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Introduction to the Bootstrap World
Dennis D. Boos

Abstract. The bootstrap has made a fundamental impact on how we carry
out statistical inference in problems without analytic solutions. This fact
is illustrated with examples and comments that emphasize the parametric
bootstrap and hypothesis testing.

Key words and phrases: Statistical inference, hypothesis testing, confi-
dence intervals, resampling, resamples.

1. INTRODUCTION

What is the bootstrap? It is a general technique
for estimating unknown quantities associated with
statistical models. Often the bootstrap is used to find

(1) standard errors for estimators,
(2) confidence intervals for unknown parameters or
(3) p values for test statistics under a null hypothesis.

Thus the bootstrap is typically used to estimate quan-
tities associated with the sampling distribution of esti-
mators and test statistics.

Recall that a statistical model is essentially a set of
probability distributions that attempts to describe the
true state of nature and the related random data avail-
able to understand that true state. The goal of statistical
inference is to choose one of these probability distrib-
utions and give some notion of the uncertainty of that
choice [usually by means of (1), (2) or (3) above]. In
other words, we make inferences about unknown popu-
lations (represented by statistical models) from sample
data. The bootstrap, first introduced by Efron in 1977,
is an important tool in making such inferences, espe-
cially in complicated models.

So, we have a set of distributions P and one dis-
tinguished member P0 that describes the true state of
nature and the available data. Any of the above
items (1)–(3) could be described as functionals Q(P0),
and the bootstrap estimate is Q(P̂ ), where P̂ is an es-
timate of P0. If P is indexed by a finite-dimensional
parameter θ , then the model is called parametric and
use of Q(P̂ ) is called a parametric bootstrap. Oth-
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erwise the term nonparametric bootstrap is typically
used (even for semiparametric models like regression
models with unknown error distribution).

This “plug-in” description is deceptively simple. The
functional approach to estimating parameters like the
mean T (F ) = ∫

x dF (x) by T (Fn) = X = ∫
x dFn(x),

where Fn is the empirical distribution function, was al-
ready well known by 1977. In fact, an elegant asymp-
totic theory for T (Fn) was available (see Serfling,
1980, Chapters 6–8). However, when Efron introduced
the bootstrap in 1977, it was a truly novel idea even if in
hindsight we can describe it simply as a functional. The
key theoretical difference is that the bootstrap function-
als are much broader and more complicated than func-
tionals like T (F ) = ∫

x dF (x). In fact, the most basic
bootstrap functional is a sampling distribution itself.

I think the real reason the bootstrap was so path-
breaking and has remained so popular is that Efron
described it mainly in terms of creating a “bootstrap
world,” where the data analyst knows everything. That
is, in this parallel world the true sampling design of
the data is reproduced as closely as possible and un-
known aspects of the statistical model are replaced by
sample estimates. In this world, the data analyst can
obtain any quantity of interest by simulation. For ex-
ample, if the variance of a complicated parameter es-
timate in this world is desired, just computer generate
B replicate samples (bootstrap samples or resamples),
compute the estimate for each resample and then use
the sample variance of the B estimates as an approxi-
mation to the variance. As B grows large, this sample
variance converges to the true variance in the bootstrap
world. Of course in terms of the estimator based on
the original data (the real world), this limiting sample
variance is just an estimator of the true variance of the
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estimate. Thus we create a bootstrap world where any-
thing can be computed, at least up to Monte Carlo error.
Those true quantities calculated in the bootstrap world
are estimates of the parallel quantities in the real world.

In effect this bootstrap world simulation approach
opened up complicated statistical methods to anybody
with a computer and a random number generator. Ran-
dom variable calculus can be replaced by computing
power. (I can hear groans about all the possible mis-
uses. The same can be said about standard statistical
software packages, but few people would doubt their
importance.)

How important is the bootstrap resampling technique
in statistical inference? First we need to separate the
practical, everyday world from the research world that
results in journal articles. In the everyday world, noth-
ing can compare to the impact of statistical packages
like SAS and SPSS, but as far as I can tell, SAS has
only one PROC that directly uses the bootstrap (PROC
MULTTEST). Splus has a general bootstrap program,
but it is not automatic. Moreover, I contend that a ma-
jority of practical statistical problems are handled by
analysis of variance or regression for which standard
methods are usually adequate. Thus, in terms of over-
all usage, the percentage of analyses that use bootstrap
resampling is fairly low. On the other hand, I will try to
show in the examples below, that in almost any prob-
lem that is slightly nonstandard, it could be helpful to
use the bootstrap. When packages that have the boot-
strap are as easy to use as StatXact, then we will see a
huge rise in practical usage.

In the world of journal articles, the bootstrap has
had a tremendous impact. Typing “bootstrap” into the
ISI Web of Science topic search resulted in 6,248
articles (and growing every day—a few weeks earlier
it was 6,212). More than half of the 2000 and 2001
articles that cited Efron (1979) were from nonstatistical
journals. So the bootstrap is making a large impact
outside the statistics mainstream as well. Personally,
I think the use of the parametric bootstrap in all kinds
of analyses is going to grow in the future. In fact, I see
some analogies between the parametric bootstrap in
frequentist inference and Markov chain Monte Carlo
methods in Bayesian analysis.

The rest of this article consists of two sections. The
first section is a series of examples that I hope illus-
trates the ubiquity of the bootstrap; the first and sec-
ond examples came directly from my own consulting.
Then the final section discusses a number of issues that
arise in using the bootstrap in the context of hypothesis
testing.

2. EXAMPLES

EXAMPLE 1. A masters student in civil engi-
neering wanted to model the relationship between
watershed area and the maximum flow over a 100 year
period at gauging stations on rivers in North Carolina.
He had a model R = kAη−1 that related the 100 year
maximum flow rate at a station (R) to the watershed
area (A) at the station; k and η are unknown parame-
ters. Taking logarithms leads to a simple linear model.
He had values of A for 140 stations, but the R measure-
ment for each station was the maximum flow during
the time the station had been keeping records. These
lengths of time varied between 6 and 83 years, so they
really were not comparable and also were not appro-
priate for the maximum over 100 years.

I discovered that the student could get yearly max-
imums for a number of stations. The data in Table 1
are n = 35 yearly maximum flow rates at one par-
ticular station. Assuming year-to-year independence
for the yearly maximums, the distribution function of
the maximum of 100 yearly maximums is P (R(100) ≤
t) = [F(t)]100, where F(t) is the distribution func-
tion of a single yearly maximum. I proposed that we
estimate the median, say t0, of the distribution func-
tion [F(t)]100 to be used as the response variable in
the regression model. Setting [F(t0)]100 = 1/2 implies
that F(t0) = (1/2)0.01 = 0.993. Thus, t0 is actually the
0.993 quantile of the yearly maximum distribution. Be-
cause the sample sizes were too small to estimate this
quantile nonparametrically, I suggested that we assume
a parametric model for the yearly maximum. So, for
the data of Table 1, I assumed a location–scale extreme
value model that had distribution function

F(t;µ,σ) = exp
{
− exp

(
− t − µ

σ

)}
.

I confirmed this assumption with a quantile–quantile
(QQ) plot and then fit the data by maximum likelihood,
obtaining µ̂ = 4395.1 and σ̂ = 1882.5. The estimate of
the 0.993 quantile is then

σ̂ {− log[− log(0.993)]} + µ̂ = 13729.2.

TABLE 1
Yearly maximum flow rates (gallons per second) at a gauging

station in North Carolina

5,550 4,380 2,370 3,220 8,050 4,560 2,100
6,840 5,640 3,500 1,940 7,060 7,500 5,370

13,100 4,920 6,500 4,790 6,050 4,560 3,210
6,450 5,870 2,900 5,490 3,490 9,030 3,100
4,600 3,410 3,690 6,420 10,300 7,240 9,130
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Using the inverse of the estimated Fisher information
and the delta method applied to the above function,
I obtained a standard error of 1375.3. The idea would
be for the student to do this estimation at a number of
stations and possibly use the standard errors as weights
in the regression fit.

The classical tools used here are quite adequate:
QQ plot, maximum likelihood and delta method. How-
ever, let us see what the bootstrap can do. I first con-
firmed the extreme value assumption by generating
B = 100 data sets of size n = 35 from the fitted dis-
tribution and computed the Anderson–Darling (AD)
goodness-of-fit statistic for each sample. Since 95 of
these were larger than the value 0.178 for the data
in Table 1, the parametric bootstrap p value is 0.95.
If the p value had been fairly small, I would have
taken B to be much larger. The null distribution of AD
for this situation has been tabled by Stephens (1977),
but the bootstrap has made tabling such distributions
obsolete. In fact, the bootstrap distribution here is ex-
act up to Monte Carlo error, because the distribution
of AD does not depend on the values of the parame-
ter. This is true for any location–scale family. I also
kept track of the bootstrap parameter estimates and
the estimated 0.993 quantile for each bootstrap resam-
ple. The mean of the quantile estimates was 13572.2,
illustrating some negative bias of the estimate, since
13572.2 is smaller than 13729.2, the true value in the
bootstrap world. The standard deviation of the quantile
estimates was 1386.0, a parametric bootstrap standard
error quite close to the parametric delta method value
of 1375.3. Finally, I made a histogram and QQ plot
of the 100 bootstrap 0.993 quantile estimates and ob-
served that they are approximately normally distrib-
uted (suggesting that the 0.993 quantile estimate from
different stations will be a statistically well-behaved
response variable in the linear regression). These boot-
strap analyses are modest additions to the original
analysis, but they do add some insight. For some folks,
just avoiding the Fisher information and delta theorem
calculus is attractive.

EXAMPLE 2. A local Raleigh company came to
me several years ago with data on two methods
of detecting polychlorinated biphenyls (PCBs). They
were developing a solid phase fluoroimmunoassay
method that is called ELISA; the other method is
refered to as GS for gold standard, because its results
were accepted as truth. Figure 1 displays the data, the

FIG. 1. Two methods for detecting PCBs overlaid with the least
squares line.

n = 24 pairs of (GS,ELISA) values given in Table 2.
The company was interested in detecting PCB levels
of 200 ppb (parts per billion) or more using an “action
limit” of 100 ppb for their ELISA method. That is, they
planned to declare that PCBs were present whenever
ELISA was greater than or equal to 100.

After some discussion, we determined that the com-
pany wanted the probability of a false negative when
GS = 200, P (ELISA < 100|GS = 200). In screening
test terminology, this probability would be 1 minus the
sensitivity of the test. They also were interested in the
probability of a false positive (1 minus the specificity
of the test) for different levels of GS. Since all of these
calculations are similar, I will focus here on the sensi-
tivity.

To make the problem simple, I decided to model the
ELISA results as a linear function of GS with normal
homogeneous errors,

ELISA = α + β(GS) + σZ,(1)

where Z is a standard normal random variable.

TABLE 2
GS and ELISA values for 24 samples

GS ELISA GS ELISA GS ELISA

76 81 150 152 115 129
50 83 192 152 166 140
59 84 171 172 205 212
92 92 177 172 337 309
70 93 28 106 334 320
99 100 58 109 309 358

176 143 106 121 310 429
156 145 94 122 568 510
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Then

P (ELISA < 100|GS = 200)

= P
(
α + β(GS) + σZ < 100|GS = 200

)
= P

(
Z <

100 − α − β(200)

σ

)
= �

(
100 − α − β(200)

σ

)
,

(2)

where � is the standard normal distribution function.
Since (α,β,σ ) were unknown, I used the least

squares estimates from a fit to the data in Figure 1 to
substitute in (2). The estimate of (2) was 0.002, but
how should the variation due to the parameter esti-
mates be taken into account? One could use the joint
asymptotic normal distribution of the least squares es-
timates and the delta method to get a standard error for
the estimate and an approximate confidence interval,
but it was much simpler to just generate 10,000 sam-
ples from the model (1) with the least squares estimates
in place of (α,β,σ ). This is a parametric bootstrap.
The bootstrap standard error was 0.005 and the upper
95% probability bound was 0.013 using the percentile
method. I worried a bit about the normality assump-
tion, and decided to try a t distribution with 5 degrees
of freedom as an alternative to the normal distribution.
The probability estimate was then 0.007 with bootstrap
standard error 0.009 and upper 95% probability bound
of 0.023. So there is clearly some sensitivity to the nor-
mal assumption. (Actually, it appears that a Weibull
distribution might be more appropriate for the errors,
but I did not pursue distributional alternatives further
because of time and money.) One could also worry
about variance heterogeneity and other model inade-
quacies or use a better bootstrap confidence interval
method.

The key point I want to make is how easy it was to
carry out the bootstrap analysis (in Splus, actually) in
comparison to the classical delta method. Moreover,
I was able to check on sensitivity to the normality
assumption with a very slight change in my program.

EXAMPLE 3. Chen, Kodell and Gaylor (1996) dis-
cussed risk assessment for increasing doses of toxic
agents based on continuous responses. Their second
example is a study that relates glucose levels in mice
who were fed various doses of carbonyl iron. The doses
were 0, 15, 35, 50 and 100 dg/kg body weight of
iron per day. Descriptive statistics reveal that the vari-
ance of the glucose response variable increases with

dose. (Actually, the authors ran a Bartlett test for ho-
mogeneity of variances. In my younger days I would
have argued that they should have obtained a p value
from the nonparametric bootstrap since Bartlett’s test
is so sensitive to the normality assumption; see Boos
and Brownie, 1989. Here the heterogeneity is so strong
that it does not matter.) Then, assuming normality for
the responses and allowing each dose group to have
its own standard deviation, they used maximum like-
lihood to fit a quadratic mean function of dose to al-
low for a downturn at high doses. They then gave a
bias-corrected estimate (based on Taylor expansion)
of “additional risk” that is a function of the parame-
ter estimates based on the normal distribution func-
tion. Finally, they gave three methods for obtaining
confidence intervals for the quantity of interest, one of
which is a nonparametric bootstrap. So, they have used
the bootstrap once, but they also could have used it with
Bartlett’s statistic and for bias correction.

They also could have worried about the normality
assumption (they did in a later article; see below), es-
pecially since their procedures rely on it fairly strongly.
My colleague Charles Quesenberry gave exact pro-
cedures (Quesenberry, 1976) for testing normality in
multiple samples, but I did not have the program at my
fingertips. Instead, I just standardized each data value
by subtracting its sample mean and dividing by its
sample standard deviation. Then I pooled all 118 stan-
dardized values and computed the Anderson–Darling
goodness-of-fit statistic. I obtained AD = 0.86. How-
ever, what is the accompanying p value? I gener-
ated B = 1000 sets of five samples and computed this
AD statistic each time, resulting in a parametric boot-
strap p value = 0.022. This is not overwhelming evi-
dence, but certainly there is some nonnormality. As in
Example 1, the null distribution of AD does not depend
on actual parameter values and thus the parametric
bootstrap p value here is exact up to Monte Carlo error.

Continuing the story, Razzaghi and Kodell (2000)
also noticed the nonnormality in these data and pro-
posed a mixture model. The distribution function of the
j th observation in the ith dose group is

P
(
Xj(di) ≤ x

)
= θ�

(
x − µ1(di)

σ

)
+ (1 − θ)�

(
x − µ2(di)

σ

)
,

where they specified the mean functions µ1(·) and
µ2(·) to be quadratic in dose. Now the bootstrap could
be used in a variety of places within this model. How-
ever, the authors used standard likelihood methods,
which I agree is the simplest approach.
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So, the main consideration is whether the overall
model is adequate. To address this question I used
the fitted model to generate parametric bootstrap sam-
ples and computed a new model adequacy statistic
IOSA (in-and-out-of-sample) each time (see Presnell
and Boos, 2002, for a description of the statistic). The
p value was 0.24 for B = 100, suggesting that the
model is reasonable.

My conclusion from looking at these examples is
that the bootstrap has potential uses in almost any
problem. Whether it is used or not depends a lot on
how easy it is to implement and whether there is an
acceptable standard procedure available.

3. BOOTSTRAP SAMPLING FOR
HYPOTHESIS TESTS

Since the bootstrap literature has not emphasized
hypothesis testing very much, I thought it might be
interesting to highlight some of the issues associated
with resampling test statistics.

3.1 Correct Resampling for Hypothesis Tests

An understanding of bootstrap resampling for ob-
taining a standard error or confidence interval does not
necessarily provide intuition concerning how to resam-
ple in a hypothesis testing situation. The key point is
that to get a p value, resampling must be performed
under an appropriate null hypothesis, whereas for stan-
dard errors and confidence intervals, resampling is un-
restricted.

To make this clear, consider the case of two in-
dependent samples X1, . . . ,Xm and Y1, . . . , Yn, and
suppose that we are interested in the difference in
population means, say µX − µY . For a nonparamet-
ric bootstrap confidence interval, we merely draw
independent samples from the empirical c.d.f.’s or
equivalently with replacement from the sets {X1, . . . ,

Xm} and {Y1, . . . , Yn}, respectively. Instead, consider
testing µX − µY = 0 with a t statistic, say the pooled
t statistic

tp = (X − Y )
/√

s2
p

(
1

m
+ 1

n

)
,

where

s2
p = (m − 1)s2

X + (n − 1)s2
Y

m + n − 2
,

s2
X = 1

m − 1

m∑
i=1

(Xi − X)2,

s2
Y = 1

n − 1

n∑
i=1

(Yi − Y )2.

The above method of resampling from each sample
separately leads to a test with power approximately
equal to the nominal level.

Why is that resampling method wrong? Resampling
in the above fashion puts no restriction on the data and
thus does not generate an approximation to the null
distribution of the tp statistic. For confidence intervals
for µX − µY , we do not want any restriction in the
bootstrap world, but for the null distribution of tp , we
need to force the means to be equal when drawing
bootstrap samples.

One way to do this is to draw both samples with
replacement from the pooled set {X1, . . . ,Xm,Y1,

. . . , Yn}. By doing this, in the bootstrap world we have
created the null hypothesis

H0 :P (X∗ ≤ t) = P (Y ∗ ≤ t) = HN(t),(3)

where P (X∗ ≤ t) is the distribution function of an X

in the bootstrap world, P (Y ∗ ≤ t) is the distribution
function of a Y in the bootstrap world and HN(t) is the
empirical distribution function of the pooled set with
N = m+n. In effect we are trying to test the real world
hypothesis

H0 :F(t) = G(t),(4)

where F and G are the distribution functions of the
X and Y samples, respectively.

It might be worth pointing out that there is an ex-
act permutation test available for (4), obtained by con-
structing all N !/m!n! partitions of {X1, . . . ,Xm,Y1,

. . . , Yn} into two samples of size m and n, respectively.
Then tp is computed for each partition; the empirical
distribution of these N !/m!n! values is called the per-
mutation distribution. The statistic tp for the original
sample is then compared to this distribution to get ex-
act tests and p values. This elegant approach was intro-
duced by Fisher (1934); a firm theoretical foundation
can be found in Hoeffding (1952).

How do permutation tests and bootstrap tests com-
pare? Permutation tests are limited to a relatively small
number of testing situations where permutations un-
der the null hypothesis have the same distribution. For
those situations, the permutation method gives exact
results for any statistic. In contrast, the scope of appli-
cation for bootstrap tests is huge. The resulting tests,
though, are only approximately valid and depend on
asymptotics for justification (except for the parametric
bootstrap in special situations as mentioned in Exam-
ples 1 and 3). Bootstrapping Studentized statistics like
tp is usually much preferable to bootstrapping statistics
like X − Y due to faster convergence of the bootstrap
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distribution (see Hall, 1986b or 1992). For permutation
tests, however, using different statistics often leads to
the same result. For example, in the above problem, the
permutation method applied to tp and to X − Y yields
the same test.

To further illustrate these ideas, consider a larger null
hypothesis than (4),

H0 :µX − µY = 0,(5)

but with no other restrictions on the distributions
except for finite second moments. This allows the
distributions to have different variances and even
totally different shapes. A suitable statistic might be
Welch’s t :

tw = (X − Y )
/√

s2
X

m
+ s2

Y

n
.

One way to create a bootstrap world with an appro-
priate null hypothesis is to draw the X resamples with
replacement from {X1 −X, . . . ,Xm −X} and the Y re-
samples from {Y1 − Y , . . . , Yn − Y }. This forces the
X and Y distributions in the bootstrap world to have
mean 0. Of course, we could add the same constant to
both sets of resamples and not change the results (since
tw is invariant to such additions). It is easy to show that
the bootstrap distribution of tw converges with proba-
bility 1 to a standard normal distribution, the same lim-
iting distribution as tw in the real world under the null
distribution (5). Thus under (5), the bootstrap p value
converges with probability 1 to a uniform random vari-
able. The permutation method cannot handle (5).

Other examples of creating null hypotheses in the
bootstrap world can be found in Beran and Srivastava
(1985), Boos, Janssen and Veraverbeke (1989) and
Davison and Hinkley (1997, Chapter 4).

3.2 Definition of Bootstrap p Values and
the “99 Rule”

Suppose that T0 is the value of a test statistic T

computed for a particular sample. Then P (T ≥ T0|H0)

is the definition of the p value in situations where large
values of T support the alternative hypothesis. If the
null distribution of T is a discrete uniform distibution
on some values t1, . . . , tk (each value has probability
1/k), then the p value is just the proportion of ti ’s
greater than or equal to T0. In analogous fashion, when
B resamples are made in the bootstrap world under an
induced null hypothesis, define the bootstrap p value

pB = {# of T ∗
i ≥ T0}
B

,

where T ∗
1 , . . . , T ∗

B are the values of T computed from
the resamples. This is the definition I prefer and is the
one given by Efron and Tibshirani (1993, page 221).
I should note, however, that Davison and Hinkley
(1997, pages 148 and 161) and others prefer (pB + 1)/

(B + 1).
Consider a situation where the statistic T is contin-

uous and a parametric bootstrap will give the exact
sampling distribution as B grows large (such as in
Example 1). In this case, T0, T

∗
1 , . . . , T ∗

B are i.i.d., all
(B + 1)! orderings are equally likely and pB has a dis-
crete uniform distribution,

P (pB = 0) = P

(
pB = 1

B

)
=

(
pB = 2

B

)
= · · · = P (pB = 1) = 1

B + 1
.

Thus, the test defined by the rejection region pB ≤ α

has exact level α if (B +1)α is an integer. For example,
if α = 0.05, then P (pB ≤ 0.05) = 5/(99 + 1) =
0.05 if B = 99, but P (pB ≤ 0.05) = 6/(100 + 1) =
0.0594 if B = 100. So, for small B one should use
values like B = 19,39 or 99 to get standard α levels.
I call this the “99 rule” and note that simulation-
based tests such as this are often called Monte Carlo
tests (first suggested by Barnard, 1963). Hall (1986a)
gave an approximate version of this result for the
nonparametric bootstrap; thus the “99 rule” should be
followed generally in bootstrap testing situations.

When analyzing a single data set, it is often possible
to use a large B where there is very little difference
between using B and B+1 (B = 1000 gives a rejection
rate of 51/1001 = 0.051). However, for studying
the power function of a bootstrap test, two Monte
Carlo loops are required (the outer one for replicate
samples of the true data situation; the inner one for
the bootstrap procedure) and computations can be time
consuming. Thus B = 59,99 or 199 might be used
to save time. Since the resulting power estimates are
typically monotone increasing in B , one can adjust the
estimates if B is taken to be small (see Boos and Zhang,
2000). Davison and Hinkley (1997, Section 4.5) use
related arguments to justify the use of 99 resamples in
the inner loop of a double bootstrap procedure to get
adjusted bootstrap p values for a single data set.

3.3 Convergence of Parametric Bootstrap p Values

There have been many articles on the convergence
properties of nonparametric bootstrap distributions, but
not as many on convergence of parametric bootstrap
distributions (see Beran, 1986 and 1988 for several).
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Recently, Robins, van der Vaart and Ventura (2000)
gave an interesting result for the parametric bootstrap.
One conclusion for bootstrap p values from their The-
orem 1 is as follows. If the test statistic T is asymptot-
ically normal (a(θ), b2(θ)/n), then under some fairly
strong but general conditions, the parametric bootstrap
p value is asymptotically uniform if a does not depend
on θ and asymptotically conservative otherwise. The
context of the result is an article on p values for model
adequacy, and the authors suggest that the conserva-
tive property is not appealing in that context. They may
have a point, but I find the result comforting in terms
of general usage of the bootstrap in hypothesis testing
situations.

4. CLOSING REMARKS

The bootstrap is a fundamental statistical tool that
can be used in almost any application. Clearly, it is
most useful in complex situations where asymptotic
approximations are difficult to compute or just not
available. As computing power continues to increase,
the routine use of bootstrap resampling will continue
to grow.
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