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Comment: Computational Aspects of
Fractionally Differenced ARIMA Modeling
for Long-Memory Time Series

Adrian E. Raftery

Congratulations to Jan Beran on an excellent survey
of statistical methods for long-memory time series!
This is an important phenomenon in practice because
it arises frequently and, in spite of being hard to detect,
can lead to completely invalid inferences if it is ignored.

In our study of Irish wind speeds (Haslett and Raf-
tery, 1989), we found d = 0.328 (i.e., H = 0.828), which
seems to be a typical value for meteorological time
series. (This data set can be obtained by sending a
message to statlib@stat.cmu.edu consisting of the sin-
gle line “send wind from data.” It belongs to the Irish
Meteorological Service, who have agreed to release it
on condition that it be used only for research into
statistical methods.)

We were working on the project for 4 years before
we noticed the long-memory dependence. Yet its effect
is enormous: for estimating the mean wind speed at a
site, 20 years of data contains about the same amount
of information as would just 1 month of independent
daily values. Meteorology is one area where long-
memory dependence is widespread; it would seem im-
portant, for example, to take account of its possible
existence when estimating and testing for global warm-
ing effects.

Beran did not give much attention to the practical
aspects of estimation for models where the high- and
medium-frequency components of the spectrum are spec-
ified separately from the low-frequency/long-memory
component. This is important in practice because the
short-range dependence structure may well differ from
what would be predicted by a model of the long-
memory component alone. The fractionally differenced
ARIMA model given by Beran’s equation (4) is a flexi-
ble framework for modeling the entire spectrum.

Because this is a linear stationary process, one can
compute the likelihood exactly using the partial linear
regression coefficients as calculated from the Durbin-
Levinson recursion (Ramsey, 1974; Hosking, 1982).
One can then obtain maximum likelihood estimates by
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maximizing this with a numerical optimization algo-
rithm that does not use derivatives. However, the re-
quired computer time is asymptotically O(n? and is in
practice large for the long series typical of the areas
where time series have been found most often to pos-
sess long memory. This would preclude interactive
model comparison and exploration in many typical
applications. The wind speed time series in Haslett and
Raftery (1989) were of length n = 6,574; meteorological
time series are typically this long and often much
longer. By contrast, Beran's longest series is about
one-tenth as long as this.

In Haslett and Raftery (1989), we developed an ap-
proximation to the likelihood that is accurate, reduces
asymptotic computer time from O(n?) to O(rn) and in
practice reduced computer time by about two orders
of magnitude for the wind series. This is given by
equations (4.3) through (4.8) in Haslett and Raftery
(1989) and consists of approximating the higher-lag
partial linear regressions coefficients (lags above M),
but using the lower-lag ones exactly. In numerical
experiments with n = 1,000 and M = 100, for example,
the difference between the exact and approximate likeli-
hoods was typically less than the contribution of a
single observation. This opens the way to routine ex-
ploratory fitting of such models, both frequentist and
Bayesian, even for long series. By comparison, the
approximation in Beran’s equation (12) requires O(n?
computer time and may be less exact because it does

. not use the exact values of the important lower-lag

partial linear regression coefficients.

Software to calculate maximum likelihood estima-
tors for fractionally differenced ARIMA models using
the approximation of Haslett and Raftery (1989) may
be obtained from StatLib. There are two versions: a
Fortran version and an S version. The Fortran version
may be obtained by sending an e-mail message to
statlib@stat.cmu.edu containing the single line “send
fracdiff from general.” The S version may be obtained
by sending the message “send fracdiff from S” to the
same address. This software yields exact maximum
likelihood estimates by setting M = n. The S version
also includes an S function for simulating the models.
It is planned to include these S functions in version
3.1 of S-PLUS.
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Comment

Richard L. Smith

Jan Beran has written an excellent and timely review
of a topic that is gaining increasing attention in a
whole variety of fields. As his review makes clear, the
origins of the subject go back a long way and were
rooted in practical problems in several fields. However,
it is only in recent years, stimulated by the develop-
ment of the fractional ARIMA model, that the subject
has started to receive widespread attention among
statisticians. Beran does a superb job of bringing to-
gether the extensive results that now exist on the
effects of long-range dependence on a whole range of
statistical inferences. Nevertheless, I suspect it is in
the identification and estimation of long-range models
themselves that readers will take the greatest interest,
and it is here that I concentrate my comments.

A common feature of long-range models is that the
spectral density f(x) satisfies the relation

(1) flw)~bw'~2, w—0.

Beran’s equation (6) is a slight generalization of this,
replacing the constant & by a slowly varying function,
but for most purposes (1) suffices. One feature of many
of the results about the effect of long-range depen-
dence, such as Beran’s equation (8), is that they depend
on the spectral density only through the constants b
and H. In fact, (8) itself depends only on H, but many
related results depend also on the scaling constant b.
For this reason, it is of interest to look for direct
estimators of b and H, rather than assume some para-
metric model such as fractional ARIMA. I have been
particularly interested in estimators based on the peri-
odogram, which are among those reviewed in Section
2.4. If I(w) denotes the periodogram at frequency w
based on n observations, then it is “well-known” that
the sampling distribution of I.(w;) at the Fourier fre-
quencies w; = 27j/n for 0 < j<n/2 is approximately
that of independent exponential random variables with
means f(w;). If we assume flw) = bw' ~ 2 then this
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suggests that 1 — 2H could be estimated as the slope
of a linear regression of log I,(w;) on log w; This
idea has been suggested by a number of authors, in
particular Geweke and Porter-Hudak (1983). Two re-
finements of Geweke and Porter-Hudak seem desirable:

a. Geweke and Porter-Hudak used least squares
regression of log periodogram ordinate on log
frequency. In contrast, since the asymptotic dis-
tribution of I,(w; is exponential, a regression
of logl.(w; based on errors from the Gumbel
distribution function 1 — exp(—e*) would seem
preferable. I call this the maximum likelihood
(ML) approach, in contrast to Geweke and Porter-
Hudak’s least squares (LS) approach.

b. In addition, it is becoming increasingly clear that
it is necessary to restrict the range of frequencies
used in the regression, say to no < j < n; where
1 < ng < ny << nf/2. At the lower end, the difficulty
is that the above-mentioned “well-known” proper-
ties of the periodogram apparently break down
for very low frequencies in the case of a long-
range model (see, e.g., Kiinsch, 1987; Haslett and
Raftery, 1989). At the upper end, the problem
arises from the fact that (1) is only an asymptotic
relation, not an identity, so attention must be
restricted to small w. A more formal argument
along these lines was presented in my discussion
of Haslett and Raftery (1989).

It seems to me that Graf’s HUB0O and HUBINC
estimators deal with problem (a), albeit in a quite
different way from the ML approach being suggested
here, but do not contain anything that corresponds
directly to the selection of ny and n;. In view of this, I
am somewhat doubtful about the theoretical justifica-
tion of these estimators.

The rest of this discussion concerns three examples,
two of them taken from Beran'’s paper, which illustrate
the importance of appropriate selection of ny and n; in
this approach.

The first of these is the Nile data. Beran’s Figure 3
plots the periodogram in log-log coordinates. It can be
seen that the plot is decreasing at an approximately



