general, this
variance is different from integrated MSE. It takes
‘account of posterior covariances between Y(x) and
Y (w), which in the classical framework would be re-
placed by covariances between y(x) and y(w). Despite
the different criterion, my experiences with optimal
design were similar to the authors’. In particular, for
d = 2, the few optimal designs I derived were quite
unlike traditional quadrature rules.

The authors comment that the conditioning of R
deteriorates with n. This is a serious problem when
searching for designs, because R is ill-conditioned over
a great part of the design space, namely wherever two
coordinates are sufficiently close in value. The prob-

.lem is much worse for p = 2 than for p = 1. However,

good designs invariably arise in that part of the design
space where R is relatively well-conditioned. It may
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be possible to take account of this in the search
algorithm, to both speed the search and evade numer-
ical problems on the way. Nevertheless, large n must
always present problems.

The only comment in the paper which jars with my
own experience is the reference to designing for very
large 6, in the Currin, Mitchell, Morris and Ylvisaker
(1988) paper. When 6 is large, you cannot estimate
Z(-) except very locally to each design point. The
second part of (7), which smooths the residuals, con-
sists of zero almost everywhere except for blips at each
design point to make y(x) pass through the observa-
tion. Designs for this case will be exclusively con-
cerned with estimating the regression function and,
like classical optimal design for regression, will place
clusters of points at the boundaries of the design
region. Such designs must be very poor when 6 is in
reality not large.

I was very intrigued to see the decomposition of
Y(-) into main effects, interactions, etc. In my context

Comment

Michael L. Stein

I wholeheartedly agree with the authors that stat-
isticians can and should contribute to the design and
analysis of computer experiments. Too often statisti-
cians shy away from problems that do not fit into the
standard statistical frameworks; the authors are to be
congratulated for their trailblazing efforts. Further-
more, I agree that a sensible way to approach these
problems is to view the output from the computer
model as a realization of a stochastic process. Where
I think further work is needed is in the development
of appropriate stochastic models.

The model given by (9) in this article by Sacks,
Welch, Mitchell and Wynn has some undesirable

- properties. For 0 < p < 2, a stochastic process with
this covariance function will not be mean square dif-
ferentiable. As noted by the authors, for p = 2, the
process is infinitely mean square differentiable. Not
allowing processes that are differentiable but not in-
finitely differentiable strikes me as unnecessarily re-

Michael L. Stein is Assistant Professor, Department of
Statistics, University of Chicago, 5734 University Av-
enue, Chicago, Illinois 60637.

where Y(.) is a multivariate density function, the
main effects are just marginal densities. The interac-
tions as defined, however, have no particular value.
Instead I would define

Mij (i, xj) = fy(x)Hh#i,jdxh - #i(xi)uj (xj),

representing non-independence between x; and x;.

It should be clear from my remarks how much I
have enjoyed reading this paper. The wealth of detail
and the authors’ breadth of knowledge make it one
that I am sure to turn to repeatedly.
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strictive. A more flexible class of correlation functions
is (Yaglom, 1987, page 139)

1
II W (ail wj — le)”K,,(ajl w; — le),

where K, is a modified Bessel function of order »
(Abramowitz and Stegun, 1965, page 374). A stochas-
tic process with this covariance function will be m
times mean square differentiable if and only if » > m.
The a;s measure the range of the correlation: a large
a; indicates that correlations die out quickly in the x;
direction.

A problem with all of the correlation functions used
by Sacks, Welch, Mitchell and Wynn is that they do
not allow for the inclusion of prior knowledge such as
that most of the variation in the output y(-) can
probably be explained by main effects plus perhaps
some low order interactions, which in fact occurred in
the circuit simulator example they discuss. If we ex-
pected most of the variation in y(-) could be explained
by main effects, we might want to model Y(x) as

1) Y(x) = X Y;(x) + Z(x),



