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Theo Gasser, Christine Jennen-Steinmetz and Joachim Engel

Nonparametric curve estimation is coming of age,
and it is thus timely to study the merits of various
approaches. Two weighing schemes have been pro-
posed in the kernel estimation literature, called
“evaluation weights” and “convolution weights”
by Chu and Marron. The goal of their paper is to
give a balanced discussion of their merits, based on
two complementary philosophies P1 and P2. We
feel that the paper falls short of presenting a bal-
anced discussion and often disregards philosophy
P1, that is, looking for structure in a set of num-
bers. For many years the evaluation weights (due
to Nadaraya and Watson) have been studied pri-
marily for random design, the convolution weights
for fixed design. Random design is defined and
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treated adequately by the authors, while fixed de-
sign is represented by rather peculiar examples
(see below). As is common (see, e.g., Silverman,
1984), we define a regular fixed design as x; =
F~Y(i — 0.5)/n), f = F’, where F is some distribu-
tion function with density f. Under standard as-
sumptions, the asymptotic bias and variance for the
two weighting schemes are as in Table 1, where

" My(K) = [ u’K(u) du and V(K) = [ K()® du.

VARIANCE

The factor C in the variance of the convolution
estimator is 1 for fixed and 1.5 for random design.
Thus, we have an increase in variance for convolu-
tion weights with respect to the random design
only; variances are asymptotically identical for reg-
ular fixed design. There is one fixed but not regular
design of importance, that is, when we have multi-
ple points, for example, due to rounding. It is easy
to modify convolution weights for this design appro-
priately, and this has been done in our programs.

We are puzzled by the frequent use of the word
efficiency in Section 3, when in fact only variance is
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TABLE 1
Convolution and evaluation weights

Convolution Evaluation

weights weights
b2
Bias - M,(K)m"(t) b2My(K) -
(m), w0}
2 f(t)

Vari CUZV(K) an(K)

ariance nf(1)b nf()b

at stake. This is unusual for biased estimators and
might cause a wrong impression in the hurried
reader. A much more common measure of efficiency
in nonparametric curve estimation is mean square
error. If the authors insisted on cutting down pri-
marily the variance, it would be advisable to use a
minimum variance kernel instead of the Gaussian
one. The authors admit that their examples show-
ing the “inefficiency” of convolution weights are
artificial. Why not provide more realistic ones or
limit the conclusions to artificial cases? The design
of Figure 2 is okay, but the residual structure is
quite peculiar. Leaving apart the very special pat-
tern of observations Y, to Y, it may be enough to
say that their standard deviation is about 10 times
the one of the rest of the data. Here, and at other
places, the authors freely attribute some phenom-
ena to variance in one realization. This seems to us
an overinterpretation since for variance we need to
take expectation (same for bias).

BIAS

A qualitative and not just a quantitative differ-
ence turns up for both types of design with respect
to bias. A second term comes up for evaluation
weights, depending on m’, f' and f in a rather
complicated way. Chu and Marron find warm words
for this nasty additional bias in Section 4 (“...the
pias of Ay being the more natural one”): We
couldn’t disagree more with this point of view. The
additional term has awkward consequences of theo-
retical and practical importance:

1. It is no longer possible to estimate straight
lines or pieces of straight lines without bias,
and—depending on f’/f—any curvature may
arise even for straight lines (see Figure 11 of
Chu and Marron).

2. Peaks and other important structure may be
shifted around which cannot arise for convolu-
tion weights (see our Figure 1). This and the
above property of evaluation weights violate
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mator: dashed line. Design density: declining solid line.

philosophy P1 of the authors (“looking for
structure”).

3. So far there exists no method to correct bound-
ary effects for the evaluation weights, and it
might prove to be quite difficult to devise one.
This is quite easy to do for the convolution
weights and has been implemented by several
groups, but not by Chu and Marron. Inap-
propriately, they thus do not refrain from
discussing adverse boundary effects of the con-
volution weights without performing such a
correction. Boundary effects may be a nasty
practical problem and wusually dominate
asymptotic MSE thus preventing us from com-
puting MISE.

4. The important and thorny problem of estimat-
ing the optimal bandwidth b,, from the data
has experienced a turn by the exploration of
“plug-in” estimators. These need estimates of
integrated bias squared and integrated vari-
ance. While there are reliable algorithms for
estimating [ m”(t)? d¢t (Gasser, Kneip and
Kohler, 1991), it is expected to be much harder
to estimate [ (m’(t) + m'(¢)f(¢)/f(¢)? dt. In
fact, plug-in estimators may be out of reach
for evaluation weights.

MINIMAX RESULTS

When applying convolution weights for random
design, unfortunately we have to pay a price in
variance. Is this worthwhile in terms of MSE? While
there is no uniform result, we made a minimax
comparison, since a nonparametric method should
perform well in a poorly specified, possibly awk-
ward situation (Gasser and Engel, 1990). Chu and
Marron find our result unconvincing since we as-
sumed the design density f to be bounded from
below on the domain of interest. This is, however, a
classical assumption for asymptotics, since it is not
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meaningful to perform an asymptotic analysis at
places where there are hardly any data. It may
seem a bit ironical that Chu and Marron make the
same assumption “bounded from below” in the
same paper (assumption A.4 of Section 3). In an
interesting paper, Fan (1990) concludes indepen-
dently about the Nadaraya-Watson estimator
(remark 2, Section 3) “...hence its asymptotic
minimax efficiency is arbitrary small.”

CONCLUSIONS

Our conclusion is that the convolution weights
are clearly superior to evaluation weights for fixed
design, since we have the same variance for both
methods but a nasty bias for evaluation weights.
For random design, the problem seems to us more
open: There is a minimax argument, and we would
like to repeat a general argument, which is not
well quoted by Chu and Marron (Section 3): “The
latter authors [Gasser and colleagues] in particular
seem to feel that variability is not a major issue,
apparently basing their feelings on the premise

Comment

Birgit Grund and Wolfgang Hardle

1. OBJECTIVES OF SMOOTHING

Smoothing has become a standard data analytic
tool. A good indicator of this is the increased offer
of smoothing procedures in a variety of standard
statistical software packages. It is therefore high
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that it is always easy to gather simply more data.”
What we said when discussing the structural bias
of the evaluation weights was the following (Gasser
and Engel, 1990): “These bias problems are partic-
ularly accentuated in the scientific process of many
empirical sciences: studies are usually replicated
by sticking to the design of the previously pub-
lished study. In this way, qualitatively misleading
phenomena as obtained by the Nadaraya-Watson
estimator will be attributed even more confidence.”

OUTLOOK

One way out of this problem has been opened by
Fan (1990), who showed that for random design
local polynomials have the same bias as convolu-
tion weights and the same variance as evaluation
weights (the equivalence of local polynomials to
convolution type kernel estimators for fixed design
had been shown by Miiller, 1987). A further possi-
bility for improving the variance properties of con-
volution weights has been described by Chu and
Marron in Section 6.

time to provide background information that en-
ables statisticians and users to critically evaluate
the—in the meantime—rich basket of smoothing
tools. The paper by Chu and Marron meets this
demand for information and compares two different
kernel regression estimators on an easy, under-
standable level. The authors combine successfully
careful mathematical discussion with heuristic ar-
guments in a well-done exposition. Cleverly chosen
striking examples provide an easy access to not
immediately apparent problems in smoothing for
data analysis. We congratulate the authors to this
valuable contribution.

Among the many objectives of smoothing, there
are certainly the two perhaps most discussed. These
are P1: to find structure; and P2: to construct esti-
mators from a probability distribution.

We agree that the interplay of these two objec-
tives is vital for an honest parameter-free data



