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Abstract. The first five sections of the paper describe the Bayesian paradigm
for statistics and its relationship with other attitudes towards inference.
Section 1 outlines Wald’s major contributions and explains how they omit
the vital consideration of coherence. When this point is included the
Bayesian view results, with the main difference that Waldean ideas require
the concept of the sample space, whereas the Bayesian approach may
dispense with it, using a probability distribution over parameter space
instead. Section 2 relates statistical ideas to the problem of inference in
science. Scientific inference is essentially the passage from observed, past
data to unobserved, future data. The roles of models and theories in doing
this are explored. The Bayesian view is that all this should be accomplished
entirely within the calculus of probability and Section 3 justifies this choice
by various axiom systems. The claim is made that this leads to a quite
different paradigm from that of classical statistics and, in particular, prob-
lems in the latter paradigm cease to have importance within the other.
Point estimation provides an illustration. Some counter-examples to the
Bayesian view are discussed.

It is important that statistical conclusions should be usable in making
decisions. Section 4 explains how the Bayesian view achieves this practi-
cality by introducing utilities and the principle of maximizing expected
utility. Practitioners are often unhappy with the ideas of basing inferences
on one number, probability, or action on another, an expectation, so these
points are considered and the methods justified. Section 5 discusses why
the Bayesian viewpoint has not achieved the success that its logic suggests.
Points discussed include the relationship between the inferences and the
practical situation, for example with multiple comparisons; and the lack of
the need to confine attention to normality or the exponential family. Its
extensive use by nonstatisticians is documented.

The most important objection to the Bayesian view is that which rightly
says that probabilities are hard to assess. Consequently Section 6 considers
how this might be done and an attempt is made to appreciate how accurate
formulae like the extension of the conversation, the product law and Bayes
rule are in evaluating probabilities. -
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PREFACE

It is an honour to be asked and a pleasure to give
these lectures to members of the Institute of Mathe-
matical Statistics. The lectures are devoted to the
foundations of inference and to showing how impor-
tant the foundatians are in determining statistical
practice. Except in Section 6, little attention is paid
to the necessary technical developments. This empha-
sis on foundations is partly due to my own interests
and partly due to space limitations. It most certainly
does not arise because of any lack of appreciation of
the value of technicalities. Foundations, technicalities
and practice are all important and our subject is
dependent on all three.

The aim of these lectures is to explain Bayesian
statistics as a new paradigm. In Section 1, Wald’s
work is contrasted with Bayesian, particular emphasis
being placed on the role of the sample space. In Sec-
tion 2, an attempt is made to describe the basic prob-
lem of statistics as part of scientific method, and in
Section 3 to argue, and to explore the unappreciated
consequence, that its solution must be Bayesian. Sec-
tion 4 extends the discussion to decision-making, and
Section 5 is a foundational glance at statistical prac-
tice. A final Section 6 contains an attempt to face up
to the famous, legitimate objection to Bayesian statis-
tics that the prior may be unknown. It is argued that
the measurement of probabilities is a problem that
has not been seriously considered, even by probabil-
ists, and a beginning is made on its resolution.

There is no generally accepted name for non-
Bayesian statistics. Since Bayes had little to contrib-
ute to Bayesian statistics, it is not inappropriate to
refer to Berkeley statistics, since the two ecclesiastics
disagreed during their lifetimes, and because the Uni-
versity of California campus named after the latter
has perhaps the best department broadly holding to
that view. To vary the style, the terms coherent and
sampling-theory (due to Box and Tiao, 1973) will be
used.

1. COHERENCE
1.1 Bayesian Ideas in Wald’s Work

Wald was responsible for two major results, in ad-
dition to many other researches that we would all be
proud to be able to call our own. The first was the
invention of the sequential, probability-ratio test
(SPRT) (Wald, 1947) and its optimality property
(Wald and Wolfowitz, 1948). The second was the proof
that the only admissible solutions to a decision prob-
lem are essentially Bayes solutions and that they form
a minimally complete class (Wald, 1950). Both these
results are Bayesian. The second obviously so. The
first is because if /; is the likelihood of the data under
H; i = 0, 1) and =; the prior probability of H;,

the SPRT, which consists in sampling as long as
A < l/l; < B, where A and B are constants, and
stopping as soon as either inequality is breached,
may be rewritten in terms of posterior odds as
A’ < moly/mil; < B’; which is equivalent to stopping
as soon as the posterior probability of H, is sufficiently
large or small; in Bayesian terms, as soon as Your
belief in one of the two hypotheses is sufficiently
strong. An essential feature of the SPRT is that the
critical values of the likelihood ratio (or of the odds
ratio) do not depend on the number of the observa-
tions but are genuinely constants.

It is remarkable that Wald’s work led, especially in
the United States and most particularly by members
of this Institute, to the development of a school of
statistics that is resolutely anti-Bayesian and eschews
the use of probability distributions over parameter
space except as a tool to produce admissible decision
procedures whose non-Bayesian properties are then
studied.

1.2 The Incompleteness of Wald’s Results

The two results just cited are incomplete (in a
nontechnical sense) in that they only refer to the
optimality of a class of procedures (SPRT, or Bayes)
and do not, on their own, produce a single method
that can be preferred to others in the class. Wald, and
others, have written on the minimax procedure to
select a unique optimum, but this has not found gen-
eral favour because of the unsatisfactory results it
gives even in simple situations like the estimation of
a binomial parameter (Wald, 1950, page 142). A deeper
objection to minimax will be given in Section 1.5. The
most popular method of obtaining a unique procedure,
well illustrated in the case of the SPRT, is to use
other sample-space properties. Wald (1947) showed
that, to a good approximation, the choice of A =
a/(1 — B) and B = (1 — «)/B will lead to probabilities
o and B of false acceptances of the hypotheses. Con-
sequently, fixing « and 8 will determine A and B and

“hence the test. In more general situations the power

curve can be similarly used. In other cases, restrictions
on the class of procedures, for example to unbiased
estimates, will often lead to a unique optimum.

(There is another aspect of Wald’s work where the
incompleteness remains, even today. It is all based on
a loss function and the minimization of the expected
loss over sample space: the risk function. Yet no
satisfactory explanation appears to be available of
what a loss function is or why only its expecta-
tion should be relevant. We return to this point in
Sections 4.1, 4.2.)

1.3 The Use of Sample-Space Criteria

It is in this use of sample-space criteria to select a
unique decision procedure out of a class that the
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Waldean and the Bayesian part company. This is most
easily seen in the case of two simple hypotheses, Hy
and H,, either in the fixed-sample-size case or the
SPRT. The former will use a and 3, the errors of the
two kinds, which involve integrations over sample
space. The latter will use o, the prior probability of
H, (v, =1 — m,), the cost of sampling and other losses.

With a good deal of generality, the situation can be
described as follows. Let X be the sample space of
points x and O the parameter space of points 6. These
are connected by p(x|6), the probability density of X
for a given 0 (with respect to some measure). Let D be
the decision space of points d, and L(d, 0) the loss in
selecting d when 0 obtains. Waldean concepts use a
decision function 6(x) from X to D, that prescribes
what decisions to take when x is observed, and base
selection of it on the risk function

(1) R(, 0) = L L(3(x), 0)p (x| 0) dx.

The Bayesian approach uses a probability density
m(0) over parameter space and chooses as the optimum
decision that d which minimizes the expected loss

(2 L*d, x) = L L(d, 0)p(0 | x) db,

where p(f | x) is the density of 6, given x, obtained by
Bayes theorem. This analysis does not use the sample
space except insofar as X may affect the likelihood
p(x|0) regarded as a function of # for fixed x. Once
x is observed and the likelihood available, X is
irrelevant.

(A Bayesian can use the decision function é(x) and
minimize the average risk

3) fe R(3, 0)=(0) do,

but a simple reversal of the orders of integration of 6
and x easily reduces this to the simpler minimization
of (2). Raiffa and Schlaifer (1961) refer to this as the
normal (in the sense of “usual”) method, and to (2) as
_ the extensive method.) .

It is in the contrasting use of two entirely different
expectations, (1) and (2), that the disagreements be-
tween the two schools are most clearly displayed. The
sampling-theorist objects to the Bayesian’s use of an
arbitrary = (). The latter objects to the former’s use
of an arbitrary sample space. When Berkeley says to
Bayes, “where did you get that prior?”, Bayes can
respond with, “where did you get that sample space?”

Since the arbitrariness of the sample space is not
often appreciated, it might be worth discussing it. The
practical reality is the data x (not X), the parameter
space O and the likelihood function p(x | -) for fixed

x and variable 6. The sample space X is, to use Jeffreys’
(1939) vivid description, the class of observations that
might have been obtained but weren’t. Both in prac-
tice and in theory, this class can be hard to specify.
(The problem of experimental design is not being
discussed.)

Let me digress to answer a point raised by two
referees, and others privately, to the effect that the
sample space X and its associated densities are the
primary entities from which the likelihood is derived.
This need not be so. Although it is customary for
any paper in probability to begin with the triplet
(X, A, p), the space, the sigma-algebra and the prob-
ability measure (or density) and, in statistics, to ex-
tend to a set of probabilities indexed by a parameter,
this complete specification is not necessary and often
extends beyond the bounds of the reality. Why, when
discussing probabilities, is it necessary to have them
defined for more sets than those of interest? Why
insist on all members of the field? Why, when a
thumb-tack has been tossed 6 times, with 4 of these
resulting in the point facing upwards in an observed
order, do we have to think of other possibilities?
The likelihood is 6*1 — 6)2 without the need for
the extra considerations. If observations have been
made of n normal quantities, the log-likelihood is
—nlog o0 — % Y (x; — 0)%/0® irrespective of the fact
that, had the observations been other than they
were, sampling would have stopped before n. The
(X, A, p)-introduction is a useful starting position
for many problems but not when the data are to hand.
Then the likelihood function is primary and, as we
shall try to show, the sample space is an arbitrary
addition imposed on it.

1.4 Difficulties in the Definition of the Sample
Space

A common case is the observation of a random
sample of size n and for the statistician to take the
sample space to be all samples of that size. But it
often happens that the scientist had arrived at n by a
random procedure: some of the plants may have died,;
time or money may have run out. Were the experiment
to be repeated—a concept uppermost in the frequen-
tist’s mind—a different n might result. By what rea-
soning can the statistician justify fixing n to provide
the sample space? That fixing n can affect the ulti-
mate choice of decision function is seen by contrasting
the effects of positive or negative binomial sampling
on the unbiased estimate of the chance parameter.
On the rare occasions when some justification is
attempted, an appeal is often made to ancillarity,
but Basu (1964) has shown that this is unsatisfac-
tory because there are ancillaries that are indefensible.
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As an example, let x be uniformly distributed in
[0, 1 + 0). Then the fractional part of x is ancillary
but x, conditional on this ancillary, has a one-point
distribution providing a sample space that is too
restricted. The reduction of the sample space must
rest on more than ancillarity—or be an incorrect
procedure. :

There are many examples of constructed sample
spaces that differ from the reality of the experiment.
With a contingency table, the margins are often sup-
posed fixed. In studying the bivariate regression of y
on x, it is usual to hold the «’s fixed at their observed
values. If the parameterization is in terms of (9, \),
where 6 is of interest and A is a nuisance parameter,
we can write, for a statistic ¢(x),

(4 p(x|6, N) = p(t(x) |06, Mp(x]|t(x), 6, N).

If A\ is absent from either of the two factors on the
right-hand side, that factor alone may be used for
inference about # and the other discarded. This has
led to many varieties of likelihood and, by implication,
unusual sample spaces. There is no doubt that many
of these procedures are useful. My point is that their
theoretical underpinning is weak.

So Berkeley uses a sample space; Bayes employs a
prior. Both have elements of arbitrariness. It is pos-
sible to avoid both by using an approach based purely
on the likelihood function, but this has difficulties in
handling nuisance parameters and appears to be ill-
adapted to decision-making. So the contrast remains.
I now argue that Wald’s approach had an essential
ingredient missing. Once that is inserted, the Bayesian
viewpoint is seen to be preferable.

1.5 Coherence

The missing ingredient is most easily appreciated
in the work of Neyman and Pearson that Wald was
later to generalize. Still considering the case of two,
simple hypotheses, they advocated fixing «, the error
of the first kind, and minimizing 3, that of the second.
But they never considered whether doing this, both
for a sample of size n, and for a sample of a different
size ny, made sense. In general, consider two problems
sharing the same parameter and decision spaces but
differing in their sample spaces. A practical example
is that of two scientists performing different experi-
ments to investigate the same phenomenon. The key
question is: do the statistical analyses of the two
problems fit together, or cohere? In particular, how
would the analyses compare with the single analysis
of the two experiments when combined? It is the
concept of coherence that is absent from sampling-
theory statistics.

To investigate this further, let the parameter and
decision spaces both have two elements, (6,, 6,) and

(do, d;) respectively. Suppose that, in some sense, d;
is correct if ; obtains (i =0, 1), and let this be reflected
in a loss function with L(d;, 6;) = 0 and L(d;, 6;) = 1
for i # j. Now consider two problems with the same
parameter and decision spaces but different sample
spaces, X; and X,, and hence different densities
pi1(x1]6;) and py(x2|6;). The analyses will proceed
using values (a;, 8;) and (az, 8;) respectively. (In the
special Neyman-Pearson form, a; = a,: if minimax is
used, o; = B1, @z = B2.) Now consider the situation
where X, arises with probability %, as does X,. (This
sounds strange but is possible with two sample sizes
n, and n,: the chance mechanism with probabilities ¥z
is ancillary.) The “natural” values of (a, 8) for the
mixed experiment are Y2(a; + a3) and Y% (8; + Bs). It
can happen, even when fixing a or using minimax,
that the natural values are not even admissible.
The only procedure that ensures admissibility is the
Bayesian method that minimizes moa + 7 08. (That
this is Bayesian follows from the normal method of
analysis using the average risk, equation (3).)

A simple way to see this is to think of all possible
values, including inadmissible ones, of « and 8 in the
unit square. It is necessary to express preferences
amongst these. Admissibility alone rules out any pair
(o, B) for which there is available another pair (a’, 8)
with o’ < a, 8’ < 8. Preferences may be expressed in
terms of “contours” in the («, 8)-square along which
all values are equally attractive. Mixing the values
with probabilities ¥ as in the previous paragraph
easily shows that the contours must be parallel lines,
o + kB constant, for some positive k. The value k =
w1/ 7, gives the Bayesian interpretation.

A more detailed account of the material in the last
two paragraphs will be found in Section 3 of Lindley
(1972) based on an approach developed with Savage.
The famous counter-example of Cox (1958) on mixing
experiments illustrates the problem. Cohen (1958),
Cornfield (1969) and Bartholomew (1967) are also
relevant and the last has an interesting discussion.

That fixing «, as Neyman and Pearson suggested, is

unsatisfactory has been long appreciated. As Anderson
(1987) says “the appropriate significance level should
be adjusted to sample size”. Unfortunately, we are not
told how the adjustment is to be made. Berger and
Delampady (1987) give the Bayesian answer. That
k = m;/m above does not change with the sample size
is reflected in the optimality result for SPRT that
holds the limiting values of the likelihood ratio con-
stant as sampling proceeds. Here is coherence at work:
it is missing from the rest of Wald’s writings.

1.6 Summary

The discussion has pointed out that although
the sampling-theoretic and Bayesian views share
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parameter and decision spaces in addition to the data,
the former needs to include a sample space and the
latter has to introduce a distribution over parameter
space. Both these introductions present problems that
have not been completely resolved. The additional
consideration of how separate decision problems fit
together, or cohere, shows that only the Bayesian
attitude is coherent. Consequently the sample space
is irrelevant. (This leads to the likelihood principle, a
topic that will not be discussed here: see Berger and
Wolpert (1984) and Basu (1988).) My thesis is that
sampling-theorists have failed to consider coherence
and, in consequence, have produced unsatisfactory
methods.

The Bayesian view is sometimes presented as
though it just consists of adding a prior to the Waldean
framework. Thus, in point estimation, a Bayes esti-
mate is merely one that minimizes the weighted risk
(3). I want to argue that the Bayesian paradigm in-
volves a very different approach from the Berkeley
one. It really is a distinct paradigm and the substitu-
tion of one by the other requires a true scientific
revolution in Kuhn’s (1974) sense.

2. INFERENCE

2.1 The Basic Problem of Inference

To appreciate fully the distinctive nature of the
Bayesian paradigm, it is necessary to consider the
foundations of statistics and the nature of the practi-
cal problems that statisticians are trying to solve.
“Those of us who are concerned with our job prospects
and publication lists avoid carefully the conceptually
difficult problems associated with the foundations of
our subject” (Lavis and Milligan, 1985). Towards the
end of my career, neither is an impediment, and in-
dulgence in the foundations may perhaps be permit-
ted; especially when they have so much to tell us and
can exert such a strong influence on our mathematics
and our practice.

It is convenient to begin, not with decision-making,

but with inference; or what is often called inductive -

logic. This will lead naturally into decision aspects.
Ordinary logic is inadequate to justify something we
all do when we suppose tomorrow will be, in most
respects, like yesterday. Ordinary logic enables us to
deduce from a hypothesis H consequences x and y. It
does not help us to prove H, or to deduce that conse-
quence y may follow from x. We need inference to
pass from x (yesterday) to y (tomorrow). The funda-
mental problem of statistical inference is to pass from
one set x of observations to express opinion about
another, as yet unobserved, set y. Statisticians are
familiar with it in the form where x is a set of n
observations (x1, x2, - - - , x,) of a series and y = x,+1,
a further value of the series. An important, special

case is where the n + 1 values are replicates (the
technical term is exchangeable), and it is desired to
infer the value of one of them from cbservation of the
remaining n. A basic problem is how to accomplish
this.

2.2 The Bayesian Description of Inference

The Bayesian solution is to describe the connection
between x and iy by a probability p(y|x) of y, given x.
(In fact, there is always present in addition to x and y
background information K, and in full one should
write p(y | x, K) but the knowledge K, being ubiqui-
tous, is usually omitted from the notation.) According
to this view, all manipulations in inference are solely
and entirely within the calculus of probability. The
mathematics is that of probability. The interpretation
of the probability is that of the degree of belief of a
subject, conveniently called You, in y when You know
x (and K). The interpretation is neither classical, in
terms of equally likely cases, nor frequentist.

Consider the simple case just mentioned where x is
x™ = (x1, %, -+ -, %,), being n replicates, and y =
%Xn+1, a further instance. Then You require
P(xn+1]x™), or equivalently p(x™*Y)/p(x™). To in-
clude all n, You need to specify p(x™) for all n. This
is difficult—try it in the simplest case where x; is
either 0 or 1. Statisticians have found a way of doing
this in the case of replicates. Suppose that there is a
vector § such that, given 6, the x; are iid. That is,
p(x™16) = 1% q(x;]6). All that is now necessary is
for You to specify 6 and g, although the value of 6
being unknown, it will require a probability =(8). Then

px™) = fe l'jq(xila)fr(o) do

and p(x,+1|x™) can be found. In other words, the
introduction of an additional ingredient, the parame-
ter 6, enormously simplifies the probability calcula-
tions. This form, with x™ and 6, is that familiar to
statisticians. Formulated this way, it shows that there
is no essential difference between the probability
g(x]0) and the prior =(): both are expressions of
Your uncertainty. Of course, K may contain informa-
tion that can pin down ¢ and/or =; but often this is
not so. It also shows that 6 is a construct, and not
an ingredient in the original, practical problem.
(de Finetti, 1937, has shown that if the x’s are repli-
cates in the sense of being exchangeable then this iid
structure is the only possible one.)

2.3 Scientific Inference

The statistical procedure of parameterization just
described is related to one that is much used in science;
indeed, it may be viewed as a generalization of sci-
entific method. Faced with a lot of data, x™ (not
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necessarily replicates), science typically constructs
a hypothesis H to explain the data, and then devises
an experiment to test H, the result x,., of which may,
or may not, support H. The Bayesian description is

(%41 | ™, H)p(H| x™)
H x(n+1) =p ’ X
pHI) : P (er [27)

It is usually supposed that, given H, x,.; and x™ are
independent (compare the use of independence above)
when

* Foer | H)p(H | x™)
5 H (n+1) =p
(6)  pH]|x™") (et | 2™)

The experimental result x,.; will support H, in the
sense of increasing Your belief in H, if p(x,+1 | H)
exceeds p(x,+1]|x™): otherwise support will be de-
creased. A common case is where the result x,.; is
implied by H, so that p(x,+; | H) = 1 and the proba-
bility of H increases. This development shows how
repeated observation of results predicted by a hypoth-
esis increases Your belief in that hypothesis.

There is thus a close connection between the sci-
entist’s use of a hypothesis H and the statistician’s
introduction of a parameter 6. Both make the proba-
bility calculations easier by invoking independence
and hence simplify the inference. The main difference
is that typically p(x,+;|H) = 1 (or 0) whereas
P(x,+1]0) is not so restricted but can take all values
in the unit interval. Notice the important role played
by independence. Are there any statistical models that
do not utilize the concept? Even stochastic process
theory has its underlying “errors” which are independ-
ent. Consider, for example, the many generalizations
of the simple, linear, autoregressive process X,+; =
ax, + e,.1, where the dependent x’s are expressed in
terms of iid errors, the e’s. The concept of iid is related
to the use of frequency notions in connection with
probability.

2.4 Alternative Hypotheses

There is no distinction within the Bayesian para-
digm between the various values of the parameter
except insofar as they may be ascribed different prob-
abilities w(8). Indeed, the coherent view is essentially
one of contrast between the various values of 6. This
is most clearly seen in the case where the parameter
space contains just two values (6, 6;) and Bayes
theorem in odds form reads

p0o|x) _ p(x6o)(6o)
p(6:|x) p(x|6.)w(6:)

for data x. The data affect the change of belief through
the likelihood ratio, comparing the probabilities of the

data on 6, and on 6;. This is in contrast with a
sampling-theory (or tail-area) significance test where
only the null hypothesis (say 6,) is considered by the
user of the test. Of course, attempts to justify these
tests have had to consider the alternatives but the
user is freed from this necessity. In a paper to be
discussed later, Box (1980) has exploited this one-
sided nature of tests to study model fit.

The scientist, like the statistical practitioner, only
uses the single hypothesis H and rarely considers
alternatives. What, for example, is an alternative to
Einstein’s theory? How can the alternatives be
avoided? The answer is illuminating and is due to
Jeffreys (1939) and Huzurbazar (1955). For simplicity,
consider the discrete case.

Let x, x;, - -+ be a sequence of results all implied
by H, so that p(x; | H) = 1 for all i. Then equation (5)
reads

6) p(H|x™Y) =pH|x™)/p(%n+1 | x™).

Since p(x,+1| x™) does not exceed one, the sequence
p(H | x™) is non-decreasing and therefore tends to a
limit P, 0 < P < 1. (It is supposed that p(H) is not 0.)
Furthermore, p(x,+1 | x™) must tend to 1, otherwise
the left-hand side of (6) will exceed 1, which is impos-
sible. In words, if n results implied by H have been
observed, the probability of another result implied by
H tends to 1 with n.

More can usefully be said. Let A = x™ and B =
(Xp+1, ***5 Xn+m), still with p(x;| H) = 1. Then in
generalization of (6)

p(H|A, B) = p(H|A)/p(B|A)

and, by a similar argument, p(B|A) tends to 1 as m
and n both tend to infinity. Thus, not just one, but m
implications of H approach certainty. All this is with-
out reference to an alternative to H. Furthermore, the
final result does not involve H, but only the observable
x’s, and is truly an answer to the basic problem of

inference (Section 2.1) when logical implication of x;

by H holds. The same facility is not available to the
statistician when the implication, p(x;|H) = 1 is
replaced by p(x;|6) taking any values in the unit
interval.

2.5 Theories and Models

Scientists are usually concerned with theories: stat-
isticians are interested in models. A theory is a state-
ment of wide scope that applies to many situations: a
model is confined to a measurement process. The
distinction is similar to that between strategy, with
its overall view, and tactics, with its narrower concern.
A theory predicts the value of 6 in this situation, and
¢ in that. To measure 6 and ¢, two parametric models
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are needed, each specific to the measurement process.
Often a theory and a model occur together: the hy-
pothesis H implying a value 6, for a parameter 0,
which can be measured with error producing a result
x. Testing H is equivalent to testing § = 6, but with
alternatives 0 # 6, suggested by the model, not by the
theory. Sturrock (1973) gives an example wherein 6 is
the power output of a nebula and x is a measurement
of that power.

Notice the role of a model. It is a device that assists
You in Your probability calculations, as we saw in
Section 2.2. Typically, the model extends the con-
versation from the data to include extra quantities,
parameters, that impose a simpler structure, usually
through independence, on the problem.

2.6 Large and Small Worlds

An important part of statistics is concerned with
the testing of a model. The chi-square, goodness-of-
fit test is the most famous example. Box (1980), in a
most thought-provoking paper, has suggested that the
Bayesian paradigm is appropriate for analyses within
a model but is inadequate for testing a model. In the
latter situation, there are no immediate alternatives
and Box proposes using sampling-theory ideas, in
particular tail-area significance tests. I argue now
that model-testing can be accommodated within the
Bayesian viewpoint.

When You, a scientist or statistician, consider an
inference You do not take into account everything but
concentrate on what appears to You to be the relevant
issues. You build for Yourself a small world including
some data, excluding others, and within that small
world construct a model for Your beliefs. Now such a
world is part of a larger world and what You say about
the small world may appear incoherent when viewed
in the larger perspective. Shafer (1986) gives a good
example. Consequently it is appropriate to test the
small world and consider what might happen were
You to enlarge it. This is possible by including more

data or with extra parameters. A coherent test of that

small world against a possible, larger one is now
possible within the coherent view, and no sampling-
theoretic considerations are necessary. Of course, You
have to contemplate how the small world is to be
enlarged and what the alternatives to it are. But this
is surely essential. We may be surprised if p(x | 9) is
tiny within the small world but unless there is a 6’
with p(x|68’) bigger within the larger world, then 6
must remain a plausible value and the surprise must
be accepted. This helps to explain how a theory H can
continue to be used even when it has been rejected.
What may have happened is that H predicts 0 = 6,
and experiment establishes that 6 # 6, by a signifi-
cance test. Yet there is no H’ to explain any value of
6 other than 6,.

2.7 Summary

An essential activity of all life is to make judgments
about as yet unobserved data y on the basis of observed
data x. This is the problem of inference or inductive
logic. The Bayesian paradigm requires that this be
done solely and entirely within the calculus of proba-
bility; in particular, the above judgment is p(y| x).
The calculation of such probabilities is substantially
assisted by the consideration of theories including
hypotheses H, and models incorporating a parameter
6. Independence, conditional on H or on 8, appears to
be basic to the calculations. Statistical practice ought
therefore to start from the data, x and y, and regard
the analysis, involving theories and models, as means
of evaluating the probabilities.

An important question remains: why use probabil-
ity? What is the justification for the Bayesian para-
digm? It is to this question that we now turn, and to
the relationship between inductive logic and decision-
making.

3. PROBABILITY
3.1 Why Probability?

The Bayesian paradigm requires the uncertainty of
y, given x, to be described by probability, p(y|x).
With a parametric model, p(f|x) is held to be the
appropriate description. The Berkeley position is that
statements about parameters can be made by various
methods, one of which is confidence. It is important
to notice that a confidence interval for 6 is not a
probability statement about 6: it is one about the
interval and is derived from those about x, p(x|#9).
Consequently, confidence is an alternative measure of
uncertainty. Similarly, tolerance intervals can substi-
tute for the Bayesian’s p(y|x). Other alternatives
exist: belief functions (Shafer, 1976); fuzzy logic
(Zadeh, 1983). Why use probability? To phrase the
question differently: You are uncertain about y, given
x; why measure this uncertainty by numbers that obey
the laws of the calculus of probability, rather than
other laws like those of fuzzy logic? This rephrased
form of the question is important because, as we shall
see, it is the laws of combination of uncertainty state-
ments that are the key issues. We have had a partial
answer to our question when we showed in Section 1.5
that the coherent selection of a unique solution from
a complete class required a probabilistic description
of the parameters. But Wald assumed a probabilistic
description of the data: why? He also introduced loss
and minimized its expected value: why? All these
questions have simple answers.

3.2 The Axiomatic Approach

The answer proceeds along the following lines. Con-
sider simple situations of uncertainty and see whether
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in them there are not properties that the measure of
uncertainty ought to possess. For example, transitiv-
ity: if A is more uncertain than B, and B than C, then
A is more uncertain than C. These properties can then
be expressed formally and used as axioms for a math-
ematical system that may be used to prove theorems
about the measures. A basic theorem that comes out
of such an analysis is that the measure of uncertainty,
or a transform thereof, obeys the rules of probability.
This needs a qualification: it obviously depends on the
choice of axioms. Reasonable axioms lead to the state-
ment just made. I know of no axiom system that leads
to confidence measures. Other axiom systems lead to
variants of the probability approach: for example, to
upper and lower probabilities (Smith, 1961). These
are defective for me because they do not incorporate
the notion of a unique recommendation. Like Wald,
they only produce a class of procedures.

The “inevitability of probability” is strengthened by
the fact that three distinct axiom systems lead to that
result. The first is firmly based on decision theory and
is due to Ramsey (1931) and independently to Savage
(1954). The second uses scoring rules, originating with
de Finetti (1974/5) who also, in common with others,
used a method based on betting. A third follows the
usual mensuration procedure of comparison with a
standard (Pratt, Raiffa and Schlaifer, 1964). There is
an admirable survey by Shafer (1986; with discussion)
that concentrates on Savage’s method. Since the con-
sequences of the axioms are so important, it is sensible
that the axioms be subjected to the most careful
scrutiny; this has been done by Fishburn (1986), again
with discussion. Kolmogorov’s (1933) enormous con-
tribution was to provide axioms for probability. This
work pushes the axioms further back and provides
Kolmogorov’s as theorems.

3.3 Paradigms

It is a side issue that these approaches, particularly
that of Savage, with their axiomatic approach and
rigorous development, are very much in the spirit of
modern mathematics. One would therefore have ex-

.pected them to have appealed to mathematical stat-

isticians, even if the practitioners ignored them. Yet
they do not, and the mathematical members of the
statistical community remain largely within the Wal-
dean scheme. (As will be seen later, it is the practi-
tioners, or at least some of them, who notice the
Bayesian aroma.)

The resolution of this paradox seems to lie in the
fact that most mathematical statisticians are primar-
ily technicians. Just as scientists, according to Kuhn
(1974), work within a paradigm, rarely questioning it,
so many mathematicians work within a system with-
out concerning themselves with the reasoning behind
it. This is of little importance in pure mathematics,

but in an applied subject like statistics it can be
unfortunate. Science, again following Kuhn, has rev-
olutions in which the paradigm changes. The Bayesian
view, firmly based on probability, is a new paradigm.
All I ask of readers of these words is that they take
time off from their technicalities and think about
these two paradigms of statistics: Berkeley and Bayes,
sampling-theoretic and coherent.

3.4 The Coherent Paradigm

To return to the main issue of Section 3.2: to fit
together, or cohere, the uncertainty statements need
to be probabilistic. Hence inductive logic should be
expressed through probability, and inference about
uncertain y from observed x is made by p(y|x). All
calculations, in order to achieve coherence, must be
within the probability calculus. Your problem is to
evaluate this probability using only that calculus. In
statistical contexts this is almost always done through
a model using a parameter 6. (Notice, in the sense in
which that term is being used here, this embraces
nonparametric statistics; § indexing, for example, all
distributions on the real line.) The principal effect of
the parameter is to introduce independence into the
system, as we saw in Section 2.2.

It is usual in statistical practice to make statements
about the parameter rather than the observation y.
This is sensible because such a parametric statement
is available for any future observation z whose uncer-
tainty depends on §. With p(6 | x) from Bayes theorem,
and p(z| 0), we have

p(z|x) = J;p(zlé’)p(ﬂ!x) do,

assuming the independence of x and z given 6. This
attention to 6, rather than y, is an example of good
practice within the Berkeley paradigm persisting in
the alternative one.

There is a disadvantage in confining uncertainty
statements to parameters, and that is that they can
rarely be checked against reality, simply because the
value of ¢ is seldom ever known. It is rare to learn the
exact value of the mean of that normal distribution.
Whereas future observations, y or z, will be experi-
enced and so a check on their probabilities is possible;
for example, by scoring rules. A statistician who con-
sistently gave low probabilities for observed y’s has
not done as good a job as one whose probabilities were
higher. de Finetti has often expressed the view that
probabilities should deal with observables and not
abstractions like parameters. Geisser, in many papers,
for example (1985), has emphasized the predictive
aspect of our subject.

We now explore some consequences of the Bayesian
paradigm with its emphasis on coherence. Coher-
ence is merely the fitting together of uncertainty
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judgments, and is achieved by the probability calculus.
Science proceeds by fitting together a series of exper-
imental and observational results, combining this re-
sult with that, and only ignoring a result with
justification. It is surprising that statistics contains so
little material within the sampling-theoretic frame-
work on how to do this combination. How do you
combine two confidence intervals for the same param-
eter, or the results of two significance tests for the
same hypothesis? In the new paradigm, this combi-
nation is basic.

3.5 Point Estimation

In Waldean theory, point estimation is the case
when D and O, the decision and parameter spaces,
coincide. (We ignore nuisance parameters for the mo-
ment.) Required is a decision d about the value of 6.
This is accomplished by a decision function é(x) that
prescribes what d to take when x is observed, as a
function of x. It is a point estimator. Bayesian calcu-
lations need operate only with the observed x and do
not need to use 4(-): compare equations (1) and (2).
Bayesian theory does not use the notion of an esti-
mator. Within that theory, it is enough to quote the
density p(6 | x) of 6. There is no need to introduce a
decision space or a loss function.

It is fashionable today to speak of a Bayes estimate,
meaning one that has been derived from Waldean
theory using a loss function, usually squared error for
real 0, and utilising a prior, purely as a technical
device, to be discarded when studying the properties
of the resulting estimator 6(x). The terminology is
unfortunate since the Bayesian contribution is so min-
imal. There is only one Bayes “estimate,” namely the
full distribution p(6 | x). You may wish to summarize
this through its mean and variance, but this is a slight
problem compared with the problem of determining
the “best” estimate. In fact, in the coherent view, the
whole problem of finding a good point estimate dis-
appears. There is only one estimate: p( | x). Thus a
whole branch of statistics disappears. There is nothing
new in this phenomenon of a whole branch of math-
ematics vanishing. The history of mathematics is full
of topics that are today virtually ignored—who dis-
‘cusses quarternions? Aside from the question of best,
there is much that is useful in point estimation theory
and can be used in the Bayesian paradigm: sufficiency,
for example.

The following, simple example illustrates difficul-
ties with point estimation. Suppose x = (x;, %, ...,
x,) and 0 = (64, 65, ..., 6,), both vectors of n real
numbers. Suppose each 6; is N(0, 1) independently of
the others. Finally, suppose, given 6, x; is N(6;, 1)
again independent of the others. (It is a simple model
for measurements x; made on treatments 6; drawn
from a pool of treatments.) Two easy results are that

x; is N(0, 2) marginally, and that, given x, 6; is
N(% x;, ¥2) by Bayes theorem. This latter result has
suggested the use of the mean % x; = §;, say, as a point
estimate of ;. But then it has been noticed that
n~'Y 62 = (4n) 'Y x? tends to ¥ as n tends to infinity,
whereas n™! ¥ 6? tends to 1. In other words, the
estimates are not as dispersed as the true values.

The difficulty arises because of the use of point-
estimation ideas. Bayesian concepts invite considera-
tion of the probability density of n™! Y 62, given the
data x. Its mean is n™' Y, (4 x? + %) which tends to 1
as n tends to infinity and the perceived difficulty
disappears. I know of no situation in which operations
strictly in accord with the calculus of probability give
other than sensible conclusions. Whereas ideas out-
side that calculus may present anomalies, as here.

If nuisance parameters, A, are present they can
easily be eliminated by integration. From the joint
distribution p (8, A | x), You obtain

p0|x) = fp(ﬂ, X x) dA.

A stumbling block in some aspects of sampling-theory
statistics and the likelihood approach is thereby re-
moved. The actual integration, analytic or numeric,
may present difficulties.

It is not necessary to say anything here about hy-
pothesis testing within the coherent picture since the
topic has been admirably discussed by Berger and
Delampady (1987).

3.6 Counter-Examples

To this audience, something needs to be said about
the counter-examples to Bayesian ideas that have
appeared in the literature. A recent, well-known paper
is by Diaconis and Freedman (1986). Therein exam-
ples of Bayes estimates that are inconsistent are pro-
vided in situations where there are -consistent
estimates. These cannot be dismissed on the grounds
that point estimation is misguided (Section 3.5), be-
cause the disturbing property can be rephrased in
terms of the posterior distribution converging to some-
thing other than the true value. The examples concern
mathematically complicated situations, far removed
from the basic axioms, and the resolution of the
paradox they create rests with the mathematics,
especially with the mathematics of the infinite. We
discuss a simple example of the role of infinity in
mathematics.

Consider the concept of summation. With a finite
collection of numbers a; there is no real difficulty.
Y% a; is easily found and, for example, the numbers
may be taken in any order. Difficulties arise when the
set is enumerably infinite. Here .7 a; does not always
have a meaning and the order of summation may
matter. It took mathematicians a while to define and
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understand absolute convergence, when the problems
largely disappear. More difficulties arise when non-
enumerable summations in the form of integrals
| a(t) dt are contemplated. The history of mathemat-
ics is full of different types of integral that try to ape
the properties of finite sums. Eventually the Lebesgue
integral emerges as a reasonable workable form and
Fubini’s theorem tells us that, for positive, integrable
functions, the order of integration is irrelevant. My
point is that in introducing the useful concepts of
infinity and continuity, mathematicians try to carry
forward the ideas present in finite, discrete cases; the
anomalies, like divergent series, are ordinarily dis-
carded. We should not be surprised at mathematical
ingenuity producing inconsistent Bayes estimates, any
more than we are at series which behave anomalously.
The mathematical task is to provide conditions under
which the properties of the finite reality extend to the
infinite and continuous abstraction.

(Since almost all sampling-theoretic ideas are in-
coherent, it is easy to produce counter-examples to
them which are much simpler and direct than those
just discussed. I provided a collection in Section 3 of
Lindley (1972). If a comparison of alternatives (Sec-
tion 2.4 here) is the proper way to make judgments,
the Bayesian argument is the clear winner in respect
of counter-examples.)

3.7 Summary

A justification for the Bayesian paradigm rests on
the development from basic properties of Your appre-
ciation of uncertainty used as axioms. (An alternative
justification, to be considered in Section 5.5, is that it
works.) The central idea is the concept of coherence
between uncertainty judgments. If you make some
probability statements, then others are implied by the
calculus of probability, and effectively You have made
those as well (de Finetti, 1974/5, Section 3.9). The
result is a paradigm which is markedly distinct from
the sampling-theoretic one that is currently popular.
Whilst several ideas in the latter can be carried over
to the coherent view, others do not transfer and are
seen to be incoherent.

"The discussion has been confined to inference: Your
understanding of the world. But, as Karl Marx said,
“The point is not merely to understand the world, but
to change it.” Change implies action and decision. We
now describe how the Bayesian view easily extends to
decision-making.

4. UTILITY
4.1 Maximization of Expected Utility

The formulation has so far included an observed x
and an unobserved y in a space Y. These are connected

by p(y|x). To include decision-making, a set D of
decisions, or acts, d is added. Choice of an act will
affect y, so You now have p(y|x, d). It may be, and
usually is, useful to include parameters, but this is
unnecessary in the general overview now being given.
The pair (d, y) constitutes a consequence c, and it is
basic that You prefer some consequences to others.
The procedure is as with uncertainty; basic properties
of the preference pattern are used as axioms from
which theorems are developed. I now outline the de-
velopment of the principle of maximization of ex-
pected utility (MEU) because, although it is in the
literature (DeGroot, 1970), it will demonstrate two
important points that the statistical community may
not have appreciated.

Suppose that there is an overall best, ¢, and an
overall worst, ¢, consequence amongst all the (d, y)
You are contemplating. (This will be true if D and Y
are finite. It is a mathematical problem, of the type
discussed in Section 3.6, to extend the argument to
infinities.) Consider any consequence ¢ and the choice
between two outcomes,

(a) c for sure, and
(b) ¢ with probability u, and ¢ with probability
1—u.

If the preference assumption is extended to embrace
mixtures like (b), there must exist a unique u such
that You are indifferent between (a) and (b). Write
this value u(c) or u(d, y). It is called the utility of
c=(d,y).

If d is selected, v, and hence ¢ = (d, y), will have
probability p(y | d, x). But ¢ may be replaced by ¢ or ¢
with probabilities u(c) and 1 — u(c) by the above
indifference. By a basic rule of probability, the result
of selecting d is that ¢ will equivalently be obtained
with probability

(7) u(d, x) = ¥ u(d, y)p(yld, x).

(¢ will be obtained with probability 1 — a(d, x).)
u(d, x) is called the expected utility of d (given x),
because it is a genuine expectation with respect to the
density p(y|d, x). You naturally wish to maximize
Your probability of ¢, as against ¢, so You should
choose d to maximize Your expected utility. The dem-
onstration is complete.

4.2 Utility as Probability

The first point that emerges from this argument is
that utility is well-defined as a probability that equates
a gamble (b) with a sure consequence (a). It has
never been clear what Wald’s loss was. It is usually
supposed by adherents of utility theory that L(d, y) =
max, u(d, y) — u(d, y), the difference between the
best decision for ¥ and that for the decision selected.
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If so, MEU is equivalent to minimization of expected
loss (over y).

The second point follows from this description of
utility in terms of probability, namely that utility
conforms to the inviolate rules of the probability cal-
culus. Hence i(d, x) can be calculated as in (7) and is
immediately seen’to be an expectation. Thus the ex-
pectation arises naturally and is seen to be the only
feature needed in order to choose the best d. It
was never clear why only expected loss should be
considered.

4.3 The Complete Bayesian Paradigm

The coherent approach is now complete, incorpo-
rating decision-making as well as inference. With data
x (and background information K) You contemplate
another data set y in Y and an action d in D that will
influence y. Your uncertainty of y is described by
p(y|d, x). Your preferences among consequences are
described by u(d, y). The best decision is MEU

max Y uld, y)p(yld, x).

The calculations of probabilities and utilities are
often helped by the introduction of a parameter 6.
This ordinarily has the effect of making x and y
independent given ¢ and d (Section 2.2). It also typi-
cally happens that 6 is unaffected by the choice of d
so that p( | d, x) = p(6] x). If both these obtain then

u(d, x) = Y u(d, y)p(yld, x)
=Y ul(d, y) T p(yld, 0p(d|x)

on extending the conversation to include 6 and using
both independence properties. So, on interchanging
the orders of summation,

® u(d, x) = % u*(d, O)p(0|x)

where
u*(d, 0) = ¥ u(d, y)p(y|d, 0).

This means that u*(d, §) can replace u(d, y) and y
ignored.

In this parametric form, inference is the calculation
of p(8 | x). Decision-making is the combination of this
with the utility u*(d, §) and MEU (equation 8). Notice
how the inferential process is usefully separated from
the decision activity but is available for any decision
that involves §. Some inferential procedures, like con-
fidence intervals, are inadequate because they do not
fit into any decision framework.

Notice how constructive the paradigm is. It is like
a recipe. You only have to follow the rules. What do

You know? x and K. What is uncertain? y (or §). What
are the possible decisions? d. The recipe is to calculate
p(y|x) and u(d, y) (or p(f|x) and u*(d, 6)) and
choose that decision that maximizes the expectation
of the latter with respect to the former. In the coherent
system it is perfectly clear what has to be done. The
difficulties are the evaluation of some of the probabil-
ities and utilities, and the calculation of others. The
latter is a problem within the probability calculus
and has been much studied. The former has not
been adequately treated, and we will return to it in
Section 6.

4.4 Expectation as the Sole Criterion

Objections have been raised to the sole use of ex-
pectation as a criterion of choice. People have felt the
need to include, for example, the variance as well. I
think this arises because of a misunderstanding about
the nature of utility. Statisticians have paid scant
attention to utility (or loss) and the total literature is
not vast.

The most famous objection is due to Allais (1987)
who argues that the utility of a monetary prize may
be affected by the probability of that prize: thus, an
unexpected 1,000 dollars may have more utility than
an anticipated 1,000. He expresses this by saying that
the probabilities and utilities may not be independent.
As a description of people’s behaviour, this is undoubt-
ably correct, but it does not fault the use of expecta-
tion. Utility is attached to a consequence (d, y), or (d,
), and in evaluating that consequence You are free to
take into account any aspect of it that You wish. In
particular, You may wish to include the surprise that
will delight You if d results in the unexpected y. What
is happening is that You are not just considering
money but other aspects of the situation as well. Once
relevant aspects are included the difficulty disappears.

Another point about utility is that every utility is
an expected utility. Our discussion has been in a small
world (Section 2.6); utility in that small world is an
expectation over a larger world that contains it. The
point just described can be expressed as saying that
money is too small a world.

4.5 Probability as the Sole Measure of Uncertainty

Just as expected utility has been criticized for bear-
ing too heavy a burden for choice, so probability has
been attacked for being an inadequate description of
uncertainty. For example, faced with an uncertain
event E about which You know very little, You may
tentatively assign it a probability of .. Whereas You
will confidently assign Y2 to the chance of a reputable
coin falling heads. The first 1%, it is argued, is different
from the second, and probability fails to recognize
this. I argue that, on the contrary, probability theory
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will recognize this difference if it is relevant to the
decision at hand. Here is an example.

A bag contains 2N balls, where N is large, some of
which are white, the rest are black. A ball is to be
drawn at random and if it is white You will receive
100 dollars, otherwise nothing. There are two variants:

(a) You know N of the balls are white and N black.
(b) You are uncertain about how many balls are
white but think that all values 0, 1, 2, ..., 2N
are equally probable; the remainder being black.

In both variants Your probability of a single, drawn
ball being white is %2, yet most people prefer (a) to (b)
because there is more uncertainty in (b) than in (a).
But now change the situation so that 2 balls are to be
drawn and the 100 dollars obtained only if the colours
of them match. The probabilities of winning are % in
(a) and %3 in (b). Hence the calculus of probability
incorporates the additional uncertainty of (b) over (a)
if that uncertainty is relevant, as it is when 2 balls are
drawn, though not with a single drawing. An alterna-
tive description is to think of the single drawing as a
small world embedded in the larger world of 2 balls
being drawn.

4.6 Summary

The Bayesian paradigm is a complete recipe for
appreciation of the world by You, and for Your action
within it. The central concept is probability as the
sole measure of uncertainty and as a means of express-
ing Your preferences through (expected) utility. Prop-
erly appreciated, both measures are adequate for
inference and decision-making. The coherent view
stands in marked contrast to the sampling-theoretic
one, and we now study-this contrast in more detail.

5. A NEW PARADIGM
5.1 Prior Probability

The modern version of the Bayesian paradigm has
been around now for at least a third of a century, since
Savage’s (1954) book, and as an operational tool for
almost half a century (Jeffreys, 1939). Although the
statistical literature contains more papers than it used
to in the Bayesian vein, the paradigm has not achieved
the success it theoretically deserves. It is therefore
worthwhile to consider why this is so, and why we
have not had Kuhn’s revolution. The usual response
is: because of the difficulty of determining the “prior,”
(0). So let us begin with this.

In the Bayesian view all probabilities are alike, they
are all expressions of Your beliefs. There is no quali-
tative difference between p(x|68) and «(9) for data x
and parameter 6. They are both probabilities based on
past experience, K. Sometimes K contains information

that clearly indicates p(x|fd) is normal or Poisson.
Less often it tells us about w(6), as in sampling in-
spection or empirical Bayes situations. But there are
many occasions where such information is lacking,
and Berkeley supposes normality for convenience. It
is honest and recognizes this, for example, in the
development of robust procedures or nonparametric
methods. Why cannot Berkeley do the same with 7 (6)?

Another reason for imagined difficulties with 7(8)
is the habit that has grown up of thinking of it as a
description of a Greek letter, rather than of a reality.
The data x are real, 6, as explained in Section 2.2, is
less so but nevertheless usually corresponds to some-
thing You can think about. Whilst it is hard, and
ridiculous, to think about a prior for 6, it is easier, and
sensible, to consider Your (or Your client’s) opinion
of the likely effect of the treatment—where effect and
treatment are well-defined—because # now has a tan-
gible and relevant interpretation. So confusion over
the prior is often due to an unnecessary level of
abstraction on the part of the statistician. As de
Finetti once said to me: “Stop thinking about Greek
letters.”

That the prior () is really the same in principle
as the likelihood component p(x | §) is easily appreci-
ated from the fact that it is sometimes not clear what
is in the likelihood and what is in the prior. The
coherent attitude is that You have to specify the
complete probability structure of the problem; You
are free to do this in any way You wish. Eccentrically,
You may prefer to assess p(x, §) or even p(x) and
p(#] x). A simple example of this ambiguity is provided
by contrasting models I and II analyses of variance.
In a one-way layout with t treatments of means
04, 03, ..., 0;) =0, You may specify p(x | 6) and =(9).
This would be model I. But You may think of the 6;
as exchangeable and iid N(¢, o%) for suitable ¢ and
o2 This is model II for the investigation of the com-
ponent of variance ¢2. Is then this last density part of
the prior or of the likelihood? In the coherent view,
the two models are identical. The confusion between

‘likelihood and prior has been discussed by Bayarri,

DeGroot and Kadane (1988).

5.2 Linear Models

One reason for the lack of success of the Bayesian
approach amongst statisticians is their failure to rec-
ognize it as a separate paradigm, distinct from their
own, and merely to think of it as another branch of
statistics, like linear models. Some years ago there
was a conference on linear models with non-orthogo-
nal designs. Within the sampling-theory school there
are real difficulties of analysis once orthogonality is
absent. No Bayesian paper was in the list that I saw,
but the coherent view works equally well for all
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designs. The only attractive and distinguishing feature
of orthogonality is the simplicity it introduces into the
calculations—essentially the matrices are easy to in-
vert. In the Bayesian view treatment effect 6 can be
isolated from the nuisance parameters ¢ by taking the
joint distributian p(f, ¢ | x) and determining its mar-
ginal by integration (Section 3.5) to obtain p(f] x).
With orthogonality, § and ¢ may be independent and
the integration is trivial. Many of the difficulties the
Berkeley school experiences are of their own making,
and they fail to recognize that the Bayesian view is so
different that the difficulties disappear. Of course, I
am not contending that there are no problems with
the coherent attitude. There are; the computations are
by no means easy. My point is that the solution is
there in more than just an outline.

5.3 Multiple Comparisons

A striking example of difficulties caused by a faulty
paradigm, disappearing under another, is provided by
multiple comparison techniques. (Point estimation
was discussed in Section 3.5.) With ¢ treatments,
therg are t effec§~means, 01, 05, ..., 0., estimated
by 6,,0s, ..., 0, say. The difficulty is that if
the apparently best treatment, the largest 6, is to be
compared with the apparently worst, the smallest 6;;
the comparison cannot be carried out in the usual way,
like a t-test, because of the selection of best and worst.
For example, if the number of treatments is large, the
difference will almost certainly be significant. A con-
siderable literature has developed. Berry (1988) pro-
vides a Bayesian treatment.

In the Bayesian view the difficulty immedi-
ately disappears. -The joint posterior distribution is
p(6;, 05, ..., 0| x) and the marginal for any pair,
p(6;, 0;]x), can be evaluated by integrating out the
remaining parameters (Section 3.5). It matters not
that i and j index the apparently largest and smallest;
the integration is always valid as a rule of the proba-
bility calculus. When confronted with this analysis,
students often feel it must be fallacious because
p(0:| x) concentrates about éi, the maximum likeli-
hood estimate. But in fact, it does not. A reasonable

. prior for the treatment effects nearly always leads to
a shrinkage phenomenon which affects the extreme
values the most. (Shrinkage, and similar phenomena
like ridge regression, are most easily understood
within the coherent view, and are only satisfactory
when the prior that leads to them is sensible.)

5.4 Normality

It was argued in Section 5.1 that there is often little
reason for choosing a specific form for p(x|6). In
practice, normality is often chosen for ease of calcu-
lation and the whole battery of excellent procedures

that stem from it: least squares, analysis of variance,
etc. The Bayesian view equally benefits from normal-
ity but, unlike Berkeley, does not demand it. At the
cost of much more substantial amounts of calculation,
it is perfectly possible to analyse, for example, a Latin
square, with distributions having longer tails than the
normal, or even being skew. All that is needed is a
family of distributions with a few parameters to keep
the dimensionality of the parameter space to a man-
ageable amount. An advantage of longer tails is that
outliers will be more easily accommodated in the
analysis. There is no need for jackknives. The opera-
tions of the calculus will automatically damp down
the influence of extreme observations. For example,
with a t-distribution, as the largest member of a sam-
ple increases, the posterior distribution of the mean
will shift downwards, showing the decreasing influ-
ence of that extreme observation as it becomes more
extreme.

The effect of non-normality is clearly seen in the
generalized linear model (McCullagh and Nelder,
1983). This model ingeniously generalizes the normal
case to other members of the exponential family and
provides a sensible link between the dependent and
regressor variables. But deprived of the logic of least
squares, it has to argue separately, employing likeli-
hood ideas and adhockeries. A Bayesian view would
have embraced the model but provided a coherent
analysis, free of adhockeries, without the need for
special techniques. The existing analyses, incorpo-
rated in GLIM, suffer from the same defects as least
squares, in failing to provide admissible solutions, and
ignoring prior knowedge, which is often important in
multi-parameter problems.

5.5 Practical Statistics

The support for the Bayesian view in these lectures
has been through coherence. There is another argu-
ment in its favour, the pragmatic one that it works. It
is this practical test of usefulness that will eventually
establish the paradigm. It is most likely through ap-
plications that the change will take place and unless
departments of statistics embrace it, they will fade
away because they will not be providing the better
service to practitioners. The Bayesian advance is most
noticeable in those branches of science that were not
greatly altered by the Fisherian revolution in statistics
between the wars. Agriculture, and other biological
fields, retain their Fisherian traditions. Though even
here there are changes. It has recently been shown by
Robinson (1987) that Henderson’s (1975) important
work on components of variance applied to animal
breeding is most easily understood within the coherent
view.

By contrast, electrical engineering is dominated by
the Kalman filter, and generalizations thereof, which
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are completely Bayesian. My personal judgment is
that the filter is the most important Bayesian advance
of recent years. Essentially it is the familiar, linear
model, E(x) = A0, for data x, with expectation linearly
dependent, in a known way through a design matrix
A, on a parameter 6. Added to this is a distribution for
0 having a similar, linear structure, E (§) = B¢ in terms
of hyperparameters ¢. As a result of the latter, the
distribution of 6 is not centred around the least-
squares values, but usually around values which are
“shrunk” towards a common value. Ridge regression
is a familiar example. The “shrunken” estimates (to
use the statistical nomenclature) are more efficient,
in the sampling-theoretic sense. Despite its proven
worth, the filter has yet to enter into the familiar
statistical packages. A good exposition is by Meinhold
and Singpurwalla (1983). Important generaliza-
tions are provided by West, Harrison and Migon
(1985).

Other fields have long been Bayesian, in two in-
stance since the twenties. Insurance evaluations com-
bine past experience with data experience to produce
a credibility formula (Jewell, 1974). Educational test-
ing combines general experience of a test, expressed
through its reliability, with the test result for a can-
didate (Lord and Novick, 1968). Both these are special
cases of the Kalman filter.

Decision analysis is in a strange state of confusion.
There are some statisticians, like Durbin (1987), who
admit the Bayesian argument when action is needed,
reserving the Berkeley position for inference. To
these, I reply, what is the use of an inference if it is
not available for some, perhaps unstated, decision?
This is Ramsey’s (1931) original riposte. Decision
analysts sometimes distinguish between two classes of
problem: decision-making under uncertainty (where
there is supposedly no information for a distribution
on parameter space) and under risk (where the distri-
bution is known). These correspond to the two atti-
tudes to statistics. The former fails to appreciate the
coherence aspect.

An interesting field for the Bayesian approach is
medicine. Much diagnostic work is within the para-
digm but clinical trials, where frequency concepts have
been used for many years, resists the challenge despite
the works of Anscombe (1963), Bather (1985), and
others. It would be interesting to know how much
money has been wasted on inappropriate, incoherent
analyses of clinical trials.

Law is another field in which the two views contend.
Finkelstein (1978) frequents, whilst the forensic sci-
entists believe (Evett, 1984). The role of the likelihood
ratio, comparing the probabilities of the evidence, first
on the presumption of guilt, second on that of inno-
cence, is of paramount importance in interpreting
evidence.

5.6 Summary

The failure of the Bayesian paradigm to enter main-
stream statistics is partly due to statisticians not
recognizing it as a separate and distinct paradigm with
its own way of appreciating statistical problems. The
paradigm justifies some procedures, like shrinkage,
but dismisses others, like multiple comparisons. It is
in applications that the view has made progress. Else-
where (Lindley, 1984) I have argued that there is a
bright future for statistics with the Bayesian formu-
lation. For uncertainty and decision-making are per-
vasive and statisticians understand the basic tool,
probability. Mosteller (1988) has similarly argued for
the broad view of statistics, though without mention-
ing coherence. Much uncertainty is not frequentist
and the Berkeley view is unsuitable.

The reason most usually given for not adopting
these notions is the difficulty of assessing the prior.
That there is a difficulty is undoubtably true, but it
applies to the likelihood as well (Section 5.1). It is the
difficulty of measuring any probability. We therefore
turn to a consideration of this topic.

6. PROBABILITY ASSESSMENT
6.1 The Measurement of Probability

Consider the problem of making a map of the sur-
face of the earth. The normative theory underlying
this is Euclidean geometry. This is a system that starts
with certain axioms and from which theorems are
developed: for example, that the sum of the angles of
a planar triangle is 180 degrees. Euclidean theory
alone is not enough to make the map. It is necessary
to have a method of measuring the distances and
angles on the earth’s surface. These measurements
are disturbed by error from the “true” values and the
sum of the angles of a measured triangle may not add
up to exactly 180 degrees. Euclid’s theory is 2,000
years old; good measurement dates from the seven-

_ teenth century, as is evidenced by Columbus’s wrong

evaluation of a degree of longtitude that led him to
confuse America and China. Three ingredients were
needed before accurate mapping became possible,

(a) the invention of triangulation,
(b) the construction of theodolites, and
(c) a calculus of errors incorporating least squares.

My thesis is that mapping the earth’s surface is
analogous to assessing Your uncertainty about the
world. In the latter case, the normative system is not
Euclid’s but the calculus of probability. (It is not
unreasonable to describe Savage as the Euclid of sta-
tistics, because he was the first to spell out the axioms
and provide rigorous proofs.) Your measurements of
probability will be subject to error so that, for example,



58 D. V. LINDLEY

the uncertainties of a partition may fail to add to one,
analogous to the surveyor’s discrepancies in the angles
of a triangle. At the moment Your probability assess-
ments may be as rough and ready as Columbus’s were
of longitude. My purpose is to study the measurement
of probabilities and make some tentative suggestions
of how a theory might be developed. This is essentially
the third ingredient above, (c). We have nothing cor-
responding to (b), theodolites, but the equivalents of
triangulation, (a), do exist.

Suppose that You wish to determine Your probabil-
ity of an event A (under conditions K which will be
fixed and omitted from the notation). One way to do
this is to extend the conversation to include a second,
related event B:

p(A) = p(A|B)p(B) + p(A| B)p(B).

Then p(A|B), p(A|B) and p(B) can be assessed
(assuming You use p(B) = 1 — p(B)) and combined
by means of this formula to provide p(4). Is this
indirect determination of p(A), that includes B, in
some sense better than the direct evaluation of p(4)?
O’Hagan (1988) has emphasized the role of indirect
methods in probability. Another analogue of triangu-
lation is Bayes theorem for data x and parameter 6:

p@]x) = p(x|0)p(0).

How does the direct evaluation of the posterior (to x)
compare with the assessments of the likelihood and
the prior and their combination in Bayes formula?
We would look askance at someone who contemplated
the posterior without going through the ritual of like-
lihood and prior. Is this attitude soundly based? If
You can assess a prior directly, why not a posterior?

All measurement theory involves the concept of a
“true” value and a measured or calculated value. The
same notions are needed for Your probability of an
event A. Your true probability will be written w(A)
and its direct measurement, p(4). Consistently the
Roman letter will be used as the measurement of the
true value corresponding to the equivalent Greek let-
ter. It is not necessary to engage in any deep discussion
, of what is meant by 7(A). It suffices to recognize the
role it plays in the calculations. After all, at the atomic
level, it becomes hard to know exactly what is meant
by the length of this desk upon which I write. Notice
that w(A) is still personal to You. It is subjective.
There is no suggestion of a true, impersonal probabil-
ity shared by all rational persons. Also the =’s are
totally coherent: that is, they obey all the rules of the
calculus of probabilities. This need not be true of
the p’s.

6.2 Related Work on Probability Assessment

There is an extensive literature on probability as-
sessment. Psychologists have studied the ways in

which subjects make probability judgments and have
placed emphasis on their incoherent, and therefore
unsatisfactory, behaviour. A comprehensive reference
is the book edited by Kahneman, Slovic and Tversky
(1982). Some of this work is directly relevant to the
material presented in this part of these lectures be-
cause it provides experimental evidence about the
types of bias and the form of the variances that might
arise in practice. The psychologists’ subjects are often
rather naive about probability and as people become
better informed, the incoherence and the errors can
be expected to diminish. There is need for continual
interaction between psychologists and statisticians on
these matters.

Other work on probability assessment has been
performed by statisticians who have pondered the
question of how the most effectively to elicit proba-
bilities from subjects. Should one ask for means and
standard deviations for an uncertain quantity, or is it
better to use fractiles? How, for example, can a subject
assess the degrees of freedom for a t-distribution
(Dickey, Dawid and Kadane 1986)? A striking
practical example is contained in Kadane, Dickey,
Winkler, Smith and Peters (1980). One way of
assessing probabilities, suggested by de Finetti, is by
means of scoring rules. These have been studied by
DeGroot and Fienberg (1986) and Winkler (1986)
amongst others. Any attempt to assess probabilities is
liable to be involved with utility considerations, and
this has been investigated by Kadane and Winkler
(1988).

A referee has pointed out the similarity of purpose
between the study here and experimental design. In
the latter, it is required to find designs that are, in
some sense, good at determining the values of quan-
tities, usually parameters. Thus one design would be
preferred to another if it was expected to produce a
smaller confidence or credible interval for the param-
eter. In such a situation, our analysis would be con-
cerned with the possible variability in the interval due
to either the likelihood or prior being imprecisely
assessed. In that sense we are concerned with robust-
ness questions. Experimental design and the error
analysis discussed here supplement one another in
considering related aspects of the same problem. We
shall not discuss distributions, and therefore credible
intervals, but confine our attention to probabilities of
events. Unlike experimental design, it will be possible
to say whether such a probability is well-determined.
If the proceedings in a court of law be thought
of as an experiment (with the evidence as data),
then we shall see that the final probability can
be ill-determined.

6.3 Errors in Probability Measurement

Let p be a measurement of a true probability .
Then, again analogous to least-squares theory, it is
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usual to consider two aspects of the measurement, the
bias, E(p | w) — =, and the variance V(p|w). These
are both lightly disguised probability statements about
probabilities, or measurements thereof. Again, we
need not worry too much about their exact meanings
anymore than the surveyor concerns himself with the
probabilities underlying the biases and standard errors
of his theodolites.

There is, however, an important difference between
the surveyor and the probabilist. The former typically
assumes that the variances are constant. This is
clearly not so with probabilities, confined to the unit
interval: values of = near 0 or 1 will ordinarily have
smaller standard errors than those around %. A pos-
sibility is to suppose some transform of probability,
like log-odds, has constant variance. The following
argument seems preferable, at least as a first stab at
a theory.

ASSUMPTION 1. V(p|~w) = f(n), E(p|7) — @ =
g(w), say, where both f and g have second derivatives.
Also if p; measures m, in the presence of ny, -- ., 7,
V(p:| w1, w3, -+, ®,) = V(p1| 71) = f(m,); similarly
E(py|m, w2, - -+, w,) — w1 = g(m1).

The functions f and g may change with the events,
some being easier to assess than others in a way that
will emerge in Theorem 1. The biases and variances
are supposed not to be affected by other events. This
might not always be true. Thus in density estimation,
if w1, my, - -+, 7, correspond to a fine partition of the
real line, measurement by p; of m; may be affected by
the closeness of 7, to w; implied by the anticipated
smoothness of the underlying density.

ASSUMPTION 2. 0 = p < 1; and = = 0 (1) implies
p=0().

The first part of this assumption trivially supposes
that any measurement of a probability lies in the unit
interval. The second part more substantially says that
an event known by You to be false (true) will be
correctly measured. There are three basic laws of
probability: convex, additive and multiplicative. This
assumption says that the measurements, like the true
values, obey the law of convexity. The next assump-
tion treats the addition law similarly.

ASSUMPTION 3. For exclusive events, A; and A,,
the measurement of w(4; U A,) is the sum of the
measurements of w(4,) and 1(4,).

A person satisfying this assumption will be called
additively coherent. In particular, Your measurements
of probabilities for a partition will add to 1. We now
show that if You are additively coherent and also obey

Assumptions 1 and 2, You have a special, simple error
structure for Your measurements.

THEOREM. If Assumptions 1-3 obtain
E(p|m)==n and V(p|w) =«r(1 — w)

for some positive constant k.

Let p; be the measurement of 7; = w(A;) for exclusive
A, i1=1,2, 3. E(p,|m, ms, m3), which is E(p;|m;)
by assumption 1, will be written simply E(p,), and
other expectations and variances will be treated sim-
ilarly. Now E(p; + p:) = E(p,) + E(p.) and, by
additive coherence, p; + p, measures m; + m,. Hence,
by Assumption 1, g(mw; + m) = g(m) + g(w:) and
g(w) = ¢ for some c. But g(1) = 1 by Assumption 2,
so ¢ = 1 and the result concerning the expectation is
proved. Similarly

V(p: + p2) = V(p1) + V(p2) + 2C(p1, p2),

where C(p:, p2) is the covariance between p; and p,,
so that

(9)  C(py, p2) =% [f(m + m3) — f(m) — f(m)]

on invoking Assumptions 1 and 3. If V(p;, + p; + ps)
is also expressed in terms of the variances and covar-
iances of the p; and the latter expressed in terms of
the function f by the last formula, we easily obtain,
after a little rearrangement,

f(my+ mo+ m3) =f(wy + ) + f 7z + 73)
+f(ws+m) — f(my) — f(mwz) — f(m3).

Setting all the #’s to 0, the result is f(0) = 0. By
assumption 2, f(1) = 0 also. Differentiation of the
equation with respect first to 7, and then to w, yields

f/(wy + wy + m3) = " (71 + m3)

since terms without both 7, and 7, disappear. Hence
f”(w) is constant, f(w) is quadratic and, with the
boundary conditions already established, f(w) =

" kw(1 — w) as required.

COROLLARY. C(p;, pz) = —km ms.

This is immediate from (9).

The variances and covariances for the p’s are ex-
actly those that would be implied by a Dirichlet dis-
tribution with E(p;) = m;. This may be unsatisfactory
in some circumstances because it does not allow for
sufficient correlation between the measurements. This
lack arises from Assumption 1.

The variance form, xw(1 — 7), would equivalently
result from supposing that arc sin p*/2 had constant
variance, Vak.

Herein it will be supposed that You are additively
coherent and consequently have an error structure of
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the form in the theorem. This is done in order to
simplify the arguments and to obtain a feel for the
sort of results that might obtain. It is clearly neces-
sary, in order to obtain a more complete picture, to
investigate other moment structures. With Assump-
tions 2 and 3 You are obeying two of the three basic
laws of probability, only the multiplication law possi-
bly being violated. It is possible to investigate the
error structure of someone who is multiplicatively, but
not additively, coherent.

6.4 Extension of the Conversation

A possible method of measuring the probability
w(A) for an event A, analogous to triangulation in
surveying, is to extend the conversation to a partition
(B;;i=1,2,...,n) and use the formula

w(A) = ¥ m(A| B))=(B;).
1
This indirect method is now compared with the direct
assessment of m(A). To simplify the notation, write

o; = w(A | B;) (likelihoods),
B; = n(B;) (prior),
and oa=m(A) (direct).

The «; are called likelihoods because they are proba-
bilities of A for various conditions, the B;, whose
probabilities are termed priors. (They will subse-
quently play these roles in the analysis of Bayes
formula.) In accord with the Greek-Roman conven-
tion, a; will be the measurement of «;, etc. Our task
is to see which is the better measurement of «, a or
2 a,-b,-. =

It is first necessary to make assumptions about
the second moments beyond those implied by Theo-
rem 6.3.

ASSUMPTION 1. V(ai) = KOli(]. - a,-), C(a,-, a,-) =0,
L#].

In words, each of the likelihoods is equally hard to
measure since they share a conimon constant «, and
they are uncorrelated. This lack of correlation is per-
haps a severe condition. Detailed calculations, not
produced here, that follow along the lines below, show
that if there is the same correlation between all pairs
of likelihoods, the same general conclusions concern-
ing the extension of the conversation persist.

ASSUMPTION 2. V(b;) = M3:(1 — B;), C(b;, b;) =
—B:B, L # J.

This. is similar to Assumption 1, but applied to the
prior. The covariance is that implied by the partition
and Theorem 6.3.

AssuMPTION 3. C(a;, b;) = 0.
ASSUMPTION 4. V(a) = pa(l — a).

The constants «, A, u describe the ease with which
the likelihoods, prior and direct assessments can be
made. Their relative values are important; for exam-
ple, if x and A are large, but u small, the extension
cannot be expected to be a good, indirect method.

In evaluating the variances, we shall use the delta
method, exemplified by writing differentials

(Y a:by) = ¥ a;0b; + ¥ bida,

squaring, taking expectations and regarding the ex-
pectation of squares of differentials as variances. The
result here is

VZab)=% aiajc(bi, bj)
+ ¥ B:8;C(ai, ;) + Y a;B8;C(a;, b;).

As a result of using the delta method, the values
obtained will only be approximate but useful if the
errors, quantified by «, A, u are small. (Exact results
are available with the extension of the conversation
but not with the other indirect procedures considered.
The differences between exact and approximate in the
former case are typically slight.)

Inserting the variances and covariances of Assump-
tions 1-3 into (10),

V(T aib)=AT aiB:(1 = B;) — A T a;e;3:;
+x Y Bla(1— )
=AY aifi— MT f;)?
+&YB2a;(1 — ).
The direct method gives by Assumption 4,
(12) V(@) = pa(l — @) = u T aifi — p(T «ifi)?,

by coherence of the true values. Comparison of (11)
and (12) depends on the values of x, A and u.

(10)

(11)

THEOREM. If k = A=y
Via) — V(¥ a:by)
13) =xTaBi—« Y aif—« 3 Bio(l — o)
=k Y ai(l —a)Bi(l —B;)=0.

In words, if all measurements are equally precise, the
indirect method of extension of the conversation has
smaller variance than the direct assessment of the
probability. Investigation of numerical cases shows
that the reduction in variance can be dramatic. For
example, if o; = a, all i, and 8; = n™?, the improvement,
from (13), is ka(l — a)(1 — n™'), whereas the direct
assessment gives ka(1 — «): the reduction is by a factor
of n.
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The sampling-theory school often regards the like-
lihood as known, corresponding to x = 0 (Assumption
1). If, in addition, A = u,

Via) = V(S ab) = A 3 as(l — a)B: = 0,

an even greater improvement.

In view of the complexities of the calculations with
Bayes formula below, it is desirable to simplify the
expressions. A convenient way to do this is to think
of the likelihoods as random quantities « taking values
a; with probabilities 8;. Then ¥ «;8; = E(a), the
expectation of «; and Y, a?8; = E(«?). The remaining
sum in (11) and in (13), ¥ B%w;(1 — «;) cannot be
so expressed, but the following argument shows that
it is often small in comparison with the others.
Let n get large, making a fine partition, in such a
way that 8*, the largest of the (;, tends to 0. Then
Y BZa;i(1 — o) < B*E(a(1 — ) and, if the expectations
remain finite, tends to 0 as n increases.

Under these circumstances, from (11)

(14) V(T a:ib) = AE(a?) — AE(@)?,
and from (12)
(15) V(a) = uE(a) — pE(a)*

It is fairly easy to see, with general p and A\, when the
indirect method (14) is preferable to the direct (15). If
A = u, the improvement by extension of the conver-
sation is AE(a(1 — «)). Notice that « is absent from
(14); consequently errors in the measurement of the
likelihood (which « determines) do not matter in the
approximation and are therefore of less importance
than errors in the prior.

6.5 The Product Law

A commonly used device for evaluating the proba-
bility 7(A) of an event A, especially when it is small,
is to express A as the product of other events
AA; - -+ A, and to use the product law = = 77, - - -
m,, where

= W(Ai|A1, Az, ) Ai—l)-

An example arises in fault-tree analysis where a fault
A can only occur if faults A,, A,, -+, A, all occur.
The variance of the indirect evaluation p,p, - - - p, is
now compared with the direct assessment of = by p.
Notice that all the p’s (except that for A;) are condi-
tional probabilities: independence is not assumed.

ASSUMPTION 1. V(p;|m) = kmi(1 — 7)), V(p|w) =
kw(l — «) and C(p;, p;) =0, i #J.

In words, all the probabilities have the same constant
k governing their error structure, and the component
probabilities are uncorrelated.

THEOREM. If Assumption 1 obtains, the indirect,
product method is better, the reduction in variance
being

kr(l — ) — kw2 Y (1 — m)/m;.

By the delta method
V(pip; --- pa) = ©* T V(p;)/x?
=«x® ¥ (1 — m)/m,
whereas
V(p) = kn(1— )

and the reduction is as stated. To prove that it is
positive it is enough to show that

Q-m/r=3¥ A -m)/m.
This is true for n = 2, since, with = = 7,7,

1-— T _ 1 —m)(1 — 7))

M2 ™ w2 T2

l—-—mm 1-m

and the general case follows by induction similarly.

The improvement using the product can be sub-
stantial. For example, if each 7; = %, then = = 27"
and the product yields a variance of k27*"n against
k271 — 27"), about k27", by direct evaluation. Thus
with n = 4, the product has one quarter the variance
of the direct evaluation.

Many statistical calculations involve both the
extension of the conversation and the product law.
As we have seen (Section 2.2), the calculation of
p(x1, Xs, ---, x,) is often accomplished by including
a parameter that makes the x’s conditionally iid,
so that

p(xh Xoy * 00y xn) = f I’li q(x,|0)7r(0) dé.

Since both devices typically involve reductions in var-
iance, the overall improvement can be expected to be
substantial. This is borne out by detailed calculations

- which are not pursued here; they are implicit in the

Bayesian calculations in Section 6.7.

6.6 Ratios of Probabilities

Since the product device works so well, it is reason-
able to expect that ratios will do badly. A familiar use
of a ratio is in the evaluation of a conditional proba-
bility 7(A | B) as w(AB)/w(B). Since 7(B) is necessar-
ily larger than w(AB), there may well be correla-
tion between their two measurements. We therefore
consider the indirect assessment of w(A|B) by
p(AB)/(p(AB) + p(AB)), where AB and AB are two
terms in a partition with covariance given by Corollary
6.3. Write a = p(AB) and b = p(AB) and let V(a) =
ka(l — a), V(b) = «kB(1 — B) and C(a, b) = —kaf. Using
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the delta method,
v( a ) _ B°V(a) + a*V(b) — 2aBC(a, b)

a+b (a+p)*
_k[BPa(l — a) + o®B(1 — B) + 22°87]
B (a+p)*
_ kaf
S (a+p)

Assuming the direct evaluation of (A | B) is governed
by the same «, its variance will be ka8/(a + 8)2. This
is smaller than the variance of the indirect method
since a + 8 = w(B) < 1. It therefore pays to assess a
conditional probability directly, rather than as a ratio
of (unconditional) probabilities.

6.7 Bayes Rule

A famous method of calculating a probability is to
use Bayes rule. Its efficacy is now investigated along
similar lines to those used for the extension of the
conversation, products and ratios; in particular, addi-
tive coherence will be assumed. It turns out that the
situation is far from clear-cut. The following little
argument gives a foretaste of difficulties to come. For
me, it first arose in a forensic science application
where G is the event that the defendant is truly guilty
and E is some evidence before the court. The back-
ground information K, including evidence earlier be-
fore the court, is omitted from the notation. Bayes
rule in log-odds form reads

(G| E) _ m(E|G) + 1o 7(G)
G| E) ~E|G) T B r@)

Suppose that the.likelihoods, =(E|G) and =(E|G),
are measured without error. This is often assumed in
statistical arguments and is reasonably true for some
forensic evidence; for example, with evidence of blood
types, 7(E|G) = 1 and #(E| G) is the frequency of
the blood type in the population. In these circum-
stances, it is immediate from (16) that any error in
the odds prior to E will be perpetuated in those pos-
terior to E. On the log-odds scale, Bayes rule does
nothing to reduce the variance. If the likelihoods do
.include error, independent of that in the log-odds, the
variance of the latter is actually increased by the
additional evidence.

The calculations in the previous sections have not
used log-odds but have supposed V(p | 7) = kw(1 — w),
implying V(log(p/(1 — p))|7) = k(x(1 — «))™". In
court cases, hopefully = tends to 0 or 1 so that our
method has the variance'of log-odds increasing indef-
initely. The constancy of variance of log-odds implied
by (16)—when the likelihoods are precise—may there-
fore represent an improvement. The general situation
is now investigated more carefully. As far as possible,

(16) log log

the notation of Section 6.4 is used because Bayes rule
uses the extension in the determination of the nor-
malizing constant.

Consider Bayes rule in the form

(A | B,)7w(B;)
2 (A | B;)w(B;) ’

where (B;: 1 < i < n) is a partition. As in Section 6.4,
write o; = w(A | B;), likelihoods; 8; = w(B;), prior; and
use the new notation v; = w(B;|A), posterior. The
variance of the direct measurement ¢, is to be com-
pared with that of the indirectly obtained value by
Bayes rule, a;b,/Y, a;b;. Assumptions 1, 2 and 3 in
Section 6.4 still obtain. In addition we use

w(B1|A) =

ASSUMPTION 4. V(c;) = uy:(1 — v3).

THEOREM. With Assumptions 1-4, the variance of
the indirect assessment a,b,/Y, a;b;, using Bayes rule,
is

1B iraa[(X aiB)? + Bu(X’ aiBi)]
(17) + k611 — 1) (B’ ai)®
Y Bl — @)/ ai)
where Y,’ denotes a summation from 2 to n (omit-

ting 1).

The proof is simply a tedious manipulation by the
delta method. Write t; = a;b;, t = Y, t;, so that the
indirect value is t,/t. Then

(18) V(t/t) = (r*V(t)) — 21,C(t, ty) + 73V(E))rr 7™
Using the delta method again,

V(t)) = Maifi(l — B1) + kBieu(l — ),

V) =AT a?Bi— N Q aiB)? +«k X Blai(l — &)
and
C(t, t1)

= NaiBi(1 — B1) — Aaufy X’ aif; + xBien(l — a).
Inserting these three expressions into (18) and making
some rearrangements of terms, we have the result
stated, (17).

This variance has to be compared with that obtained
directly, namely

(19) V(Cl) = y,'yl(]_ - 71) = %‘z_ﬁﬁ

There is no simple relationship between (17) and (19),
and numerical work demonstrates that it is possible
for either to be the smaller even when xk = A = u. To
obtain a feel for what is happening, we take two special
cases: first, a partition into two events, n = 2, as
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in the court case, B, = G, B, = G: second, a fine parti-
tion with n large and the largest §; tending to 0 (see
Section 6.4).

With n = 2, (17) reduces to

a1 BroeBa(Maras + kB1B2(ay + as — 20302))
(alﬂl + 01232)4

V(tl/t) =

and

poy Bron B
(a1 + a2f2)?”

Detailed comparison must rest on the individual val-
ues of k, A and u. Bayes rule will be favoured if the
likelihoods are precisely determined, x = 0, as in some
forensic cases. If, in addition, the priors and posteriors
are equally precisely assessed, A = u, Bayes will be
superior iff

Vie,) =

arag < (181 + azf:)?
or
(02)? < 18y + (1 — By)
on remembering 8, = 1 — 3;. Then Bayes is better iff
B> (<) ai?/(ai? + ai?)
when o > (<) as.

In words, in considering the event B; of higher (lower)
likelihood, Bayes will be better if it has sufficiently
high (low) prior probability. Essentially, for Bayes to
be effective there has to be an agreement between
likelihood and prior.

The case of large n is easier to appreciate. If each 3;
tends to 0, the dominant term in (17) is the first and
it reduces to Aa?B, /(Y a:8:)? + 0(By). The direct
assessment (19) similarly reduces to a variance of
oy B1/Y, a;8; + 0(B,). Consequently Bayes is preferred
iff

a; < (/N(E aiBs).

In the language and notation of Section 6.4, Y, «;0; =
E(a). Consequently Bayes is better only if the likeli-
hood is less than a multiple, u/\, of the ‘average’
‘likelihood, the average being with respect to the prior.
Notice that the precision for the likelihoods, described
through «, is irrelevant for large n.

6.8 Predictive Bayes

Bayes rule in its parametric form (thinking of the
B’s as corresponding to the values of a parameter)
does not necessarily appear as a good measuring device
at least with the rather restrictive assumptions made
in the above analysis. However, it was argued in
Section 2.1 that the basic problem of inference is really
prediction from past values x to future ones y and that

parameters are merely a device introduced to simplify
the calculations (Section 2.2). An analysis similar to
that performed in Section 6.7 is now carried out for
Bayes rule in its predictive form. The notation is
slightly changed. The partition remains (B;) but the
event A corresponding to observed data is replaced
by X and Y corresponds to future data. The formula
is then

2 (Y| B)w(X|B:)w(B:)
2 m(X| B;)w(B:)

on assuming X and Y independent given the partition.
As before write o; = (X | B;), 8; = #(B;), but introduce
the notation \; = 7(Y| B;). The first task is to deter-
mine the variance of Y l;a;b;/Y, a;b;. Assumptions 1-3
of Section 6.4 still obtain. In addition:

(Y| X) =

AsSsUMPTION 4. V(i) = va;(1 — N\), Cl, @) =
C(li, bl) = 0.

The calculations are even more tedious and compli-
cated than in the parametric situation. We shall there-
fore confine the analysis to the case of large n with
the largest probability in the partition going to 0
(Section 6.4). In that case it was found convenient to
write expressions like Y «;8; as E(a) for a random
quantity o taking values o; with probabilities 3;. Using
this convention, we have

THEOREM. With Assumptions 1-4, the variance of
the predictive assessment Y, La;b;/Y. a;b; is approxi-
mately

(20) ME(a?A?) — E(aN))/E(a)*.
Here A is a random quantity taking values E(a)\; —
E(\a) = A; with probabilities ;.

Apply the delta method to Y [;a;b;/Y a:b; and replace
any terms that do not involve §’s by their expectations
(thus Y a;b; is replaced by E(a)). We have

oY La:b;/Y, a;by)
= [(¥ a;b;)(¥ La;0b; + ¥, L:bida; + Y, a;b;él;)
- (T Lha:b)(T a:db; + 3 b:6a))l/ (X a:bi)?
= (E(a) ¥ a;bdl; + ¥ b;L;da; + ¥, a;L;0b;)/E(a)?

with L; = E(a)l; — E(Aa). Squaring and taking
expectations

V(X Lia:bi/Y a:b)

= (E(oz)2 T afBivh(l = N) + X BN Fkei(1 — o)

AR AV AR 2' aiajLiLjﬂiﬂj>/E(a) “

i#j
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The first two terms are of small order and may be
neglected. The last two can be written in the form
given in the statement of the theorem. Notice that the
result does not depend on the constants « and v
governing the errors in the two likelihoods 7 (X | B;)
and 7(Y | B;) but. only on A, corresponding to meas-
urement of the prior.

This variance has to be compared with that obtained
by a direct measurement of 7(Y | X) = E(aN)/E(a) =

v say.

ASSUMPTION 5.
(21) V(p(Y] X)) = My(1 — 7).

This means that the posterior predictive and the prior,
both measured directly, have the same measurement
errors.

Again, neither direct nor indirect method always
has the advantage. Extensive numerical work shows
that the variance (20) by use of Bayes is usually
substantially smaller than that obtained directly (21).
It proved quite difficult to find a contrary case but it
can be found when E(a\) = E(a)E(M): that is, « and
X are uncorrelated with respect to (B;). This would be
an unusual case since X and Y ordinarily refer to
similar things and would be expected to be correlated
in this sense. Thus Bayes formula, in its predictive
role, does appear to be ordinarily efficacious. This is
not surprising since it uses the extension of the con-
versation, which has been seen to be effective (Sec-
tion 6.4), in both numerator and denominator, unlike
parametric Bayes which only uses it in the latter.
Presumably predictive Bayes is only inadequate be-
cause of its use of a ratio (Section 6.6).

6.9 Summary

To be useful, probability theory has to be supple-
mented by a method of measurement. The measure-
ment can either be direct or indirect, using formulae

from the theory. Several such formulae have been

studied using a very special error structure that incor-
porates additive -coherence. The results show that
extension of the conversation and the product rule are
both useful measurement devices in that they can
reduce the error. Evaluation of a conditional proba-
bility as the ratio of unconditionals is unsatisfactory.
Bayes formula in its parametric form can sometimes
be useful but often does not result in an improvement.
In its predictive form though, it ordinarily does give a
better measurement, at least for fine partitions.

My personal conviction is that some calculus of
probability measurement, analogous to least squares,
is essential. Whether the methods described here,
particularly additive coherence and the conclusions,

especially about Bayes rule, provide even the crude
basis of such a calculus, is more doubtful.
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always, his style is so clear and his thought so bold
that I find the temptation to discuss at least some of
his points irresistible.

When the University of Oxford—*“the home of lost
causes”—at last decided to set up a lectureship in
mathematical statistics they called the resulting group
LIDASE: the lectureship in the design and analysis of



