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Useful results concerning analysis of both high-
degree and also high-dimension local polynomial esti-
mators are in Ruppert and Wand (1992).

A forthcoming manuscript by Fan, Gasser, Gijbels,
Brockmann and Engel shows that the efficiency of the
local polynomial regression fit is good even for the
estimation of quite high derivatives and that the local
polynomial fits yield minimax efficient linear smoothers
for estimating the regression function as well as its
derivatives. Moreover, it is seen that for all polynomial
degrees and estimation of any derivative, the optimal
kernel is still the familiar Epanechnikov kernel. This
answer is much simpler than the complicated case wise
solutions developed for kernel estimation in Gasser,
Miiller and Mammitzsch (1985), for example.

7.2 Open Questions

Here is a summary of the open problems discussed
above.
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1. INTRODUCTION

The article by Hastie and Loader (H&L) clearly dem-
onstrates the importance of choosing a good smooth-
ing method in the nonparametric regression context.
The authors provide important insights and further
strengthen the case for the “Local Weighted Least
Squares” (LWLS) method. This article is a continuation
of the extensive discussion of Chu and Marron (1991)
who compared various aspects of different kernel re-
gression smoothers but did not include LWLS.

It can be argued that LWLS is a third type of kernel
method, generalizing the Nadaraya-Watson (NW) ap-
proach. When discussing kernel smoothing, one may
want to refer to a broader perspective which includes
not only nonparametric regression as probably the
most important application but also the estimation of
density, spectral density, hazard, intensity, quantile
density and other functions. It is then useful to have
a general framework available which provides for the
construction of kernels, boundary kernels and band-
width selectors for a whole range of smoothing prob-
lems. Such a framework can be provided for “explicit”
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1. What is the best way to compute local polynomial
estimators?

2. Are local polynomials competitive with smooth-

ing splines in terms of speed?

Which degree of polynomial should be used?

4. Is it really better to estimate derivatives by the
appropriate coefficient, rather than by differenti-
ating an estimator of the regression?

o

7.3 Closing Quote

As Theodor Gasser has said (in private conversa-
tion): “We have not found any disadvantages of the
local polynomial method as yet. It should become a
golden standard nonparametric technique.”
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kernel methods, including Parzen-Rosenblatt kernel
estimates in the density and Nadaraya-Watson, Priest-
ley-Chao or Gasser-Miiller kernel estimates in the
regression context. It is not clear whether LWLS could
be included in such a framework, as it is uniquely
geared toward regression.

The LWLS method is of particular interest for change-
point modeling (Section 5), owing to its extraordinary
flexibility which allows, for instance, constructing local
fits satisfying linear constraints within the local regres-
sion model. Moreover, many well-studied features of
(global) linear model fits can be extended to local linear
models, like testing of linear hypotheses, diagnostics,
local goodness-of-fit, modeling of correlation structure
and heteroscedasticity and so on. Along with the many
desirable features demonstrated by H&L, this makes
LWLS a very attractive option for smoothing.

We should not, however, overly rely on a single
method for all possible nonparametric regression prob-
lems. It is clear that a fixed bandwidth LWLS method
has problems with smoothing data like those presented
in Figure 6 of H&L: the “holes” in the data may lead
to inappropriate zero valued or undefined regression
estimates. Window and bandwidth choices adapting to
design nonuniformities are needed in such cases. This
may lead to a fairly complicated smoother, so that
some of the initial simplicity is lost for highly nonuni-
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form designs. While for instance nearest neighbor type
bandwidth choices (Cleveland, 1979) are a possible ap-
proach to overcome some of these problems, they are
difficult to apply in higher dimensions and may be
asymptotically inefficient. In contrast, Gasser-Miiller
(GM) type smoothers foulx, b) using a fixed bandwidth
b have the desirable property that even as b — 0,
“holes” will not open up. Instead, for any fixed n,
irrespective of the design,

lim fou(x, b) = 3]Yj1a,(x),

50 j=1
the r.h.s. being an “empirical regression function” with
Aj's as defined in Section 6 of H&L, while for LWLS,
frslx, b) = 0 or is undefined as b = 0, whenever x is
not a design point.

Another cautionary note regarding “universal’ re-
gression smoothing relates to the dichotomy random
versus fixed design regression. While in the former
case, where the predictors are assumed to be i.i.d.
random variables, LWLS outperforms both of the
other (NW and GM) kernel type estimates asymptoti-
cally (Fan, 1992, 1993), this is not the case in the fixed
design regression model, where for designs generated
by regular design densities both LWLS and GM esti-
mates are asymptotically equivalent; this equivalence
extends to the boundary area as well (see Section 4
below).

In many specialized large sample applications with
fixed designs like smoothing of pixelled image data or
of “preaveraged” or “binned” data, where the data are
averages formed over regular “bins” (compare Azari
and Miiller, 1992, or Hérdle and Scott, 1992) the design
is actually equidistant and in such situations the three
kernel methods (including LWLS) behave nearly identi-
cally. Other criteria like personal preference or numeri-
cal efficiency are then relevant. For data which are
not necessarily fixed design or are not coming from a
regular design, LWLS (perhaps also related methods
like IRENORE, see Section 7) are the method of choice.
However, the user still needs to decide whether the
data come from a fixed or random design whenever
confidence statements and variance estimates are re-
quired, as these depend essentially on the type of
design. An avoidance strategy to deal with this issue
is to interpret the results even in the random design
case “conditionally” on the predictors, which essentially
amounts to assuming a fixed design.

2. LOCAL WEIGHTED LEAST SQUARES

After some earlier foundational work on LWLS, in-
terest in the LWLS method was renewed recently by
the findings of Fan (1992, 1993), and H&L'’s article will
most certainly stimulate further interest.

This method is commonly motivated by shrinking

the domain of a linear or polynomial regression to a
local window. Another intuitive approach to the LWLS
method is to start with a linear smoother fix) = Zl(x)Y;.
How should one choose the weight functions (-)?
Requiring that the method be “local,” let l(x) = 0,
if | x; — x | > b, where b is a bandwidth (smoothing
parameter). Further, requiring that polynomials up to
order (¢ — 1) for some integer £ = 1 are to be estimated
without bias, let

Shx)x; — x) =0, 0<i<k,
D) = 1.

Under these requirements, one could try to minimize

the variance of /. As var(f(x)) ~ Li#(x) for uncorrelated

homoscedastic errors, the problem amounts to min-

imizing XI/¥(x) subject to the above linear constraints.
One obtains fLs(x) = fo, where

(ﬁ"o,...,ﬂl‘k—l) & 9
n -1

(1) = argmin ) G(x — xj){Yj = 2 Blx— xf)l} )
i=0

(Bo, ..., Br—1) j=1 b

and G(-) = 1j-1, 1. This is an unweighted local least
squares estimator, which has undesirable smoothness
properties and is not optimal with regard to mean
squared error (MSE). Using a more general “kernel”
function G = 0 with support [—1,1], one obtains
LWLS. This estimator can be viewed as a third type
of kernel smoother; the close connection to kernel meth-
ods is also evident by deriving the NW estimator as a
LWLS smoother, locally fitting constants.

What is a good choice of G? G = 1|1, 1)is numerically
efficient, as updating formulae are available for this
case, but leads to aesthetically unappealing jittery
estimates. From the MSE point of view, the optimal
“kernel” function is the Bartlett-Priestley weight
G(x) = (1 — x%1j—1,1. Choice of smoother “kernel”
functions, such as G(x) = (1 — x%*1—1, 15, # > 1, will lead
to smoother resulting curve estimates at the expense of
increased variance. Choice of even £ (i.e., fitting locally

. linear, cubic etc. polynomials rather than quartic, qua-

dratic, etc.) corresponds to symmetric “equivalent” ker-
nels (see Section 3) and therefore may be advantageous
in terms of bias.

For nonnormal situations like Poisson regression,
local generalized linear models are a natural extension
[compare Staniswalis (1989) for local likelihood meth-
ods]. Any “global” regression routine which allows for
case weight specification by the user can be “localized”
by successively feeding the data into local moving
windows plus providing case weights (the same
weights as one would use for LWLS). This feature
allows for great flexibility and convenience in designing
and implementing particular variations of LWLS.

Note that LWLS weights /(x) may also be an attrac-
tive choice to define a version of empirical conditional
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distribution functions F(y | x) = Zl{x)1y;<,; and corre-
sponding M-estimators and estimators [y(y)dFa(y | x) =
Zl{y)w(Y;) of functionals Ty(y)dF(y | x) of conditional
distributions, where for instance w(y) = y corresponds
to LWLS regression, w(y) = (y — u)? u = [ ydF to
variance function estimation.

3. “EQUIVALENT” KERNELS

Usually, the LWLS “kernel” G will be symmetric; it
is not a “real” kernel function as it does not satisfy the
usual moment conditions (of a second-order kernel).
For regular (not necessarily uniform) designs generated
by a design density, fus is asymptotically equivalent
to a version of fGM (Miiller, 1987). The “equivalent”
kernel employed by the “equivalent” fou is

(2) Kgg = Gpi-1,

where p,—; is a polynomial of degree & — 1 which is
uniquely determined by the moment conditions

(3) ngq(x)xfdx =0, 0<j<k, /KEq(x)dx =1,

implying that Kgq is a kernel of order k. Figure 1
demonstrates that foy with this kernel Kzq and f1s are
indistinguishable also for finite samples for G(x) =
(1 — x?)1j-1, 1) and the “equivalent” Bartlett-Priestley-
Epanechnikov kernel Kgq(x) = (3/4)(1 — x?)1(-1, 1. The
weights /{(0.5) when estimating at x = 0.5 with b =
0.5, distributed to measurements at 201 equidistant
design points in [0, 1] are seen to be identical for both
methods.

What are the “equivalent” kernels when estimating
derivatives? According to (2) above, extended to cover
derivatives, one finds for the first derivative and G =
(1 — x?)1-1,1y the equivalent kernel Kgglx) =
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Fic.1. Weights distributed by LWLS (solid) and fom with equiv-
alent kernel Kiq for k = 2, when estimating at x = 0.5 and 201
points in the window. The two graphs coincide.
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(15/4) (x® — x)1j-1, 17 (the “optimal” kernel for estimating
the first derivative under minimal sign changes).

If one would consider the obvious alternative,
namely, to estimate a derivative by direct differentia-
tion of the weight functions [, that is, fil(x) =
El}”(x) Y;, where fuslx) = Zl(x)Y;, then this would corre-
spond to applying the derivative of the Bartlett-Priest-
ley-Epanechnikov kernel, which is the “minimum
variance kernel” Kyinvar(x) = —(8/2)x 1{-1,13. For the
same reasons as discussed in Gasser and Miiller (1984),
it seems therefore to be indeed preferable to use fiil(x)
= fi(x) as advocated by H&L, rather than f{i}(x).

Weights I; for estimating f* (0.5) with bandwidth
b = 0.5 on an equidistant design of 201 points in
[0, 1] are shown for f), using Krq and Kuinvar and for
fi in Figure 2. It is evident that the large sample
equivalence between f1}, with Kzq and fi materializes
for this sample size.

4. BOUNDARY KERNELS

Even if one opts for LWLS as nonparametric regres-
sion technique with its “automatic” boundary adapta-
tion feature, boundary kernels or one of the alternative
methods by Rice (1984), Schuster (1985) or Hall and
Webhrly (1991) (which can be expressed and understood
in terms of “equivalent” boundary kernels) are needed
for other curve estimation problems. For all these
methods, including LWLS, the usual balance between
bias and variance is disturbed near endpoints due to
bias adaptation which increases variances (Miiller, 1991,
1992; Miiller and Zhou, 1991; Miiller and Wang, 1992).
Therefore, boundary adaptive bandwidth choices like
stabilizing the window size at 2b (corresponding to
varying bandwidths according to b(x) = 2b — x, x €
[0, ) if 0 is a left endpoint) can lead to significant
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Fic. 2. Same as Figure 1 but weights for first derivative. LWLS
O dotted, i) with Kpq dashed, fl with Kwinva solid. Dashed
and dotted graphs coincide.
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improvements. Thus the boundary problem becomes a
bandwidth problem for LWLS which cannot be ignored
whenever structure near boundaries matters. In such
cases, the “automatic” boundary adaptation feature of
LWLS should not tempt the user to assume that the
problem is solved.

Relation (2) can be extended to find “equivalent”
boundary kernels. We replace G = G111 in (2) by a
truncated version G, = Glj-1, 4, Where ¢ = x/b, x €
[0, b), and obtain then the resulting kernel for the case
of fitting local lines, Kgq 4(x) = Gylx)ao, ¢ + ai,x).
Here, ao, , and a,, ; are calculated such that Kzq , satis-
fies moment conditions (3) for & = 2. Explicit solutions
are available. Kernels Kzq , were suggested in Gasser
and Miiller (1979) as a simple and effective way to
construct boundary kernels, and the “equivalence”
property with LWLS was discussed in Lejeune (1985),
Ruppert and Wand (1992).

Another class of “smooth optimum” boundary ker-
nels Kgo, , was derived in Miiller (1991) for kernel of
arbitrary orders k (and arbitrary derivatives) by ex-
tending a variational problem, the solution of which
are MSE “optimal” kernels under sign change restric-
tions, to the boundary: for & = 2,

6(1 + x)(g — x)
(1+q)?

, 1—g 1—q
{1 +5 <1 T q> + 10(1 ¥ q)zx}.

The unified framework within which these kernels
are derived requires that smoothness conditions be
imposed at both endpoints of the support of the kernel.
Under this restriction, these kernels are “smooth opti-
mal” in a certain sense. Without this restriction, they
are not MSE optimal. In fact, the smoothness require-
ment at the endpoint increases the variation of these
kernel functions and therefore the variance of resulting
curve estimates.

This problem was recognized in Miiller and Wang
(1992), where a new class of boundary kernels based
on expansions in orthogonal polynomials was pro-
posed: for k. = 2,

KSO,q(x) =

12
Kuw,qlx) = i+ar 2" (x+1)

 [x(1 — 2q) + (8¢% — ¢ + 1)/2].

As these kernels are not subject to smoothness con-
straints, they have less variation than boundary ker-
nels Kgsg , and therefore better MSE properties. The
advantage of using boundary kernels Kyw, ; or Kso, 4
over Kgq 4 is that closed formulas are available for all
orders k&, whereas for the construction of kernels Kgq
for £ > 3, a linear system of equations has to be solved
numerically for each point in the boundary region
where a function estimate is desired. This disadvantage

does not apply in the case 2 = 2. Note that Kgp,1 =
Kuw,1 = Kgg,1 if Glx) = (1 — x¥*1-1, 1y and & = 2, for
any 4 = 0, which means that these boundary kernel
constructions coincide in the “interior” and correspond
there to a nonnegative polynomial kernel function (for
k = 2). When comparing fi.s with fg) in the boundary
area, fu should be constructed with kernels Kzq .

The weights /() distributed by fz» when estimating
in the boundary area using boundary kernels Kgg, 4,
Ko, ; and Kyw, o and the corresponding weights distrib-
uted by LWLS are shown for & = 0.5, estimating at
the endpoint x = 0 itself (corresponding to ¢ = 0) in
Figure 3 and at x = 0.25 (corresponding to ¢ = 0.5)
in Figure 4. It is obvious that the weights belonging
to fGM with Kgg, 4, and those of fLs are almost indistin-
guishable, therefore also bias and variance properties
of these two methods will be the same. Very close
comes fou with boundary kernels Ky, ¢» Whereas
weights of fox with boundary kernels Ko, , are sub-
stantially different and from a MSE point of view
less desirable. Kernels Kyw, , are easy to compute for
various orders and derivatives and have good MSE
properties. Kernels Kgq , are a good choice for order
k=2

Note that application of kernels Ko, , is “equivalent”
to the following alternative LWLS procedure to handle
boundaries: fis ax) = frs(b) + FEb)x — b) for x in
the left boundary area, x € [0, b).

5. REGRESSION FUNCTIONS WITH
CHANGE-POINTS

Assume that the regression function f to be esti-
mated has a change-point at 7 in the form of a jump
discontinuity
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Fic. 8. Boundary weights distributed by LWLS (solid), by fou

with Kgg, 4 (dotted) i.e., the curve closest to the solid curve, Kuw, q

(dash/dot) i.e., the curve with the largest value at 0 and Kso, 4

(short dashed) i.e, the curve with the largest maximum and a

value of 0 at O,when estimating at left endpoint x = 0 (g = 0),
= 0.5.
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F16. 4. Same as Figure 3 when estimating at x = 0.25(q = 0.5).
Note that the graph corresponding to weights distributed by feu
with Kuw, 05 has the largest value at 0 among the four graphs,
while the graph corresponding to fou with Kso, 05 has a value of
0 at 0.

(4) f(x) = fl(x)1(05x<r) + fz(x)l(rsxsl)y

where fi, f, are smooth functions with | fi(1) — ful) | =
Ao > 0. Another possibility is a jump discontinuity in
the derivative

(5) fOx) = fOx)Ljo<rcq + FPX) <1}

where fi'V, £,V are smooth with | fi'7) — f£,%) | =
A > 0.

Undiscriminating application of smoothers to data
coming from functions in models (4) or (5) will
oversmooth the change-point and lead to inconsistent
estimates of f at 7 in model (4) and of f'V' in model (5).
A two-step procedure using LWLS which works well
for model (4) is as follows:

(a) Fit the linear four parameter model
[Bo + Bilx — )l—b<x<y + [Bs + Balx — 1)]
1 <x<t+p) with change-point at ¢ by LWLS within

(6) each window [t — b, t + b], and find the estimate

t = argmax, | fs(t) — fo(t) | for 7. Obtain the
curve estimate f as follows:

(b) If ¢ ¢ [t — b, ¢t + b), fit the line [B) + Bu(x — t)]
by LWLS to obtain f(2) = fo(t). If 2 e [t — b,
t + b], fit the model wO + ﬂl(x - t)]l(t_b5x<f} +
[Bs + Balx — )liz<z<r+s by LWLS and evaluate
at t to obtain f(¢).

For model (5) the procedure is analogous, except that
one would fit in step (a) models By + filx — t) +
Box — t)1i<x<r+s), define £ = arg max, | Bo(t) | and fit
in step (b) models fo + Bilx — t) + Balx — Oljr<rcetn
by LWLS, evaluating at ¢ to obtain fi#).

This procedure is similar to proposals by Miiller
(1992a) where change-point estimates are based on
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Fic. 5. Estimation of the regression function in a change-point
model (4). LWLS (solid) with b = 0.1, true curve (dashed) and
scatterplot (6 = 0.025). Estimated change-point at £ = 0.505.

differences of one-sided kernel smoothers, and by Eu-
bank and Speckman (1992) who adopt a semiparamet-
ric approach. For the situation of a known change-point
in model (4), compare also Eubank and Speckman
(1991). An application to simulated data is shown for
model (4) in Figure 5 for the function fix) = x21j9 o5 +
(x - 0.5)21[0,5, 1] with Ao = 0.25 and for model (5) in
Figure 6 for the function fix) = %21 05 + (x2 —
0.25)1p5 1) with A; = 1.0 (error std 0.025, n = 201).
In both cases, the underlying function including the
change-point is seen to be well reproduced.

6. SPATIAL SMOOTHING

Some smoothing problems in spatial applications
involve measurements which are not associated with
fixed locations but rather with sets. An example are
the Sudden Infant Death Syndrome (SIDS) data ana-
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F16.6. Same as Figure 5 in a change-point model (5). Estimated
change-point at ¢ = 0.51.
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lyzed in Cressie (1991), where data are only available
averaged over counties, with counties of quite irregular
shapes. In this case the data are aptly described by
the “empirical regression function” XY;14;, where sets
A, represent the counties. Obviously, GM type estima-
tors are directly applicable to such data, while NW
and LWLS estimators are not.

A generalized version of LWLS which is capable of
handling data like this is as follows: consider fis(x) =
Bolx), where

(Bo, B1) = arogf;l)in [y — (Bo+ Bilt — x))]?

1 —x) tp,—Xx
-G S - L) dF (x,
( 7 7 )d (x,y)

(M

for any probability measure dF on ®” X ®, p = 1.

If F is the joint distribution of measurements
(X:, Y), X; € ®?, Y; € &, this yields the convolution of
the true regression function with the bandwidth-scaled
kernel Kgq of (2). If dF = dF, = n™' Ly, vy the
empirical measure, then fis(x) is the ordinary LWLS
estimator.

Let now (A;) be a partition of the compact domain
A into measureable sets A; C A, 1 < i = n. Choosing
dF = E[A(A,)/AM)]{dFU,A, X 6yi}, where FU,A,‘ is the uni-
form distribution on A;, J, an atom of mass 1 at y and
A the Lebesgue measure, then one obtains

_ 1z
,B1) = argmin —— i — Bo + Bult — x)]?
(Bo, B1) arg min l(A)iZl; N [y: — Bo + Bult — x)]

1 —x1 t, — X
-G e P .
< 5 5 )dx

This special case of (7) yields the proposed LWLS
type estimator fis(x) = fo(x) for this spatial smoothing
problem.

7. OTHER SMOOTHING METHODS

As mentioned by H&L, other important and popular
nonparametric regression estimators are smoothing
and regression splines (see Eubank, 1988, or Wahba,
1990), and it would be of interest to see how these

Rejoinder
Trevor Hastie and Clive Loader
If the “smoothing community” includes the users of

smoothers, then local regression has been popular for
more than 10 years. In particular, Cleveland’s (1979)

compare with the other methods. It follows from re-
sults of Silverman (1984) that for regular designs
smoothing splines are asymptotically equivalent to
GM estimators with certain “equivalent” kernels with
noncompact supports and bandwidths which vary lo-
cally according to the design density; compare also
Messer and Goldstein (1993) who investigated corre-
sponding boundary kernels. We may therefore expect
that at any fixed point, even for finite n, the behavior
of smoothing splines will be closer to GM estimators
than to the other kernel methods. The design-adaptive
local bandwidth variation feature of smoothing splines
is a bonus. For other smoothing methods, such local
bandwidths variation can be implemented as well, but
only at the expense of substantial additional concep-
tual and numerical complexity.

One advantage of controlled local bandwidth varia-
tion for kernel and LWLS estimates, however, is that
this may include adaptations not only to locally vary-
ing design density but also to curvature and hetero-
scedasticity (Miiller and Stadtmiiller, 1987; Fan and
Gijbels, 1992a).

Considering the random design case, the NW estima-
tor which is a special case of LWLS has serious draw-
backs as pointed out by H&L and Chu and Marron
(1991). One of the more serious problems is that this
estimator cannot reproduce straight lines as regression
functions (in the univariate case) when the marginal
density of the predictors X; is nonuniform. An identity
reproducing transformation, which is applicable to any
nonparametric regression estimator, was introduced in
Miiller and Song (1991) to address this problem. A
corresponding identity reproducing nonparametric re-
gression estimator (IRENORE) derived from the NW
estimator then has the same asymptotic MSE proper-
ties as LWLS in random designs. It is thus another
approach which achieves the desirable MSE properties
of LWLS.
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