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Probabilistic Algorithms for Defeating Adversaries

Joan Feigenbaum

Abstract. Randomization appears to be an essential ingredient in algo-
rithms for maintaining some form of privacy. This article discusses
probabilistic algorithms for authenticating a user and for allowing the

private use of shared resources.

Key words and phrases: Authentication, instance hiding, private compu-

tation, zero-knowledge.

1. INTRODUCTION

We consider two types of adversarial computation
in which randomness is used in an essential way.

The first type of scenario concerns authentication:
Player A makes a claim that player B may not believe.
So there is a need for a protocol in which A “proves”
to B that the claim is correct (or at least provides
overwhelming statistical evidence of correctness). Sce-
narios of this type include:

e A is a bank customer, and B is an automatic teller
machine (ATM). Here, A’s “claim” is that he is the
legitimate owner of the smart card that he inserts
in the ATM.

e A is a computing workstation, and B is a file
server. If there is no direct hardware connection
between A and B, A may send its requests for files
over a telephone line. Of course, anyone can dial
the phone number of the file server; A’s claim is
that it is legitimately entitled to access the files.

e A is a television owner, and B is a cable company.
A’s claim is that he is a paying customer and that
the broadcast should be descrambled for him.

These are really three examples of the same thing.
Player A must be able to authenticate himself (or prove
his identity) to B. Any potential impersonator A* must
have only a negligible probability of convincing B that
he is A.

Goldwasser, Micali and Rackoff (1989) and Babai and
Moran (1988) initiated a complexity-theoretic study of
such problems. They defined the class of sets with
interactive proof systems and suggested that this
definition correctly captures the notion of a set in which
membership of an element can be verified efficiently.
A proof system for a set T' = {0, 1}* is an interactive
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protocol between a prover A (with unlimited computing
power) and a verifier B (limited to probabilistic polyno-
mial-time computation). If x € 7, then A is able to
convince B to accept x with high probability. If x ¢ 7,
then no player A*, even if he deviates from the legiti-
mate behavior of A, should be able to convince B to
accept x with more than negligible probability. The
more general notion of a multiprover interactive proof
system was put forth by Ben-Or et al. (1988); in these
protocols, the role of the prover is played by several
machines A,, . . ., A, each with unlimited computing
power. Two ingredients of proof systems are absolutely
vital in making the theory interesting: interaction (i.e.,
the fact that prover(s) and verifier can exchange polyno-
mially many rounds of messages before the verifier
decides whether or not to accept), and randomness (i.e.,
the fact that the verifier can toss coins at any point in
the protocol and that cheating provers do not know the
outcomes of these tosses at the start of the protocol).
Consider the previous examples, in which A is re-
quired to prove his identity to B. Suppose we use a
trivial protocol in which B is given a table of users and
passwords, A is given only his own password, and to
prove his identity, A simply reveals the password to
B. (Note the absence of interaction and randomness.) In
this scheme, A transfers full knowledge of his identity
proof to B. An eavesdropper (or even B himself) can
turn around and claim to be A by presenting the same
proof. Is there a proof system that achieves the same
goal but transfers no knowledge to B except the one
bit that A is who he claims to be? Goldwasser, Mi-
cali and Rackoff (1989) define the notion of a zero-
knowledge proof system formally and propose it as the
right way to capture the intuitive requirements of an
authentication scheme. Basically, an interactive proof
system for the set T is zero-knowledge if, for any x €
T, anything that a (potentially cheating) verifier B* can
compute given the transcript of his interaction with
A, he can also compute given only the one bit of
information “x is in T.” Zero-knowledge is defined analo-
gously for multipower interactive proof systems.
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The second type of scenario concerns private use
of shared resources. A-community of users shares a
valuable computing resource, and each member of the
community would like to use the resource without
revealing his private data. Scenarios of this type in-
clude the following:

e The users are scientists, and the resource is a
government supercomputer.

o The users are pairs of computers or telephones,
and the shared resource is a communication line.

e The users are potential customers, and the re-
source is the vendor’s proprietary software.

e The users are investors, and the resource is a
service that analyzes financial markets.

Abadi, Feigenbaum and Kilian (1989) formalized this
scenario as follows. There is a function f that is intrac-
table for the user A to compute, because A has limited
computing power. The shared resource B is a program
or device that computes f. (More generally, B can com-
pute some function g that is closely related to f.) A has
a private input x; he would like to use this resource to
find out f(x) without revealing x to B.

An instance-hiding scheme for the function f is a
pair of functions E and D with the following properties.
The inputs to E are A’s private data x and some random
bits . A computes y = E(x, r) and sends it to B, who
sends back f(y). Then A computes D (x, ; f(y)), which
is the desired answer f(x). B should not be able to
deduce x from y. A, on the other hand, can deduce f(x)
from f(y), because he has the random bits r that were
used to compute y from x. [More generally, B could
send back g(y), and A could use it to compute f(x).]
Note that such a scheme makes sense only if the
functions £ and D are easier to compute than the
function f.

Randomness plays an essential role here, just as it
does in zero-knowledge. The input y that is sent to B
is a random variable. If x; and x, are both possibilities
from B’s point of view for A’s private input, and R is
uniformly distributed over all bit-strings of the appro-
priate length, then Y; = E(x;,R) and Y; = E(xs, R)
should be identically distributed. Hence B learns noth-
ing about x when he receives a random query.

In the next section, we give examples of zero-
knowledge proof systems and instance-hiding schemes.
In Section 3, we state some of the major known results
on both types of schemes. Section 3 also contains some
suggestions for further work.

EXAMPLES

2.1 Authentication

Feige, Fiat and Shamir (1988) developed the follow-
ing protocol to allow a community of users to authenti-
cate themselves to each other. For each user, there is

a pair (I, S). The public information I can be interpreted
as the user’s identity and the private information S as
his secret key. The goal of the authentication scheme
is to allow a user with identity I to convince another
user that he “knows” the corresponding key S without
revealing anything about S beyond the fact that he
knows it. (In the language of cryptography theory,
user I provides a zero-knowledge proof of knowledge
of the key S.) The effectiveness of the scheme is based
on the assumption that it is computationally infeasible
to compute square roots modulo a large composite
integer with unknown factorization; this is provably
equivalent to the assumption that factoring large inte-
gers is difficult.

Modulus Generation. A trusted center generates two
large primes, each congruent to 3 mod 4. The product
m of these primes is published, but the primes are not.

Note that —1 is a quadratic nonresidue modulo m:
that is, there is no a such that > = —1 mod m. In what
follows, Z¥[+1] denotes the set of integers between 1
and m that are relatively prime to m and have Jacobi
symbol +1 with respect to m.

Key Generation. Each user chooses ¢t; random num-
bers Si, ..., S; in Z¥[+1] and ¢, random bits b, . . .,
b:,. He sets I; equal to (—1)¥/S? mod m, for 1 < j < t.
This user’s identity, which he publishes, is I = (I3, . . .,
I,), and his secret key, which he keeps private, is
S=(Sy,...,Sy.

Proofs of Identity. User A authenticates himself to
user B as follows: let I be A’s published identity and
S his secret key. A and B repeat the following four
steps t; times:

1. A picks a random R in Z¥[+1] and a random bit
¢ and sends X = (—1)°R? mod m to B.

2. B sends a random vector of bits (E, . .
A.

8. Asends Y=R - ][z, S;mod m to B.

4. B verifies that Y* - [[z, I; mod m is equal to
+X.

., Ey) to

B believes that A is who he claims he is if the verifica-
tion in Step 4 succeeds in each of the ¢, trials.

Feige, Fiat and Shamir (1988) show that this scheme
works correctly for the values ¢, = O(loglogm) and
t; = O(logm). The most important feature of the
scheme is that there is no need for the prover to have
significant computational power. These identity proofs
require only a few modular multiplications and can be
implemented on smart cards.

2.2 Computing with Encrypted Data

In our first example of computation with encrypted
data, the hard-to-compute function is the discrete loga-
rithm modulo primes. Let p be a large prime and g be
a generator for the multiplicative group Z¥. If x = g°
mod p, where e is an element of {1, ..., p—1}, then e
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is called the discrete logarithm of x (with respect to g
and p). There is an efficient algorithm to compute x
given e that is based on repeated squaring modulo
p. However, there is no efficient algorithm known to
compute e given x. There are many cryptographic pro-
tocols that try to exploit the presumed intractability
of the discrete logarithm problem. For example, Diffie
and Hellman (1976) give a protocol for secret key ex-
change that is based on the difficulty of discrete loga-
rithms.

Suppose that we have a box B that computes discrete
logarithms. In complexity-theoretic terms, B is an ora-
cle—we can ask it questions, but we do not know how
it works and cannot compute what it computes on
our own. In real applications, B may be a piece of
proprietary software or hardware, or it may be a large
table that was computed at great expense. In any case,
a discrete logarithm box would be a valuable resource,
and many mutually suspicious users would want access
to it.

Abadi, Feigenbaum and Kilian (1989) give a simple
scheme by which A can get the discrete logarithm of
x without revealing x. First, A chooses an element r
uniformly at random from {1, . . ., p—1} and computes
y = x - g mod p. Next, A sends y to B, and B sends
back the discrete logarithm of y; that is, B sends e’
such that y = g mod p. Finally, A computes e = ¢ —
rmod p — 1. This exponent e is the discrete logarithm
of x. Because r was chosen uniformly at random, y is
also a uniformly distributed random element of {1, . . .,
p—1}. Hence, no one else who has access to box B and
overhears A’s query gets any information about A’s
private input x.

In our second example, the hard function is a multi-
variate polynomial h € K[Xi, . . . ,X;], where K is a
finite field. Such a polynomial may be hard to compute,
because the number of terms may be exponential in n.
Let d be the degree of h. Assume that |K|>d + 1 and
that ay, . . ., ag+1 are distinct nonzero elements of K.
The following scheme, in which user A obtains A(xi,

.., x,) without revealing x = (xy, . . ., x,), was devised
by Beaver and Feigenbaum (1990) and Lipton (1991).
" Once again, let B be a box that computes k. For this
example, we must have d + 1 copies, say By, . . .,
Bgi1, of B; furthermore, for i # j, the communication
between A and B; cannot be overheard by B;. Think of
the Bj's as distinct physical boxes that are kept in
d + 1 different locations.

Let ¢ = (cy, . . . , cs) be an n-tuple of elements of K,
and let Z be an indeterminate that is distinct from each
of X3, . .., X,. Consider the univariate polynomial

H(Z) = hc1Z + x1, . . ., CaZ + x3).
Note that H has degree at most d and that
H(0) = h(x, ..., x).

To compute h(x) privately, A first chooses ¢ uniformly
at random from K". Next, A computes yi, . . . , Ya+1,
where

yi = (claj + X1y« + oy CnQj + x,,).

Forl =< j = d + 1, A sends the query y; to B; and gets
back h(y;). Note that h(y;) = Hla;). Thus, after re-
ceiving these answers, A has d + 1 distinct points
{(a;, H(a;))} on the degree-d univariate polynomial H.
Using these points, A can recover H by interpolation;
the desired answer h(x) is just the constant term of H.
Each query y; is a uniformly distributed random
element of K. Of course, y; and y; are correlated; if B;
and B; could communicate, they could recover x. In
isolation, however, B; and its other users learn nothing
about A’s private input x from the random query y;.

3. ZERO-KNOWLEDGE PROOF SYSTEMS AND
INSTANCE-HIDING SCHEMES

In this section, we give a brief, informal summary of
the known results on zero-knowledge proof systems
and instance-hiding schemes. More extensive summar-
ies, as well as more precise formulations of the con-
cepts, are given by Feigenbaum (1992) and Brassard
(1990).

The first basic problem is to characterize the sets
that have interactive proof systems. A complete char-
acterization was achieved in a sequence of papers cul-
minating in the work of Lund et al. (1990) and Shamir
(1990).

TueoreM 1. The sets with interactive proof systems
are exactly those that are recognizable in polynomial
space.

The second basic question is whether every set that
has an interactive proof system in fact has one that is
zero-knowledge. Recall that a function is one-way if it
is easy to compute but hard to invert. The next result
follows from the work of Impagliazzo and Yung (1988)

. and of Naor (1991).

THEOREM 2. Assume that one-way functions exist.
Then every set that has an interactive proof system
has one that is zero-knowledge.

In a forthcoming paper, Ostrovsky and Wigderson
(1992) show that if there is a zero-knowledge proof
system for any set that is hard on average, then there
is a one-way function.

The set-recognition power of multiprover interactive
proof systems has also been completely characterized;
this result is due to Babai, Fortnow and Lund (1991).
The question of zero-knowledge also is settled completely
for multiprover interactive proof systems (Ben-Or et
al., 1988).

TuEOREM 3. The sets with multiprover interactive
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proof systems are exactly those recognizable in nonde-
terministic exponential time. Furthermore, all of these
sets have multiprover systems that are zero-knowledge.

In the instance-hiding scheme for the discrete loga-
rithm function that is given in Section 2.2, player A
queries only one box B. This is an example of a one-
oracle instance-hiding scheme. The scheme for the mul-
tivariate polynomial is an example of a multi-oracle
instance-hiding scheme.

The first basic question here is to determine exactly
which sets have instance-hiding schemes that leak no
information about x to the oracles. Actually, it impossi-
ble to find schemes that leak absolutely no informa-
tion— A must leak to B at least the length of x if the
function computed by B is nontrivial. [This is stated
and proven precisely in Abadi, Feigenbaum and Kilian
(1989).] Thus, the real question is which sets have
instance-hiding schemes that leak at most the length
of x.

For one-oracle schemes, Abadi, Feigenbaum and Kil-
ian (1989) obtained the following conditional negative
result.

TueorReM 4. No NP-hard set has a one-oracle in-
stance-hiding scheme that leaks at most the length of
x, unless the polynomial-time hierarchy collapses at
the third level.

Here we should note that the zeroth level of the
hierarchy is polynomial time, and the first is nondeter-
ministic polynomial time. These are the familiar com-
plexity classes P and NP. The conjectured inequality
P # NP can also be stated as “the polynomial-time
hierarchy does not eollapse at the zeroth level.” The
second, third, and higher levels of the hierarchy are
further generalizations of the notion of polynomial-time
computation. The conjecture that P # NP can be gen-
eralized to “the polynomial-time hierarchy does not
collapse at the ith level,” for any given value of i.

Beaver and Feigenbaum (1990) used the low-degree

polynomial trick given in Section 2.2 to obtain a univer- ‘

sal construction of multi-oracle instance-hiding schemes.

TaeoreM 5. Every Boolean fuﬁction of n bits has
an (n + 1)-oracle instance-hiding scheme that leaks at
most the length of x to each oracle.

Interestingly, this low-degree polynomial trick, which
was devised in order to construct instance-hiding
schemes, became a crucial ingredient in the character-
ization of the set-recognition power of interactive proof
systems, both one-prover and multiprover. A thorough
explanation of this connection appears in Brassard
(1990). .

Finally, we remark that it is natural to consider
zero-knowledge, instance-hiding proof systems. These
are proof systems in which the verifier does not learn

the proof, and the prover does not learn what he is
proving! Beaver, Feigenbaum and Shoup (1991) formal-
ize this notion and prove the following positive result.

THEOREM 6. Every set recognizable in nondetermin-
istic exponential time has a multiprover interactive
proof system that is both instance-hiding and zero-
knowledge.

One theoretical question that remains open concerns
the power needed by a prover; for example, how power-
ful must the prover be in a proof system for a co-NP-
complete set? For a list of other open theoretical
questions, see Feigenbaum (1992).

There are many open questions concerning the appli-
cability of this theory to practical computing. The
authentication protocol of Section 2.1 forms the basis
of a working, commercial system that is in wide use
today. We do not know any other examples of working
systems that use the theory. This immediately sug-
gests two questions.

First, the proof system of Feige, Fiat and Shamir
(1988) is based on a highly structured, number-theo-
retic problem that does not have interesting complexi-
ty-theoretic properties. None of the elegant general
results stated above are relevant to this one known
example of a practical proof system. Can the general
results of the theory be applied in practice? For exam-
ple, can zero-knowledge proof systems for NP-complete
problems be used for authentication?

Second, what other practical applications exist for
zero-knowledge proof systems? Many ambitious pro-
posals have been made; see, for example, the work of
Goldreich, Micali and Widgerson (1987). These propos-
als have enhanced the theoretical literature in cryptog-
raphy and probably can be put to use in real systems;
so far, however, we know of no such uses.

Most of the existing work on instance-hiding is cur-
rently not practical. What is the right application do-
main in which one can make practical use of these
ideas?
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