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The Growth and Stabilization of Populations

Peter Jagers

Abstract. Population models in the birth-and-death style tradition have
the unpleasant (and usually not advertised) implication that individuals
do not age: It follows from the Markov properties of the whole popula-
tion that life spans must be exponentially distributed and reproduction
occur as splitting or in a Poisson process. This can be remedied only in
parts (and at a high esthetical cost) by assuming more complicated
Markovian properties in real time, like the age and parity dependent
models of demography. Instead, if there is a sensible Markov structure
in population growth, it resides in the pedigree, daughters inheriting
genotypes from their mothers and being independent of their ancestors,
given these types. This idea is used to define general branching proc-
esses and to analyze their properties: extinction, growth and asymptotic
composition. The results are used to interpret the hypothesis of a
molecular clock of mutations in biological evolution.

Key words and phrases: Branching processes, population dynamics,
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1. INTRODUCTION

Mathematical population theory is not the same
as demography: Its object of study is not human
populations. Nor is its object actual biological popu-
lations of, say, animals, bacteria or cells, or the
physical populations of splitting particles in a cas-
cade or neutron transport. Rather, its purpose is to
study the common theme of these and many other
empirical phenomena, an idealized pattern of
free population growth, of sets changing as their
members generate new set members.

The essence of such a theory is mathematical in
the same sense as geometry, the study of idealized
shape. It is relevant for actual populations in so far
as their reproduction is close to the idealized free
reproduction and to the extent that this reproduc-
tion property is important for the evolution of the
system as a whole. Thus in vitro cell kinetics
is close to the pattern, at least if the population
has enough nutrition and space, whereas the well-
regulated growth of a couple of fetus cells into,

Peter Jagers- is Professor of Mathematical Statistics,
Chalmers University of Technology and Gothenburg
University, S41296, Goteborg, Sweden. This arti-
cle was a Special Invited Paper at the 213th IMS
Meeting in Baltimore in 1990.

269

say, a hand is dominated by features other than
population growth.

However, the population growth pattern is an
important one, often playing a great role in the
evolution of phenomena, and it can be discerned in
many circumstances, ranging not only from demog-
raphy to particle physics but including even data
structures for sorting and searching in computer
science (Aldous, 1991) or fractal sets arising in
various types of mathematics (Larsson, 1990).
Sometimes the conclusions you can draw from the
general mathematical study are even stronger than
those obtained through more specialized models.
Many general truths have been rediscovered and
launched as demographic, population dynamic or
cell kinetic theories.

In this survey, we shall sketch the general
Markov model of population growth, its structure,
the growth and possible extinction of populations
and the ultimate, stable composition of nonextinct
populations. The latter will then be applied to in-
terpret the famous hypothesis of a molecular clock
of biological evolution.

2. THE STRUCTURE

Probabilistic population dynamics arises from the
interplay of the population growth pattern with
pure probability theory. (This is, of course, typical
of much of so called “applied probability,” not at all
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“applied” in the proper sense of the word but rather,
like theoretical physics, arising from combining
mathematics with idealized models of natural
phenomena.)

Thus the classical Galton-Watson branching
process couples the basic pattern of population
growth with the very essence of classical probabil-
ity, namely, addition of independent and identi-
cally distributed random variables; the population
evolves from generation to generation by the indi-
viduals getting iid numbers of children. It has given
rise to much intricate mathematics, maybe even
too much, but also insight into at least one of the
fundamental problems of actual populations, the
extinction problem and its sequel, the question of
possible size stabilization: If a freely reproducing
population does not die out, what will happen to its
size? Can it possibly stabilize, or must it grow
beyond all bounds?

The tragic answer to these questions is no, there
are no freely reproducing populations of stable sizes.
And this is true for very general structures, much
more general than the Galton-Watson process.
Population size stability, if it exists in the real
world, is the result of forces other than individual
reproduction, of the interplay between populations
and their environment.

There are many ways to see this mathematically,
the basic reason being, of course, an underlying
lack of balance between the properties of being
large and very small, that is, extinct: However
large a population might be, it can still die out but
if it has died out it can never resurrect itself.

One of the many nice forms to make this precise
can be found in Breiman’s (1968) beautiful text
book Probability, in the following exercise (page
98): Consider a sequence of nonnegative random
variables X;, X,, ... for which 0 is absorbing in
the sense that X, = 0= X, , = 0. Assume that
there is always a risk of extinction in the following
way. For any x, there is a 6 > 0 such that

P(An; X,=0]X,,..., X;) =5,
provided X, < x. Then, with probability one, either
there is an n such that all X, =0 for k= n or
X, > o as k— oo.

The proof is quite direct from Lévy’s theorem,
P(D|X,, ... X,)—> 1, as k— o, if D is measur-
able with respect to the o-algebra generated by the
X, (as is D = {3n; X, = 0}). This establishes the
dichotomy between extinction or unlimited growth
under extremely general circumstances.

But already the next natural question—what is
the rate of this unlimited growth? —cannot be an-
swered within the generation counting framework

of Galton-Watson type processes. It requires the
further structure of real time. We must know, not
only how many children parents get, but also ages
at child-bearings. Thus, the iid random variables
describing reproduction have to be replaced by iid
point processes, and the classical probabilistic addi-
tion of random variables by one of its outgrowths,
the superposition of point processes. If this is per-
formed according to the special pattern of popula-
tion growth, then we can not only answer questions
about rate of growth but also—and maybe this is
more important—questions about the ultimate com-
position of nonextinct populations. What will the
age distribution tend to be? What is the probability
of being first-born? The average number of second
cousins? Or the distribution of the time back to
your nth grandmother’s birth?

Many other composition questions cannot be
posed, let alone answered, for the simple reason
that the iid-ness we retain means that all individu-
als are considered to be of one and the same type.
Thus, we are naturally brought on to multi-type
branching populations: Whenever an individual is
born, we know not only her mother’s age but also
her own #ype—think of it as a genotype, a starting
platform from which the newborn’s life is to evolve.

Mathematically, the individual reproduction
process then turns into a point process on the prod-
uct space, type X age. And the evolution of the
newborn’s life will no longer be decided in an iid
fashion but rather according to a probability
kernel, determined by the type of the newborn.

Thus, just as pure probability can be viewed as
an edifice built on the straightforward analysis of
sums of iid random variables, a successive hierar-
chy of applied probability models is obtained,
by using more and more sophisticated probability
theory, from addition of random variables to super-
position of point processes, random measures and
functions, and by moving away from independence
to a Markov structure.

Formally, there is a type space (S, ) and a life
space, (2, o) of possible life careers, a probability
kernel P(s,-), s€S, on the life space, the life law,
and finally a point process on R, x S, which is
a random element defined on the life space, and
suitably termed the reproduction process.

In this manner, the introduction of various types
of individuals can be viewed as taking the step
from independence to the simplest form of depen-
dence in probability theory, Markovian depen-
dence. You are born by your mother, who decides
when you are to come into this world and also
passes on a genotype to you. Given these two inher-
ited properties, you lead your life independently of
all your ancestors. This is the Markov model of
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population growth, the outcome of a straight-
forward combination of a vague population growth
pattern with Markovianly dependent random lives
and reproductions. And it leads to well-defined
processes:

TueoreM 1 (Existence). Each life law P(s,: ), an-
cestral starting type s€ S and the convention that
the ancestor is born at time, say, t = 0, defines a
unique general branching process with type space S.

These processes are branching, meaning that,
given their types, individuals who do not stem one
from the other multiply independently of each other,
that is, their futures and progeny are conditionally
independent. They are also Markov in the pedigree
that is, given her type, any individual lives and
reproduces independently of all her ancestors. In
other words, there is a conditional independence of
the past given the present. Actually, the latter
property implies the former:

THEOREM 2 (Markov is Branching). If a popula-
tion is Markov in the pedigree, then it must also be
branching.

A set of individuals is called a line (Neveu, 1986)
if no member of it stems from another member.
Thus, a typical line would be the kth generation, or
part of it. But a line could also consist of chunks
taken from different generations. It could even be
random, the inclusion of members in it depending
upon the process itself. An optional or stopping
line is then a line such that the inclusion of an
individual into the line is unaffected by her own
and her progeny’s lives. Like all other good Markov
processes, branching is strongly Markouv:

THEOREM 3 (Strong Markov). Given the types and
birth times of the elements of a stopping line, the
populations stemming from the line elements consti-
tute independent branching populations with the
original life law, and the ancestral starting types
and times given.

For proofs, see Jagers (1989).

3. HOW TO MEASURE POPULATIONS

The general concept of additive measures of pop-
ulation size goes back almost two decades. With
these, each individual is measured by a random
characteristic, a stochastic process, whose value at
time ¢ is determined by:

® the individual’s type,
o the individual’s age now at time ¢,

e the individual’s, and possibly all her progeny’s
life careers.

For simplicity, the characteristic is assumed to van-
ish for negative ages. In other words, individuals
are not taken into account before they are born.
The measure of the population at time ¢ is the
sum of all the characteristics, evaluated for all the
individuals as above.

The simplest characteristic is, of course, the one
that just records whether you are born or not,
having the value of one if you are, and zero if you
are not. Other characteristics may count the indi-
viduals below a certain age, of a certain type and so
on and so forth (see Jagers, 1975).

Now fix some (decent) characteristic and, as time
evolves, study the population as measured by that
characteristic, a stochastic process in real time.
Crucial for this is the reproduction kernel u(s, A x
B), Aes/, Be ¥, the number of B-type children
that we should expect from an individual of type
s€ S, while she is in the age-interval A. Under
weak assumptions, it defines:

® a Malthusian parameter, o
® a type reproductive value function, h, and
® a stable type distribution, .

(Mathematically, « is chosen so that the operator
defined by the kernel [je *u(s,dt X ds) has
Perron root one; A and 7 are normed eigen-
functions and eigenmeasures of this operator. Bio-
logically, « will turn out to be the exponential
population growth rate, as hypothesized by
Malthus, and h and = play the role indicated by
their names. In the one-type case, #S =1, the
reproduction kernel reduces to a measure, to be de-
noted by u, on the nonnegative half-line, giving
the expected number of children at various mater-
nal ages. The Malthusian parameter is then the
number rendering the Laplace transform of this
measure one.)

To formulate the results we need notation for the
Laplace transform of the characteristic, x,

() =a/ e~y (s, v, t) dt,
0

where s€ S stands for the type dependence, ¢ for
age and w for the dependence on the lives of the
individual and all her descendents. We denote its
expectation for the case that the type s follows the
stable type distribution, =, by E_[x()].

THEOREM 4 (Expected Growth). As t— oo, the
expected size (with respect to a characteristic x) of a
population starting at time t = 0 from an ancestor
of type s, behaves as

h(s)e“E,[x(a)]/8.
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Here (3 is a constant (actually the long run aver-
age age at childbearing) and we have refrained
from spelling out regularity conditions (see Jagers,
1989).

This result follows by rather typical applied prob-
ability methods, essentially Markov renewal the-
ory. If it is conjoined with some classical pure
probability, an intrinsic martingale, central limit
theory, and some results on uniform integrabil-
ity, it even follows that the process itself exhibits
similar behavior:

THEOREM 5 (Population Growth). Under slight
regularity conditions, the population itself behaves
as its expectation h(s) replaced by a random vari-
able w, which has E [w] = h(s) in the supercritical
case, that is, a > 0, is zero precisely when the popu-
lation dies out, and is independent of the character-
istic chosen.

4. POPULATIONS IN VARYING ENVIRONMENT

From a Markovian point of view, the general
branching population can be called time, or may be
pedigree, homogeneous, since the life law remains
the same whenever in time or wherever in the
pedigree an individual is born. From a population
dynamic aspect, this means that the environment
does not change. In applications, environment may,
of course, be highly varying, periodically with day-
light, as for certain cell populations, or in more
complicated ways. Thus, both mathematically and
from the empirical side, it seems interesting to
investigate situations where the life law exhibits a
dependence on physical time.

Of course, in such a general context, there is
faint hope for renewal type results about expected
population size, although in some special cases, like
the periodic, they can be derived (Jagers and
Nerman, 1985). But if the process is normed by
its expectation, so that the systematic part of
time dependence is taken care of, then the same
methods as in the time homogeneous case work
out to show that the theorem on population
growth still holds, of course under suitable regu-
larity assumptions (Cohn and Jagers, 1991):

THEOREM 6. Consider a population in varying en-
vironment, starting from an ancestor of type s€ S at
time t = 0. If population size at time t, normed by
its expectation, is uniformly integrable over s and t,
and the expected population size is “well-behaved”
enough, then the normal population size converges
in mean to a limiting random variable.

5. THE ULTIMATE ‘“STABLE’’ POPULATION

Even though much of what will be said can be
extended to not-too-wildly varying environments,

we turn back to supercritical branching popula-
tions in fixed environment. The special characteris-
tic just counting all individuals born up to time ¢
has the form x(s, w, @) = 1, if only a = 0, a being
the age at ¢, and its Laplace transform has the
value one. By the population growth theorems, the
total population therefore grows like we®‘/3. Divid-
ing the general growth formula for an arbitrary
(decent) characteristic by this special case, we con-
clude:

THEOREM 7. As time passes, the average x-value
among all those born in a “decent” population not
dying out converges to E_[x(a)].

In particular, this means that all proportions
stabilize and hence the composition of the whole
population has a limit, as time passes, the so-called
stable population composition. To describe the lat-
ter explicitly is hard work, (see Nerman and Jagers,
1984) for the one-type case. (The multi-type case
has not yet been published. It was, however, re-
ported by Nerman, 1984.) But the theorem not only
establishes the existence of the limiting composi-
tion, it also provides an explicit way to calculate
various aspects of this stable composition from the
reproduction kernel by choice of the appropri-
ate characteristic. Thus, a bridge is established
between the composition of populations and the
probability laws of individual life.

I shall, however, venture to give a vague descrip-
tion of the limiting composition (for more details,
see Jagers, 1991). This is most easily done by
thinking of properties of a typical, that is, ran-
domly sampled individual at a late time. Since
sampling is performed among the total population
of all those born, and this one increases exponen-
tially at the Malthusian rate «, it is only natural
that the typical individual’s age should be, asymp-
totically, exponentially distributed with parameter
a. As indicated by the name, her type will follow
the stable type distribution x. The age will be
independent of all other properties but the types
backwards, that is, the type of the typical individ-
ual, her mother, grandmother and so on will consti-
tute a Markov chain with transitions probabilities
easily expressed in terms of the Malthusian param-
eter, the reproduction kernel and the stable distri-
bution (Jagers, 1991). And the times backwards to
the successive births interact with the types in a
Markov renewal manner.

Forwards properties of the typical individual her-
self and her descendents will be as in the original
branching process.

In one-type populations (where the reproduction
kernel reduces to a reproduction measure, u, and A
and = are trivially one), the stable composition is
much more easily described, since there is no
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Markovian wandering between types, as we look
backwards into the past. Thus, if the typical indi-
vidual’s age is called X, her mother’s age at giving
birth to her Y,, grandmother’s age at begetting
mother Y,, and so on, then X and all the Y; will be
independent, the latter iid with the distribution
function ’

¢
/ e“"”p,( du) ,
0

known as the stable age at childbearing. Its expec-
tation is

B=/O ue™*u(du),

the mean age at childbearing, known from the
growth theorems.

This means that the successive birth times back-
wards constitute a delayed renewal process, and by
the renewal theorem the expected number of these
births during time ¢ back is roughly ¢/3, at ¢ — oo.

Now, you may get the impression that this is all
very theoretical and typical of mathematicians to
be interested in proportions of the total population
when it is the living population that really counts.
However, the step from one to the other is very
simple: just condition on being alive. For example,
if the life span distribution is L, in the one-type
case, then, since the typical individual in the total
population leads her life independently of her
age at sampling, the age distribution in the living
population is directly calculated to be

b e (1 - L(u)) du
[7e*(1 - L(u)) du’

the classical stable age distribution.

6. THE MOLECULAR CLOCK OF EVOLUTION

Biological evolution provides a field where popu-
lation growth has been going on for a very long
time, and interest is focused upon the development
(through mutations) up to the present situa-
> tion. This is an appealing situation for analysis
in terms of the backwards structure of a stabilized
branching population.

The much-discussed neutral theory of evolution
claims that much of evolution is due to selectively
neutral mutations (Kimura, 1983). The idea of a
mutational clock of evolution adds to this that the
mutations, in a particular gene or protein, like the
much studied globins, should have occurred in a
Poisson-like stream, with an intensity that is typi-
cal of the gene, rather than the species, its re-
production pattern or population size. Neutral
mutations, by definition, do not change (evolution-
arily relevant aspects of) the reproductive pattern

of individuals. Therefore they are suitably studied
in terms of branching processes, and at a first
approximation even one-type branching processes.
To model them, introduce a probability of mutation
into one-type branching populations. Let this prob-
ability possibly be influenced by the mother’s age
at giving birth to the mutant or nonmutant child,
and denote it by p(u) at the maternal age u.
Following Taib (1987), write

unl(t) = / " p(u) u(du)

for the expected number of mutant children up to
age t. (On the surface more generally, you may
start from p,,, mutations possibly being influenced
by many things other than age, and then use the
Radon-Nikodym theorem to get the above form.)
Now merge a mutant individual with all her
nonmutant progeny into what Taib calls a macro-
individual. Obviously, these constitute a new
branching population.

The reproduction function, that is, kernel in the
one-type case, turns out to be

o
M= 3 (b= )
n=0

corresponding to the various generations where the
first mutant descendant might appear. (The aster-
isk denotes convolution.) It may seem astonishing,
but it is easy to check that this measure has the
same Malthusian parameter « as the original
reproduction function,

M(a) (i) = fim(@)) ()

(1 = (@) i) = 1.

Hence the expected age at childbearing in the
macropopulation is easily calculated to be

/ te ™M (dt) = B/pn(@).
0

oo
>
n=0
(=]
>
n=0

Thus, by our earlier results the process of macro-
births backwards is a renewal process with inten-
sity f,,(a)/B. But this is, of course, precisely the
process of mutations up to the present situation.
For the process to have the same asymptotic rate
for all species with different reproduction patterns,
there must thus be a constant ¢, the evolution rate,
such that

ﬂm(a)/ﬁ =c

For all possible u. It is again easy to check that this
is the case if and only if the mutation probability
is linear in the mother’s age, p(u) = Au, that is,
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N\ is the mutation rate and that then ¢ = \. We
summarize:

THEOREM 8 (Molecular Clock of Evolution). The
process of mutations up to the present stage is a
renewal process for any species. It is always inde-
pendent of population size. Its rate, the evolu-
tion rate, is the same for all species with the same
mutation rate, and the two rates are equal.

COROLLARY 1. Assume that mutation is the result
of at least one of a Poisson stream of genetic events
with intensity \. If this is small, then the resulting
mutation probability at maternal age u, p(u) =1 —
e™ yields an approximately species-independent
molecular clock of mutations. The evolution rate is
approximately the mutation rate.

These results thus hold in a one-type branching
process model of evolution. Such a model is obvi-
ously simplistic and should be looked upon as first
try, indicating what type of results one could obtain
in more general studies. Still it has certain advan-
tages above traditional population genetic models:

e Population size need not be fixed.

o We are not restricted to discrete time models
with nonoverlapping generations or to simple
birth-and-death style processes with exponen-
tially distributed life spans.

e Completely general patterns of reproduction
can be allowed.

The drawback is, of course, the asexual character of
branching processes. But that might be of less im-
portance in the present context than in the type of
applications many population genetic models have
been devised for, situations like breeding, where
mating is a fundamental property.
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