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Abstract. On February 12, 2001 the Human Genome Project announced
the completion of a draft physical map of the human genome—the genetic
blueprint for a human being. Now the challenge is to annotate this map
by understanding the functions of genes and their interplay with proteins
and the environment to create complex, dynamic living systems. This is
the goal of functional genomics. Recent technological advances enable
biomedical investigators to observe the genome of entire organisms in
action by simultaneously measuring the level of activation of thousands
of genes under the same experimental conditions. This technology, known
as microarrays, today provides unparalleled discovery opportunities and is
reshaping biomedical sciences. One of the main aspects of this revolution
is the introduction of computationally intensive data analysis methods in
biomedical research. This article reviews the foundations of this technology
and describes the statistical challenges posed by the analysis of microarray
data.
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1. THE HUMAN GENOME PROJECT

The Human Genome Project (HGP) is a multiyear
effort, coordinated by the Department of Energy and
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the National Institutes of Health, to create a reference
sequence of the entire DNA and to identify the esti-
mated 30,000–40,000 genes of the human genome. Of-
ficially started in 1990, the HGP is expected to render
its final results in 2005, but the staggering technolog-
ical advances of the past few years will probably al-
low completion of the project by April 2003. By then,
the total cost of the project will be in excess of $3 bil-
lion, making the HGP one of the most funded single
scientific endeavors in history, in the same league as
the Manhattan Project and the Apollo Space Program.
The rationale behind such a herculean effort is that a
panoramic view of the human genome will dramati-
cally accelerate advances in biomedical sciences and
develop new ways to treat, cure or even prevent the
thousands of diseases that afflict humankind. The HGP
is also delivering a wealth of commercial opportuni-
ties: sales of DNA-based products and technologies are
projected to exceed $45 billion by 2009 in the United
States alone.

In June 2000, Craig Venter of Celera Genomics,
U.S. President Clinton and the leaders of HGP consor-
tium announced the completion of a “working draft”
DNA sequence of the human genome, the details of
which were published in February 2001 in dedicated
issues of Nature and Science (volume 409 of Na-
ture, published February 15, 2001 and available at
http://www.nature.com/genomics/human/, reports the
findings of the publicly sponsored HGP, while vol-
ume 291 of Science, published February 16, 2001
and available at http://www.sciencemag.org/content/
vol291/issue5507, focuses on the findings of the draft
sequence reported by the privately funded company
Celera Genomics). The result of these efforts is a
map of the human genes. This map consists of about
30,000–40,000 protein-coding genes (International Hu-
man Genome Sequencing Consortium, 2001), only
twice the number of protein-coding genes in a worm
or a fly. Because about 50% of these discovered genes
have known functions, the challenge now is to anno-
tate this map by understanding the functions of genes
and their interplay with proteins and the environment
to create complex, dynamic living systems. This is the
goal of functional genomics.

Several projects around the world are currently un-
der way to discover gene functions and to characterize
the regulatory mechanisms of gene activation. One av-
enue of research focuses on gene expression level and
exploits the recent technology of microarrays (Duggan
et al., 1999; Lipshutz, Fodor, Gingeras and Lockhart,
1999; Lockhart and Winzeler, 2000; Lockhart et al.,

1996) to obtain a panoramic view of the activity of the
genome of entire organisms. Microarray technology is
reshaping traditional molecular biology by shifting its
paradigm from a hypothesis driven to a data driven ap-
proach (Lander, 1999). Traditional methods in mole-
cular biology generally work on a “one gene in one
experiment” basis, making the whole picture of gene
functions hard to obtain. Microarray technology makes
it possible to simultaneously observe thousands of
genes in action and to dissect the functions, the reg-
ulatory mechanisms and the interaction pathways of an
entire genome.

A fundamental component of functional genomics
is the development of computational methods able
to integrate and understand the data generated by
microarray experiments. Typical experimental ques-
tions investigated with microarray experiments are the
detection of genes differentially expressed in an ab-
normal/tumor cell compared to a normal cell, the
identification of groups of genes that characterize a
particular class of tumors and the recognition, at the
molecular level, of novel subclasses of tumors and the
detection of gene regulatory mechanisms. Although the
avalanche of genome data produced with microarrays
grows daily, no consensus exists about the best quan-
titative methods to analyze them. Many methods lack
appropriate measures of uncertainty, make dubious dis-
tributional assumptions and are hardly portable across
experimental platforms. Furthermore, little is known
about how to design informative experiments, how to
assess whether an experiment has been successful, how
to measure the quality of information conveyed by an
experiment and, therefore, the reliability of the results
obtained. The specific character of gene expression
data opens unique statistical problems.

The aim of this article is to offer an overview of these
problems and the main approaches proposed to tackle
them. To make the article self-contained, the next sec-
tion will review essential biological notions and we
refer to Griffiths et al. (2000) for more technical de-
tails. Section 3 describes the two most used microarray
platforms: cDNA and synthetic oligonucleotide mi-
croarrays. Experimental design issues are described in
Section 4, and Section 5 focuses on data quality issues.
Section 6 describes techniques used for the analysis of
gene expression data measured in comparative experi-
ments, while Section 7 focuses on the supervised and
unsupervised methods used to analyze gene expression
data from experiments that compare several conditions.
Section 8 lists some of the critical open problems and
the challenges they pose to the statistical community.
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2. THE BIOLOGY OF GENE EXPRESSION

Cells are the fundamental working units of every
living system. The nucleus of each cell contains the
chromosomes that carry the instructions needed to
direct the cell activities in the production of proteins
via the DNA (deoxyribonucleic acid). The structural
arrangement of DNA looks like a ladder twisted into
a helix, where the sides of the ladder are formed
by molecules of sugar and phosphate, and the rungs
consist of pairs of nucleotide bases A (adenine),
T (thymine), C (cytosine) and G (guanine) joined
by hydrogen bonds. In base pairing, A pairs with T
and G pairs with C. Each strand of the double helix
consists of a sequence of nucleotides that is made of
one of the four bases A, T, G or C, a molecule of
sugar and one molecule of phosphate. The particular
order of the bases arranged along the sugar–phosphate
backbone is called the DNA sequence. The genome is
an organism’s complete DNA and encodes the genetic
code required to create a particular organism with
its own unique traits. The nucleotide bases A, T,
C and G are the letters that spell out these genetic
instructions by producing a three-letter word code,
where each specific sequence of three DNA bases
(codons) encodes an amino acid. Amino acids are
the basic units of proteins, which perform most life
functions.

With few exceptions, all human cells contain the
same DNA, but despite carrying the same set of in-
structions, cells are actually different. These differ-
ences are due to the fact that, stimulated by cell regu-
latory mechanisms or environmental factors, segments
of DNA express the genetic code and provide instruc-
tions to the cells on when and in what quantity to pro-
duce specific proteins. These segments of DNA are the
genes and the process by which they become active is
called their expression.

The modern concept of gene expression dates back
to 1961, when the theory of genetic regulation of pro-
tein synthesis was first described by Jacob and Monod
(1961). The fundamental discovery was that differen-
tial gene expression, that is when and in what quanti-
ties a gene is expressed, determines differential protein
abundance, thus inducing different cell functions. The
gene expression level is an integer valued or contin-
uous measure that provides a quantitative description
of the gene expression by measuring the number of
intermediary molecules produced during this process.
These molecules are the mRNA (messenger ribonu-
cleic acid) and the tRNA (transfer ribonucleic acid),

FIG. 1. During the expression process, a complementary copy
of a gene code is transcribed into the mRNA. An appropriately
modified copy migrates from the nucleus to the cytoplasm where
it serves as a template for the protein synthesis. Picture taken from
National Human Genome Research Institute (2001).

and they are produced during the two steps of tran-
scription and translation that lead to the synthesis of
a protein. This two-step representation of the protein-
synthesis process is depicted in Figure 1 and consti-
tutes the central dogma of molecular biology (Crick,
1970):

Transcription. The first step of a gene expression
is the creation of a complementary copy of the
gene sequence stored in one of the two DNA
complementary strands. The complementary copy of
the gene DNA code transcribes U (uracil) for A,
A for T, G for C and C for G into the mRNA.

Translation. The mRNA transcript is moved from the
nucleus to the cellular cytoplasm, where it serves as
a template on which tRNA molecules, which carry
amino acids, are lined up. The amino acids are then
linked together to form a protein chain.

Because gene expression consists of copying DNA
code into mRNA molecules, a measure of the gene
expression level is the abundance of mRNA produced
during this process (Schena, Shalon, Davis and Brown,
1995). This is the main intuition behind the large scale
measurement of gene expression levels in microarrays
that is described in the next section.
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3. LARGE SCALE MEASUREMENT OF GENE
EXPRESSION LEVELS

Quantitative methods to measure gene expression
levels have been available to biologists for more than
20 years. Northern and Southern blots (see Alwine,
Kemp and Stark, 1977; White, 1995) are techniques
used to identify and locate mRNA and DNA sequences
that are complementary to a segment of DNA. While
these techniques are limited to examining a small
number of genes at a time, a more recent technique,
called serial analysis of gene expression (SAGE; Vel-
culescu, Zhang, Vogelstein and Kinzler, 1995), is able
to measure the global gene expression from entire cells.
SAGE technology was introduced in 1995 by a team of
cancer researchers at Johns Hopkins to rapidly iden-
tify differences between cancer and normal cells. The
main intuition behind this technology was that short
but specific stretches of DNA are sufficient to uniquely
identify the genes expressed in a particular cell. SAGE
uses these short sequence tags to mark the transcripts
of a gene and to identify the number of transcripts
generated by each gene, thus providing a measure of
the gene expression. This technology is useful to de-
tect and quantify the absolute expression level of both
known and unknown genes, but it is time-consuming
because it involves multiple steps and extensive se-
quencing to identify the appropriate tags (Lockhart and
Barlow, 2001). Microarray technology has rendered ef-
ficient this process by measuring, simultaneously, the
relative expression level of a large number of genes
and, in so doing, is reshaping the epistemological and
methodological vision of molecular biology and bio-
medical sciences.

3.1 Microarray Technology

The basic idea behind microarray technology is to
simultaneously measure the relative expression level of
thousands of genes within a particular cell population
or tissue. Two key technical concepts behind this
measurement process are reverse transcription and
hybridization.

Reverse transcription. The mRNA transcript of a gene
can be experimentally isolated from a cell, and
reverse-transcribed into a complementary DNA copy
called cDNA. A collection of cDNAs transcribed
from cellular mRNA constitutes the cDNA library
of a cell. Similarly, double-stranded cDNA can
be reverse-transcribed into a complementary copy
called cRNA. Technical details are described in
Griffiths et al. (1999, Chapter 12).

Hybridization. Hybridization is the process of base
pairing two single strands of DNA or RNA (Lennon
and Lehrach, 1991). DNA molecules are double-
stranded and these two strands melt apart at a
characteristic melting temperature, usually above
65◦C. As the temperature is reduced and held below
the melting temperature, single-stranded molecules
bind back to their counterparts. The process of
binding back is based again on the principle of base
pairing, so that only two complementary strands
can hybridize. In the same way, a mRNA molecule
can hybridize to a melted cDNA molecule when
the mRNA contains the complementary code of the
cDNA strands. When hybridization occurs, a single-
stranded DNA binds strongly to complementary
RNA in a way that prevents the DNA strands from
reassociating with each other (Southern, Mir and
Shchepinov, 1999).

Microarray technology is used to measure the relative
level of expression of genes in a particular cell or tis-
sue by hybridizing a labeled cDNA representation of
the cellular mRNA to cDNA sequences (cDNA mi-
croarrays) or by hybridizing a labeled cRNA repre-
sentation of the cellular mRNA to short specific seg-
ments known as synthetic oligonucleotides (synthetic
oligonucleotide microarrays; Duggan et al., 1999; Lip-
shutz, Fodor, Gingeras and Lockhart, 1999). Synthetic
oligonucleotides—also referred to as oligos in the
biomolecular jargon—are short sequences of single-
stranded cDNA that bind readily to their complements.
The tethered cDNA sequences or oligos are called
probes, while the cDNA or cRNA representation of
cellular mRNA extracted from the cell is called the
target (this is the suggested common terminology of
Phimister, 1999). In both cases, the probes represent
either genes of known identity or segments of func-
tional DNA, also known as ESTs (expressed sequence
tags). The target is labeled with fluorescent dye and hy-
bridized to the probes. The higher the amount of cDNA
or cRNA hybridized to a probe, the more intense the
fluorescent dye signal will be on that probe. The rel-
ative mRNA abundance of a gene in a particular cell
or tissue is therefore measured by the emission inten-
sity of the probes. Synthetic oligonucleotide and cDNA
microarrays are the two most popular microarray tech-
nologies and are described in the next two sections.

3.2 cDNA Microarrays

The cDNA technology (see Figure 2) was developed
at Stanford University (Schena et al., 1995), although
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FIG. 2. A sketch of cDNA microarray technology. Selected probes
are amplified by PCR and the PCR product is printed to a glass
slide using a high-speed robot. The targets are labeled representa-
tions of cellular mRNA obtained by reverse transcriptions of total
RNA extracted from the test and reference cells, and the pooled tar-
get is allowed to hybridize with the cDNA spotted on the slides.
Once the hybridization is completed, the slides are washed and
scanned with a scanning laser microscope able to measure the
brightness of each fluorescent spot; brightness reveals how much
of a specific DNA fragment is present in the target.

similar concepts can be traced back as far as the mid
1980s (Ekins and Chu, 1999). The first step in the
production of the microarray is selection of the probes
to be placed on the microarray and amplification of
the corresponding cDNA clones by a technique known
as polymerase chain reaction (PCR). The PCR allows
multiple rounds of amplification of a minimal amount
of DNA to produce sufficient quantities of a sample.
The cDNA microarrays are produced by spotting PCR
samples of cDNA strands in approximately equal
amounts on a glass slide using a high-speed robot. Each
strand of cDNA identifies uniquely with its code, a
gene or an EST, so that each spot in the microarray
corresponds to a gene or an EST.

To prepare the target, investigators extract total
RNA or mRNA produced from two types of cells,
for example, healthy and tumor cells or test and
reference cells. Then, by using a single round of
reverse transcription, the mRNA from the two samples
is fluorescently labeled with Cy3 (green) and Cy5
(red), and the target mixture is hybridized to the
probes on the glass slides. During the hybridization,
if segments of the mRNA representation in the target
find their complementary portion among the samples
of cDNA on the glass slide, they will bind together.
When the hybridization is complete, the glass slide is
washed and laser excitement of the glass slide is used

FIG. 3. A scanned image produced from a cDNA microarray
experiment. Each spot represents a gene. Grey spots denote genes
that were expressed in neither type of cell; colored spots identify
genes that were expressed in one of the two cells or both. The color
of the spot discloses the relative expression of the gene in the two
cells.

to yield a luminous emission that is then measured by a
scanning microscope. Fluorescence measurements are
made with a microscope that illuminates each spot and
measures fluorescence for each dye separately, thus
providing a measure of the relative mRNA abundance
for each gene in the two cells. The intensity of the
green spot measures the relative mRNA abundance of
the gene in the cell that had reverse-transcribed mRNA
labeled with Cy3, while the intensity of the red spot
measures the relative mRNA abundance of the gene
in the cell that had reverse-transcribed mRNA labeled
with Cy5. Grey spots denote genes that were expressed
in neither cell type.

These measurements provide information about the
relative level of expression of each gene in the two
cells. The monochrome images can be pseudocolored
to provide a quantitative measure of the relative expres-
sion of each gene in the two cells. This measure is ad-
justed to account for background noise caused by high
salt and detergent concentrations during the hybridiza-
tion or contamination of the target. Further details are
discussed in Section 3.4. Figure 3 shows one of these
images in which spots are colored in red, green, yel-
low and grey. Each spot corresponds to a gene, and
the color of the spot discloses whether the gene is ex-
pressed (colored) or not and the relative level of expres-
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sion in the two targets. Usually a measurement scale
is provided to associate each color tone with a ratio
between expression level in the two cells (Brown and
Botstein, 1999; Schena et al., 1995).

Two limitations of cDNA technology are the risk of
cross-hybridization and the large amount of total RNA
(50–200 µg) required to prepare the target (Duggan
et al., 1999). Cross-hybridization occurs when frag-
ments of the reverse-transcribed mRNA in the target
hybridize to similar complementary probes, thus pro-
ducing false detections. The large amount of mRNA for
target preparation has implications on the range of de-
tection, so that genes expressed at low level—less than
1 transcript per 100,000—may fail to be detected. Sev-
eral schemes to increase detection specificity are under
development and a discussion can be found in Duggan
et al. (1999).

3.3 Synthetic Oligonucleotide Microarrays

High-density synthetic oligonucleotide microarrays
are fabricated by placing short cDNA sequences (oli-
gonucleotides) on a small silicon chip by means of the
same photolithographic techniques used in computer
microprocessor fabrication. This proprietary technol-
ogy, developed and commercialized by Affymetrix un-
der the trademark GeneChip®, allows the production
of highly ordered matrices that contain between 17,000
genes in the Affymetrix Murine Genome U74 set and
33,000 genes in the Affymetrix Human Genome U133
set.

The rationale behind this technology is based on
the concept of probe redundancy: a set of well-chosen
small segments of cDNA is not only sufficient to
uniquely identify a specific gene, but also reduces the
chances that fragments of the target will randomly
hybridize to the probes, thus reducing the chances
of cross-hybridization. Therefore, synthetic oligonu-
cleotide microarrays represent each gene not by its
cDNA, but by a set of fixed-length independent seg-
ments unique to the DNA of the gene as shown in
Figure 4. On the GeneChip® platform, each oligonu-
cleotide (probe) is 25 bases long and each gene is rep-
resented by a number of probe pairs ranging from 11 in
the new Human Genome U133 set to 16 in the Murine
Genome U74v2 set and the Human Genome U95v2.
A probe pair consists of a perfect match (PM) probe
and a mismatch (MM) probe. Each PM probe is chosen
on the basis of uniqueness criteria and proprietary, em-
pirical rules designed to improve the odds that probes
will hybridize with high specificity. The MM probe
is identical to the corresponding PM probe except for

FIG. 4. An oligonucleotide microarray associates a gene with a
set of probe pairs, in this case 20. Each probe pair consists of
a perfect match probe (PM) and a mismatch probe (MM). Each
PM probe is 25 bases long and is paired with the MM probe,
in which the central base of the oligonucleotide is inverted. After
hybridization of the target to the probes, the microarray is read
with a laser scanner to produce an image and the intensity of the
MM probes is used to correct the intensity of the PM probes. Image
adjusted from Lipshutz, Fodor, Gingeras and Lockhart, (1999).

the base in the central position, which is replaced with
its complementary base as shown in Figure 4. The in-
version of the central base makes the MM probe a
further specificity control because, by design, hy-
bridization of the MM probe can be attributed to either
cross-hybridization or background signal caused by the
hybridization of cell debris and salts to the probes (Lip-
shutz, Fodor, Gingeras and Lockhart, 1999; Lockhart et
al., 1996). Each cell of an Affymetrix oligonucleotide
microarray consists of millions of samples of a PM or
MM probe, and probes that tag the same gene are scat-
tered across the microarray to avoid systematic bias.

To prepare the target, investigators extract total RNA
from a cell or tissue. The mRNA is reverse-transcribed
into cDNA, which is made double-stranded and then
converted into cRNA using a transcription reaction that
fluorescently labels the target. Once hybridization has
occurred, the microarray is washed and scanned with a
standard laser scanner. The scanner generates an image
of the microarray that is gridded to identify the cells
that contain each probe and analyzed to extract the
signal intensity of each probe cell.

Although less flexible than cDNA microarrays be-
cause the experimenter cannot select the probes,
synthetic oligonucleotide microarrays offer several
advantages. Besides the decreased chance of cross-
hybridization, synthetic oligonucleotide microarrays
require a smaller amount of total RNA to prepare
the target (5 µg), have a wider dynamic range [the
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hybridization signal is linearly related to up to 500-
fold mRNA abundance (Lipshutz, Fodor, Gingeras and
Lockhart, 1999) compared to 10-fold in cDNA mi-
croarrays (Relogio et al., 2002)] and a high detection
specificity [mRNA transcript representations present in
the target at a relative abundance of less than 1 in 106

can be detected (Lipshutz, Fodor, Gingeras and Lock-
hart, 1999)].

3.4 From Images to Data

In both cDNA and oligonucleotide microarrays, hy-
bridization of the target to the probes determines a
chemical reaction that is captured into a digital image
by a scanning laser device. The next step is to trans-
late the intensity of each hybridization signal into a ta-
ble with numerical measures. The quality of the image
analysis process is crucial for accurate interpretation of
the data, and a variety of algorithms and software tools
tailored to the different aspects of cDNA and oligonu-
cleotide microarray images have been developed; see
Bowtell (1999) and Kohane, Kho and Butte (2002).

The main steps of cDNA microarray image analy-
sis are gridding, segmentation and intensity extrac-
tion, which have been reviewed in Smyth, Yang and
Speed (2003). The gridding step recovers the position
of the printed spots that correspond to the probes into
the image. Because the position of the spots in the
microarray is known, gridding is relatively straight-
forward although a series of parameters have to be
estimated to account, for example, for shifts or rota-
tions of the microarray into the image or small trans-
lations of the spots. The segmentation consists of a
classification of the image pixels into foreground and
background, where foreground pixels correspond to
spots of interest in the microarray and background
pixels correspond to noise resulting from high salt
and detergent concentrations during the hybridiza-
tion, or contamination of the target. Several segmen-
tation methods have been proposed, which differ by
the geometry of the spot they produce. For exam-
ple, the method implemented in ScanAlyze (available
at http://rana.lbl.gov/EisenSoftware.htm) fixes a cir-
cle with constant diameter to all spots in the image,
whereas the method implemented in the Axon software
GenePix (available at http://www.axon.com/GN_Gene
PixSoftware.html) estimates the diameter for each spot
separately. The method developed by Chen, Dougherty
and Bittner (1997) and implemented in QuantAr-
ray (available at http://www.packardbioscience.com/
products/521.asp) uses repeatedly the Mann–Whitney

test to label groups of eight pixels at a time as back-
ground or foreground. The package Spot (available at
http: // experimental.act.cmis.csiro.au/Spot/index.php)
for the R software implements an adaptive shape seg-
mentation developed by Yang et al. (2001).

The intensity extraction step calculates the inten-
sity of the red and green fluorescence of each spot,
the background intensity and some quality measures.
The background intensities are used to correct the
foreground intensities and, hence, the red and green
intensities that become the primary data for the sub-
sequent analysis. Background correction is motivated
by the fact that intensity measured for each fluorescent
channel includes a contribution that is not due to the
hybridization of the target to the probes. Most pack-
ages calculate the foreground intensity as the mean or
the median pixel values. To correct the intensity of the
two channels, an estimate of the background intensity
is usually subtracted from the foreground intensity. For
example, ScanAlyze calculates the corrected intensity
by the average number of foreground pixels for each
channel minus the median number of background pix-
els. Corrected intensity values are calculated as the
difference between median foreground pixels and back-
ground pixels in QuantArray. Spot computes the
background intensity by a nonlinear filter called mor-
phological opening, which works by creating a back-
ground image for the whole microarray and by
sampling this background image at the nominal cen-
ters of the spots. Further details and empirical com-
parisons of different segmentation and background
correction methods can be found in Yang et al. (2001).
Note that background correction introduces negative
values when the foreground intensity is lower than
the background intensity. Because background inten-
sity larger than foreground intensity is considered an
error, spots with negative corrected intensities are ei-
ther disregarded or replaced by an arbitrary small pos-
itive number.

The analysis of oligonucleotide microarray images
exploits the fact that the image produced by the scan-
ning laser device describes the probes by squares of an
approximately known number of pixels organized in
a lattice. Furthermore, the image contains some align-
ment features that are recognizable as the checker-
board patterns at the corners of the image in Figure 5.
Because the approximate physical dimension of each
probe in the image is known, once the positions of the
alignment features are determined, a basic grid is cre-
ated to determine the pixels that describe each probe
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FIG. 5. Scanned image of a synthetic oligonucleotide microarray.
Grid cells represent probes and the intensity of each matrix cell
measures the quantity of hybridized oligonucleotides in a probe.
The checkerboard patterns at the corners of the image are the
alignment features used to grid the image. Image courtesy of
Affymetrix.

cell by using some form of linear interpolation. To ex-
tract the intensity of each probe, the original propri-
etary algorithm employed by Affymetrix software used
the 75th percentile of the pixel intensities, after remov-
ing the boundary pixels where intensity could be dis-
torted.

Awareness of potential misalignment of the basic
gridding algorithm, with consequent failure to extract
the correct signal intensity, has led researchers to de-
velop adaptive pixel selection algorithms; see Schadt,
Li, Su and Wong (2000) and Zuzan et al. (2001).
The adaptive pixel selection algorithm of Schadt et al.
(2000) begins by removing pixels of extreme intensity
and then iteratively adjusting the edges by removing
those pixels that contribute most significantly to the
coefficient of variation. Some constraints are also im-
posed to avoid bias of boundary pixels. The algorithm
in Zuzan et al. (2001) corrects for misalignment, re-
sulting in an improved selection of pixels attributed to
individual probe cells and a substantial reduction in the
variance of pixel intensities. The main motivation of
this method is the fact that probe cells are often not
equally spaced, so that gridding by linear interpolation
can cause misalignment by as many as three pixels. To
accommodate this deformation, the algorithm uses an

iterative procedure that translates the initial location
of probe cells by maintaining the lattice structure of
neighbor cells. The most recent Affymetrix software
for image analysis has a new algorithm to compute the
background intensity that accounts for potential spa-
tial effects. Essentially, the image is split into k (de-
fault value 16) rectangular zones and background in-
tensity is computed as the lowest 2% intensity of the
cells in each rectangular zone. The background inten-
sity for each cell is calculated as a weighted average
of the background intensities in each rectangular zone,
with weights that account for the distance of the cell
from the centers of each rectangular zone. This esti-
mate of the background intensity is then subtracted to
the probe cell intensity. Negative values resulting from
background adjustments are set equal to a user defined
value (the default value is 0.5).

Because the relative mRNA abundance is repre-
sented by the intensity of a probe pair set that consists
of a number of probe pairs, the intensities of the probe
cells are summarized to yield a relative measure of the
gene expression level. The latest statistical algorithm
produced by Affymetrix (MAS 5.0) generates, for each
probe set, three measures: a detection call, a detection
p-value and a signal value. The detection calls assess
the quality of the hybridization, whereas the detection
p-values represent the confidence in this assessment.
The signal is a proxy for the relative expression level
of the gene represented by the probe set. Full details
are described in Affymetrix, Inc. (2002) and we sum-
marize them briefly.

Detection calls and p-values are generated by first
calculating a discriminant score Ri for each probe pair
PM and MM given by

Ri = I (PMi) − I (MMi )

I (PMi) + I (MMi )
,

where I (PMi) and I (MMi) are the extracted inten-
sities for the ith perfect match probe and mismatch
probe. The score Ri is bounded above by 1 and mea-
sures the ability of the ith probe pair to detect its in-
tended target. A positive value implies that the perfect
match intensity I (PMi ) is larger than I (MMi), and
the strength of detection ability of the ith probe pair
increases with Ri . A negative value implies that the
mismatch intensity I (MMi ) exceeds I (PMi) and high-
lights a poor detection ability of the ith probe pair. To
avoid bias, saturated cells (defined as mismatch probe
cells with intensity above a fixed threshold) as well as
probe cells in which I (PMi) ≤ I (MMi) + 0.015 are
disregarded.
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To determine the detection p-value, the scores Ri

computed for the probe pairs in a probe set are
compared with a user defined threshold τ (typically
τ = 0.015), and the null hypothesis of no difference
between the median discrimination score and τ is
tested by the one-sided Wilcoxon signed rank test.
The detection p-value is simply the p-value computed
by assuming an asymptotic normal distribution for
the Wilcoxon signed rank statistic when more than
12 probe pairs are used, whereas exact calculations
are carried out when the retained number of probe
pairs is less than 12. Detection calls describe whether
the hybridization of a probe set has occurred (P for
present), has not occurred (A for absent) or has been
only marginal (M), and are assigned on the basis of a
significance range for the detection p-value. Suggested
settings are to call the hybridization present if the
detection p-value is smaller than 0.04, marginal if the
detection p-value is between 0.04 and 0.06, and absent
otherwise. Last, the signal that measures the relative
expression level of a probe set is computed by the
one-step Tukey biweight estimate, which essentially
produces a robust average of the differences between
I (PMi ) and I (MMi ), with weights that take into
account the distance between I (PMi ) − I (MMi) and
the median intensity difference.

The rationale behind the use of paired PM and MM
probes is that the specific hybridization represented by
the intensity of the PM probes should be stronger than
the nonspecific hybridization represented by the inten-
sity of the MM probes, and such a consistent pattern
across the probe set is unlikely to occur by chance.
Several studies support this claim, for example, Kane
et al. (2000) and Lockhart et al. (1996). However,
mismatch values I (MMi ) can be higher than perfect
match values I (PMi ) for a number of reasons, such
as cross-hybridization occurring when the probe se-
quence has high homology with another unknown se-
quence or errors in the probe sequences that cause low
specificity. Therefore, a weighted average of the differ-
ence between I (PMi ) and I (MMi) can produce neg-
ative intensity values. In fact, the previous Affymetrix
software MAS 4.0 used to return probe set intensity
values called average difference that could be negative.
A series of rules is employed by the latest Affymetrix
software MAS 5.0 to avoid the calculation of nega-
tive signal values. Particularly if the mismatch value
I (MMi ) is higher than the perfect match I (PMi), then
the mismatch is assumed to provide no additional in-
formation about the estimate of the signal and it is re-
placed by an imputed value called idealized mismatch

(IM). This idealized mismatch is either a value smaller
than I (PMi) or an estimate based on the average ratio
between perfect match and mismatch values.

4. EXPERIMENTAL QUESTIONS AND
EXPERIMENTAL DESIGN

Both cDNA microarrays and oligonucleotide mi-
croarrays provide a panoramic view of the activity of
genes under particular experimental conditions, and are
nowadays used to answer the same broad classes of
questions. In the following discussion, we will term the
set of expression levels measured for a gene across dif-
ferent conditions its expression profile, whereas we will
use the term sample molecular profile to denote the ex-
pression level of the genes measured in a sample in a
particular condition.

4.1 Experimental Questions

By providing a measure of expression of a gene in
terms of its mRNA abundance, microarray technology
lets the experimenters observe the molecular profile of
a cell, or cell line—distinct families of cells grown
in culture—in a particular condition. The simplest
experiment we can devise using this technology is
a comparative experiment, illustrated in Figure 6,
to identify the genes differentially expressed in two
conditions. An example of this experimental setting
is the comparison of metastatic versus nonmetastatic
derivatives of a tumor cell line (Lander, 1999), in which
samples of cells from the two conditions are extracted
from several patients. The experimental conditions can
be specific levels of controllable environmental factors,
such as extreme temperatures or starvation, or the
modification (knock-in) or the removal (knock-out) of
a specific portion of the genome.

More complex experimental questions involve mole-
cular profiling of several conditions at a time to charac-
terize, for example, the genomic fingerprint of different

FIG. 6. Microarray technology enables investigators to detect the
genes that are differentially expressed in two samples.
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types of cancer (Alizadeh et al., 2000) or the effect of
changing several experimental factors simultaneously
(Churchill and Oliver, 2001). In both cases, each sam-
ple consists of the gene expression levels measured in
cells grown or observed in a particular condition, and
different samples can be assumed to be stochastically
independent. A different class of experimental ques-
tions involves the study of the temporal evolution of
gene expression profiles, so that different samples may
be stochastically dependent. Studies in this class try to
understand, for instance, the process that turns a locally
growing tumor into a metastatic killer (Clark, Golub,
Lander and Hynes, 2000), the yeast sporulation cycle
(Spellman et al., 1998) or the response of human fi-
broblasts to serum (Iyer et al., 1999). Although the de-
pendency structure among samples requires a different
analysis, the common feature of these experiments is
to compare the molecular profiles of cells in different
conditions.

Advanced experiments investigate the regulatory
mechanism of cells observed in different experimen-
tal conditions. When functioning normally, regulatory
pathways in cells modulate the level and duration of
gene expression, thus ensuring that cells respond to
physiological and extracellular stimuli in an appropri-
ate manner. However, a broad range of diseases can re-
sult when the activation of a gene regulation pathway
triggers either an under- or overproduction of certain
proteins. Fundamental problems are the discovery of
new gene regulatory pathways and of causal dependen-
cies among gene expression (Pilpel, Sudarsanam and
Church, 2001).

4.2 Experimental Design

The design of microarray experiments is a critical,
albeit still neglected, issue of modern functional ge-
nomics. One important difference between cDNA mi-
croarrays and synthetic oligonucleotide microarrays is
that the former are designed for so-called competitive
hybridization: two targets can be simultaneously hy-
bridized to the probes on one microarray. The first
key issue in designing a comparative cDNA experi-
ment is to choose between direct and indirect compar-
isons. In the first case, the target mixture is hybridized
to the same microarray, whereas, in the second case,
the mRNA representations from the two treated cells
are mixed with the reverse-transcribed mRNA from a
reference cell and the two mixtures are hybridized to
two different microarrays. A discussion of the pros and
cons of direct versus indirect comparisons is given in
Yang and Speed (2002).

Besides technical issues of probe/microarray choice
and design, the most fundamental design issue com-
mon to both cDNA and synthetic oligonucleotide
microarrays is the choice of the number of replica-
tions required to stake a statistically sound claim.
Although microarray technology has rendered gene
expression measurement blazingly fast, the cost of a
single experiment—up to $1200 for a single high res-
olution synthetic oligonucleotide microarray—is still
a significant factor in the experimental choices of
biomedical investigators. Comparative experiments re-
ported in mainstream biomedical journals were orig-
inally limited to one replication of an experiment
(DeRisi, Iyer and Brown, 1997). Arguments have been
made to show that a single replication of a comparative
experiment is not sufficient to achieve reproducible re-
sults (Lee, Kuo, Whitmorei and Sklar, 2000), but de-
spite the increasing awareness that data generated by
even the most accurate microarray are very noisy, many
discoveries reported in mainstream journals are often
based on experiments with three replications (Wyrick
et al., 1999).

The main problem of this experimental design as-
pect is caused by the parallel nature of experiments
conducted with microarrays: the number of replicates
necessary to obtain an accurate measure of the expres-
sion level of a gene g may not be the same number
needed for a different gene. Furthermore, responses to
the microenvironment conditions, such as the time of
day or washing conditions, appear to have a significant
impact on gene expression. Lander (1999), leader of
one of the largest genomic centers in the world, reports
that “It is well known among aficionados that compar-
ison of the same experiment performed a few weeks
apart reveals considerably wider variation than seen
when a single sample is tested by repeated hybridiza-
tion.” Therefore, while replicated experiments should
increase the amount of information needed to carry out
a statistical analysis, they may also increase variability
among replicates.

An additional experimental design issue arises from
the common problem of mRNA paucity. It is often the
case that a single cell is unable to produce detectable
mRNA in the desired condition. In this situation,
common practice is either to pool together the mRNA
extracted from different samples or to amplify the
cellular RNA. While obvious reasons of variability
control suggest using the same pooled sample for each
experimental condition, determination of the number
of units to pool together is still an open issue. An



STATISTICAL CHALLENGES IN FUNCTIONAL GENOMICS 43

interesting discussion of this experimental design issue
is given in Yang and Speed (2002).

When the objective of the experiment is the study of
the temporal evolution of a biological system, the re-
searchers need also to choose the time points to sample.
These experiments are usually performed by sampling
the gene expression profile using a microarray at prede-
fined temporal intervals and then mounting these snap-
shots of the genome activity into “movies” that capture
the dynamics of the process. The specificity of each
gene becomes, here, even more important: the optimal
sample points to observe the evolution of a gene during
a process may not be the same for another gene on the
same microarray.

In more complex experiments conducted to study the
effect of different experimental factors, the choice of
the number of replications is paired with the choice
of the experimental treatments to test. Some recent re-
search has addressed the issue of the experimental de-
sign for microarray data (Churchill and Oliver, 2001;
Kerr and Churchill, 2001b, c; Pan, Lin and Le, 2002;
Yang and Speed, 2002) by proposing classical factor-
ial experimental designs, but we believe the choice of
the experimental design is very much an open problem.
The theory of statistical experimental design seeks ex-
perimental plans that allow a specific statistical analy-
sis to be carried out to test particular hypotheses (Cox
and Reid, 2000). Because to date no agreement exists
about the appropriate statistical analysis of gene ex-
pression data produced with microarrays and because
many experiments with microarrays are conducted to
generate rather than test hypotheses, critical experi-
mental design issues are still far from being solved.

5. DATA PREPROCESSING

To answer the experimental questions, the quantita-
tive measurements of gene expression data produced
by microarray experiments are analyzed using statisti-
cal and machine learning methods. A common strategy
to reduce data variability and dimensionality is to per-
form two preprocessing operations known as normal-
ization and filtering on either the raw or transformed
data, before undertaking any data analysis. The goal
of the normalization operation is to remove systematic
distortions across microarrays to render comparable
the experiments conducted under different conditions.
The aim of the filtering operation is twofold: to reduce
variability by removing those genes that have measure-
ments that are not sufficiently accurate and to reduce
the dimensionality of the data by removing genes that

are not sufficiently differentiated. The transformation
of the raw data, advocated by several authors, should
even out the intensity values that are usually extremely
skewed.

5.1 To Log or Not To Log Transform?

Suppose the microarray experiment was conducted
to compare the expression level of G genes in two
cells. For each gene g, denote by (yg1, yg2) the pair
of relative expression levels measured in the two
conditions. If the experiment is conducted by a direct
comparison with one cDNA microarray, (yg1, yg2) will
denote the corrected intensity values for the red and
green channels in the spot that corresponds to the
gene g. When the experiment is conducted with two
synthetic oligonucleotide microarrays, (yg1, yg2) will
denote the signal values for the probe set that describes
the gene g.

Because the corrected intensity values are highly
skewed, log-transforming the raw data (yg1, yg2) pro-
duced by cDNA microarray experiments is strongly
recommended by several authors to even out intensity
values; see, for example, Yang et al., 2001. A fairly
common assumption is that the logarithmic transfor-
mation produces normally distributed data (Nadon and
Shoemaker, 2002). As an example, the histogram in
the top plot of Figure 7 describes the distribution of
corrected intensity values for the red channel in an ex-
periment conducted to compare gene expression lev-
els in normal and malignant lymphocytes (Alizadeh
et al., 2000). The background correction was done by
subtracting the median background intensity from the
average foreground intensity for each spot, and the
foreground and background intensities were computed
using ScanAlyze. Note that the background correction
introduces a small proportion of negative values and,
typically, spots with negative corrected intensities are
either disregarded or the negative intensity is replaced
by an arbitrary small number. The distribution of posi-
tive intensity values is extremely skewed and the his-
togram in the bottom plot of Figure 7 describes the
distribution of the log-transformed intensities after re-
moval of the negative values. The logarithmic trans-
formation removes most of the original asymmetry,
but some right skewness is still visible. Other exam-
ples are reported in the Speed group microarray page
(http://www.stat.berkeley.edu/users/terry/zarray/Html/
log.html). This residual lack of symmetry after the log-
arithmic transformation is typical of Gamma distrib-
uted data (McCullagh and Nelder, 1989), so that rather
than the logarithmic transformation, some power or
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FIG. 7. Histograms of the corrected intensity values for the
red channels (top) and the corrected intensity values after
negative intensities were removed and positive intensities were
log-transformed (bottom).

variance transformations would be more suitable. Ex-
amples of such transformations are discussed in Rocke
and Durbin (2001).

Although the choice for the best data transforma-
tion of the red and green corrected intensities is still
an open problem, it is generally acknowledged that
the corrected intensity values measured with compet-
itive hybridization on cDNA microarrays should be
transformed. No such similar consensus exists when
the data (yg1, yg2) are produced by synthetic oligonu-

cleotide microarrays, possibly because the original
Affymetrix statistical software MAS 4.0 used to re-
turn a fairly large proportion of negative intensity val-
ues, often 25% of the data. Authors have suggested us-
ing the cubic root transformation (Tusher, Tibshirani
and Chu, 2000) or the log transformation of appropri-
ately truncated data (Ibrahim, Chen and Gray, 2002),
but well accepted data analysis protocols (Golub et al.,
1999) do not use any data transformations. Empirical
evidence that the bulk of positive values produced by
synthetic oligonucleotide microarrays analyzed with
MAS 4.0 follow a log-normal distribution was pro-
vided by Hoyle, Rattray, Jupp and Brass (2002),
whereas questions about the correct transformation
to use, if any, of intensity values calculated by the
Affymetrix statistical software MAS 5.0 are still open.

5.2 Normalization of Microarray Data

A well known problem with cDNA technology is the
consistent imbalance of the fluorescent intensities of
the two dyes Cy3 (green) and Cy5 (red)—Cy3 is sys-
tematically less intense than Cy5 (Quackenbush, 2001;
Yang et al., 2001). Although a simple dye-swap ex-
periment in which each hybridization is repeated twice
with reversed dye assignment to the two targets would
be the best way to remove this systematic bias (Yang
and Speed, 2002), normalization techniques are com-
monly used to render the gene expression levels mea-
sured by the two different dyes comparable (Duggan
et al., 1999). Synthetic oligonucleotide microarrays do
not suffer from a known systematic distortion similar to
the dye fluorescence imbalance of cDNA microarrays,
but a comparative experiment conducted on this plat-
form requires hybridization of each target to a different
microarray. A variety of experimental errors, includ-
ing variations of the amount of mRNA used to create
the target hybridized to each microarray or the quantity
of dye used to fluorescently label each target, may in-
troduce errors. Normalization techniques are therefore
used in an attempt to “remove” the experimental errors.

Assuming that the amount or type of dye used
to label the two targets as well as variations of the
quantity of cellular mRNA used in the two targets
induces contaminations, the observed expression level
yg2 masks the correct expression level ỹg2 one would
observe if the second experiment were conducted in
exactly the same conditions of the first experiment.
Formally, we can write

yg2 = f (ỹg2)

and normalization techniques consist of estimating
the function f (·) to recover ỹg2 = f −1(yg2). Total
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intensity normalization approximates f (·) with the
zero-intercept regression line yg2 = βỹg2 and estimates
β by (

∑
g yg1)/(

∑
g yg2) (Quackenbush, 2001). The

rationale behind this choice is that the total quantity
of mRNA representation hybridizing from each target
should be the same. When β is estimated by the ratio
(ȳ1/ȳ2), where ȳ1 and ȳ2 are the average expression
levels in the two targets, the technique is also called
total mean normalization. Variants of this procedure
estimate β by the ratio of the medians or by the ratio
of the trimmed means.

An alternative technique, known as normalization
with calibration, relies on the assumption that only a
very small proportion of genes in a microarray should
have substantially different levels of expression across
the two cells. Following this principle, the function
f (·) is approximated with the regression line yg2 =
(ỹg2 −α)/β , and the parameters α and β are estimated
from the data (yg1, yg2) by fitting the linear regression
y1 = α + βy2. In so doing, the regression line for y1
versus ỹ2 will have zero intercept—thus removing sys-
tematic deviations—and unitary slope—thus capturing
the intuition that the majority of gene expression levels
across the two experimental conditions should remain
unchanged. Normalization with calibration can be ad-
justed to account for specific nonlinear effects, and
nonparametric regression techniques, such as lowess
regression, have been proposed to handle possibly non-
linear transformations (Bhattacharjee et al., 2001; Yang
et al., 2001) or spatial effects (Irizarry et al., 2001;
Yang et al., 2002).

All these normalization techniques can be used
either globally or locally. Global normalization uses all
genes in the microarray to identify a transformation of
the expression data to calibrate the measures in the two
samples. Local normalization uses only those genes
known to remain constantly expressed across the two
particular experimental conditions or housekeeping
genes, a library of genes believed to have nearly
constant expression levels in a variety of experimental
conditions. Well accepted protocols (Bhattacharjee et
al., 2001; Coller et al., 2000; Golub et al., 1999)
use the subset of genes detected as hybridized by the
Affymetrix software.

One problem of normalization with calibration ap-
plied to intensity data is that when α > 0, small val-
ues of the systematically larger intensity are replaced
by negative numbers. To avoid this bias, other normal-
ization techniques try to calibrate the ratios yg2/yg1
(Chen, Dougherty and Bittner, 1997) or the log ratios
log(yg2/yg1) (Yang et al., 2001, 2002). Clearly, these

techniques are applicable to microarray data that can
be paired, as for example data generated by direct com-
parisons with cDNA microarrays.

Extending normalization techniques to repeated ex-
periments is not straightforward. Yang et al. (2001)
provided a comprehensive overview of normalization
techniques for repeated experiments with cDNA mi-
croarrays. For oligonucleotide microarrays, a common
approach to normalization of multiple experiments is to
choose one replication as a baseline and to apply nor-
malization with calibration or total intensity normal-
ization to the other replications (Golub et al., 1999).
Because the results will differ according to the chosen
baseline, authors have suggested computing the base-
line as the average expression profile across all mi-
croarray samples (Tusher, Tibshirani and Chu, 2001).
An open question remains whether normalization of
replicated experiments with oligonucleotide microar-
rays is needed at all. In replicated experiments in which
more than one microarray is hybridized to a replica-
tion of the same target, changes in the amount of cellu-
lar mRNA used to prepare the target or changes in the
amount of fluorescent dye should be considered part
of the experimental error. If no systematic errors are
introduced, one can assume that the measurement ob-
served for gene g in the replicate k of the experimental
condition i is

ygik = µgi + εgik,

where εgik is the error in replicate k and µgi is the
correct expression level of gene g in condition i.
The assumption that the experiment is reproducible
would require that, on average, the experimental errors
compensate, so that normalization is not necessary.
This is, for example, the approach adopted by Olshen
and Jain (2002). The error variance can be modeled
to account for the different sources of variability. An
approach along this line is presented in Jin et al.
(2001) and Wolfinger et al. (2001) for the analysis of
repeated cDNA-based expression levels transformed in
log scale.

The issue of normalization of repeated compara-
tive experiments differs from the normalization needed
when more than two experimental conditions—either
different targets or the same target tested at different
time steps—are analyzed. For example, when the ob-
jective of the whole experiment is to examine the tem-
poral behavior of a genomic system during a cell cy-
cle, it is common practice to take only one replication
of the gene expression data at each time point (Eisen,
Spellman, Brown and Botstein, 1998; Iyer et al., 1999;
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Spellman et al., 1998) and use standard normalization
techniques to make the expression levels measured at
different time points comparable. Although a prefer-
able solution would be to take a few replicates of each
measurement, cost constraints often make this solution
impractical.

5.3 Filtering

Several techniques are available to reduce data di-
mensionality and variability by removing some gene
measurements. It is surprising to realize that ad hoc
rules are commonly used and that the choice of the
genes to be removed can differ substantially according
to the microarray platform and the technique chosen to
analyze the data.

For expression data measured with a cDNA microar-
ray, it is common practice to disregard those genes with
negative or small expression levels (before or after nor-
malization). Typically, all those spots in which the fore-
ground intensity does not exceed the background inten-
sity by more than 1.4-fold are disregarded or replaced
by an arbitrary small number. The Affymetrix statisti-
cal software MAS 5.0 assigns a detection call to each
probe set to assess the amount and quality of hybridiza-
tion, and it is suggested to discard all genes that have
expression levels labeled as A (absent) or M (marginal)
in all samples. This procedure is justified by the em-
pirical evidence that expression levels smaller than 10
are actually measurement errors (Affymetrix, 2002).
However, a large proportion of genes would often be
discarded by this procedure, and investigators tend to
adopt less stringent criteria to select a subset of the
genes to be further analyzed. A common strategy is to
retain only those genes that have minimum fold-change
that exceeds a particular threshold d in a preset num-
ber of experiments c, for example, d = 3 and c = 1 in
Causton et al. (2001). The choice c = 2 was originally
suggested by DeRisi et al. (1997) to analyze expres-
sion levels measured with cDNA microarrays, and an
insightful analysis of the empirical success of this rule
is described in Sabatti, Karsten and Geschwind (2001).
Golub et al. (1999) suggested to further score genes by
their standard deviation, so as to limit the analysis to
those genes that vary most across experiments; a simi-
lar approach was proposed in Efron, Tibshirani, Storey
and Tusher (2001). Other authors remove “spiked”
genes, that is, those genes with one abnormally large or
abnormally small measurement (Thomas, Olsen, Tap-
scott and Zhao, 2001). The recent book by Kohane,
Kho and Butte (2002) contains a comprehensive de-
scription of other filtering techniques most commonly
used.

All these filters depend on arbitrary thresholds used
to decide when a value is abnormally large or small, or
when the variability of the measurements is too high.
The impact of normalization and filtering strategies
is unclear and few systematic studies are available to
provide investigators with a description of the proper-
ties of these preprocessing techniques and guidance on
choosing the one most appropriate for their particular
problem.

6. ANALYSIS OF COMPARATIVE EXPERIMENTS

This section describes the most popular techniques
for the analysis of gene expression data in repeated
comparative experiments. The objective of the analysis
is to identify the genes with a significant expression
change across two conditions. The approaches to this
problem can be classified in two broad categories.
Methods in the first category, known as fold analysis,
estimate the ratio between the expression levels of
each gene in the two conditions, whereas methods
in the second category use the data to estimate the
expected difference in expression of each gene in the
two conditions.

6.1 Fold Analysis

Early comparative experiments based on cDNA mi-
croarray technology measured differences of gene ex-
pression across two conditions in terms of the fold-
change: the ratio of the expression levels (DeRisi,
Iyer and Brown, 1997; Schena et al., 1995, 1996).
Particularly genes that showed a negative or positive
fold-change of at least 2 were deemed to be differen-
tially expressed across the two conditions. The need to
choose a threshold to identify significant differentially
expressed genes in two conditions is the motivation of
a series of articles focused on statistical fold analysis.

We let ρg = µg1/µg2 denote the unobservable “true”
fold-change for gene g in the two conditions. When
ρg = 1, the expression level of the gene g has not
changed, while ρg < 1 and ρg > 1 indicate differential
expression of the gene g in the two conditions. Partic-
ularly, ρg < 1 means that the gene is down-regulated
by condition 1, whereas ρg > 1 means that the gene
is up-regulated by condition 1. Statistical approaches
to ratio-based differential analysis estimate the ratio ρg

with some statistic rg and decide whether deviations of
the estimate rg from 1 can be attributed to a real dif-
ference of the gene expressions in the two conditions,
rather than sampling variability. In the first published
work that followed this approach, Chen, Dougherty
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and Bittner (1997) used the naive ratio estimator rg =
yg1/yg2. Assuming that the measurements from the
two different channels (corresponding to the Cy3 and
Cy5 fluorescent dyes) are independent and normally
distributed, and that they have constant coefficient of
variation for all genes in both conditions, they derived
an approximate distribution of the ratio statistic rg that
can be used to find a (1 − α)% confidence interval for
the ratio ρg . The assumption of a constant coefficient of
variation c in the two conditions lets the distribution of
rg depend on c, which is estimated by maximum like-
lihood. They also proposed an iterative procedure to
simultaneously estimate c and the normalization factor
to render comparable the measurements from the two
channels.

As noted in Newton et al. (2001), this approach
disregards ancillary information during the computa-
tion of the distribution of the ratio statistic, because
the product yg1 × yg2 contains information about the
variability of rg . Furthermore, despite the fact that ex-
pression levels should be positive numbers, the mea-
surements of the two channels are assumed to follow
normal distributions. This inappropriate distributional
assumption is corrected in Newton et al. (2001) by
assuming that the measurements of the two channels
follow Gamma distributions, and a Bayesian method
is proposed to estimate the fold-change of each gene
to account for the “between microarrays” variability.
Although this second approach is based on sounder
distributional assumptions about gene expression mea-
surements, it relies on the unconventional assumption
that the experimental error across microarrays also fol-
lows a Gamma distribution.

Distributional assumptions aside, both approaches
treat the pair of measurements of each gene in the
cDNA microarray as independent, but this choice does
not seem to be always correct. In direct comparisons,
the same spot of cDNA in the microarray is simul-
taneously hybridized to the pool of mRNA represen-
tation in the target mixture. In other words, the two
targets compete for hybridization to the probes so
that, by design, each pair of measurements should be
treated as a matched pair. Alternative approaches that
directly model the ratio rg = yg1/yg2 or its logarithm
lg = log(rg) overcome this difficulty. The method in-
troduced by Lee et al. (2000) uses a mixture model
to describe the joint distribution of the log ratio of the
measurements from the two channels as follows:

f (lg) = pfE(lg) + (1 − p)fU (lg).

The parameter p is the unknown proportion of genes
that are differentially expressed, fE(lg) is the density

function of lg when the gene g is differentially ex-
pressed and fU (lg) is the density function of lg when
the gene g is not differentially expressed. By assum-
ing a normal distribution for lg , for each g, the mixture
components are estimated by using the expectation-
maximization (EM) algorithm (Dempster, Laird and
Rubin, 1977). The estimates are then used to compute
the posterior probability

pfE(lg)/f (lg)

that each gene g is differentially expressed in the two
experiments. When more than one replication is avail-
able, this procedure is applied to a “polished” sum-
mary of the original expression ratios that is com-
puted as follows. By taking into account the sources
of variability of each gene measurement, the log ratio
lgk = log(yg1k/yg2k) of the paired measurements for
each gene g is modeled by

lgk = µ + αg + βk + (αβ)gk + εgk,

g = 1, . . . , G, k = 1, . . . , n,
(1)

where G is the total number of genes in the microar-
ray and n is the total number of replicates of the ex-
periment. The parameters αg represents the “gene ef-
fect,” described as the correct fold-change of gene g

across all replications of the experiment. The parame-
ter βk captures the “microarray effect,” due, for exam-
ple, to between microarray differences in the fluores-
cent dye or the amount of mRNA used to prepare the
target. The interaction term (αβ)gk accounts for possi-
ble variations of each gene fold-change in each repli-
cation of the experiment. The errors εgk are assumed
to have zero mean. Although the authors acknowledge
that all the effects in model (1) should be treated as
random effects, they propose to estimate the parame-
ters αg using the standard two-way analysis of variance
estimator

α̂g = 1

n

∑
k

lgk − 1

nG

∑
gk

lgk, g = 1, . . . , G,

which does not require any assumptions about the er-
ror distribution. Each estimate α̂g is then used as a
proxy of lg to estimate the posterior probability that
the gene g is differentially expressed. Note that, in the
absence of pure replications, model (1) is overparame-
terized because the gene-array interaction (αβ)gk and
the random error εgk are not distinguishable. In fact,
pure replications are rarely conducted, and the microar-
ray effect should be treated as a random block effect.
Several authors have modified this approach by relax-
ing the parametric assumption on the mixture model
(Efron, Storey and Tibshirani, 2001; Pan, Lin and Le,
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2001), by using a larger number of fixed effects to
model dye and spot effects (Kerr and Churchill, 2001c)
or by using random effects (Wolfinger et al., 2001).

The scope of this stream of work is limited to di-
rect comparisons of gene expression data with cDNA
microarrays, where two targets are hybridized to the
probes on the same microarray. In this case, the expres-
sion measurements from each microarray are paired
by design. When cDNA is used for indirect compar-
isons or the expression data are measured with syn-
thetic oligonucleotide microarrays, there is no unique
pairing of the data. To conduct the fold analysis on re-
peated experiments, researchers compute the average
of the normalized expression levels in the two exper-
imental conditions and impose an arbitrary threshold
on the ratio (or log ratio) of the two averages. Unfor-
tunately, no consensus exists about this threshold, even
across different studies on the same organism by the
same investigators (Holstege et al., 1998; Wyrick et al.,
1999). Typically, this threshold varies between 2 and
3 (Glynne et al., 2000; Jackson-Grusby et al., 2001;
Ly, Lockhart, Lerner and Schultz, 2000; Roberts et al.,
2000), but it can be as low as 1.7 (Lee, Weindruch and
Prolla, 2000). No published work addresses the prob-
lem of the extent of false positive and false negative
rates produced by this “naive” fold analysis. A very el-
egant solution is presented in Ibrahim, Chen and Gray
(2002), which describes a Bayesian method for fold
analysis under the assumption that appropriately trun-
cated gene expression data follow a log-normal distri-
bution.

6.2 Differential Analysis

We now describe the hypothesis that a gene g is not
differentially expressed in two experimental conditions
by H0 : µg1 = µg2, while differential expression oc-
curs under the alternative hypothesis Ha : µg1 �= µg2.
To identify the set of genes that are differentially ex-
pressed, one needs to test the null hypothesis for each
gene and then select the set of genes for which the null
hypothesis is rejected. We continue to denote by ygiki

,
g = 1, . . . , G, i = 1, 2 and ki = 1, . . . , ni , the expres-
sion level data generated by a comparative experiment.
When the expression levels are measured with cDNA
microarrays by direct comparisons, the replications of
each condition are equal, say n1 = n2 = n, while there
is no need to impose this restriction for data measured
with oligonucleotide microarrays or indirect compar-
isons with cDNA microarrays. The standard statistic
used to test the null hypothesis is the t-statistic

t = |ȳg1 − ȳg2|√
s2
g

,

where ȳg1 and ȳg2 are the average expression levels of
gene g in the two conditions and s2

g is an estimate of
the variance σ 2

g of the sample mean difference. Large
values of the t-statistic would offer evidence in favor
of differential expression. The two main problems
are choice of the estimate s2

g and identification of a
threshold to reject the null hypothesis.

When the two samples are not independent—as
for data collected with cDNA microarrays in direct
comparisons—an appropriate estimate of σ 2

g appears
to be

s2
Dg =

∑
k[(yg1k − yg2k) − (ȳg1 − ȳg2)]2

n(n − 1)

≡ s2
g1

n
+ s2

g2

n
− 2

sg12

n
,

(2)

where the term sg12 = ∑
k(yg1k − ȳg1)(yg2k − ȳg1)/

(n−1) is an estimate of the covariance of the two sam-
ple means. When the two samples are independent—
for example, when data are collected with oligonu-
cleotide microarrays or indirect comparisons with
cDNA microarrays—σ 2

g can be estimated by

s2
Ig1 =

∑
k1

(yg1k1 − ȳg1)2

n1(n1 − 1)
+

∑
k2

(yg2k2 − ȳg2)2

n2(n2 − 1)

:= s2
g1

n1
+ s2

g2

n2

(3)

or by

s2
Ig2 =

∑
i

∑
ki

(ygiki
− ȳg)2

n1 + n2 − 2

(
1

n1
+ 1

n2

)

:= s2
gp

(
1

n1
+ 1

n2

)
,

(4)

where ȳg is the average expression across the two ex-
periments. The estimate in Equation (3) is appropriate
when the variances of the gene expression data in the
two conditions are different; its use was suggested in
Dudoit, Yang, Callow and Speed (2002) and Lönnstedt
and Speed (2002). The estimate in Equation (4) uses
the typical pooled estimate of the common variance
and it is used less often; see, for example, Olshen and
Jain (2002). Because of the large variability of gene ex-
pression data measured with microarrays, some forms
of penalization for the denominator of the t-statistic
have been suggested. For example, Golub et al. (1999)
suggested estimating σg by the quantity

sS2Ng = sg1√
n1

+ sg2√
n2
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and referred to the ratio |ȳg1 − ȳg2|/sS2Ng as the
signal-to-noise ratio. Because sS2Ng > sIg1 unless
either sg1 = 0 or sg2 = 0, the signal-to-noise ratio
statistic penalizes those genes that have large variances
in both conditions compared to those genes that have
a large variance in one class and a low variance in the
other. The justification for this choice is that when a
gene is differentially expressed in the two conditions,
it is biologically reasonable to expect expression data
to be distributed with very different variances. One
objection to this justification is that one is interested
in the distribution of the t-statistic under the null
hypothesis of no differential expression.

Other forms of penalization are justified by the fact
that because of the wide range of measurements, the
estimate sIg1 may be very small for some gene g

and may produce an inflated value of the t-statistic.
Therefore, authors have suggested estimating σg by
a + sIg1 and choosing the constant a to minimize
the coefficient of variation of the t-statistic (Tusher,
Tibshirani and Chu, 2000), while Efron, Tibshirani,
Storey and Tusher (2001) suggested replacing a by the
90th percentile of the standard error of all the genes.

The most popular approach to choosing a threshold
is distribution-free. The main idea is to compute the
value of the t-statistic from the data in which the sam-
ple labels that represent the experimental conditions
are randomly reshuffled. By repeating this process sev-
eral times, it is possible to construct the empirical dis-
tribution of the t-statistic under the null hypothesis of
no differential expression. From the empirical distrib-
ution function, one can select a gene-specific thresh-
old to reject the null hypothesis with a particular sig-
nificance. This method is implemented in the popular
program GeneCluster 2.0b (available at http://www-
genome.wi.mit.edu/cancer/software/genecluster2/gc2.
html) that conducts the differential analysis based
on the signal-to-noise ratio statistic or the standard
t-statistic in which sg = sIg1. The program Sam
(available at http://www-stat.stanford.edu/∼tibs/SAM/
index.html) implements a distribution-free differential
analysis using the t-statistic with denominator a+sIg1.
Because of the large number of genes, algorithms also
have been developed for multiple comparison adjusted
p-values; see, for example, Dudoit, Yang, Callow and
Speed (2002).

Distribution-free methods tend to be widely used in
practice, although few authors have suggested mak-
ing distribution assumptions on the gene expression
data. For example, Baldi and Long (2001) introduced
a Bayesian parametric version of the analysis based

on the t-statistic, in which expression data trans-
formed in logarithmic scale are assumed to follow
a normal distribution. Usually, the t-statistic is ap-
plied to data that are normalized using one of the
methods described in Section 5.2. A model-based
approach to simultaneously normalize and estimate
the difference of gene expression between two ex-
perimental conditions was presented in Thomas, Ol-
son, Tapscott and Zhao (2001). Although their inte-
grated modeling approach is appealing, a limitation
is the large sample approximate distribution for the
t-statistic.

7. ANALYSIS OF MULTIPLE CONDITIONS

Some of the most interesting applications of mi-
croarray technology are based on data collected un-
der multiple experimental conditions. These condi-
tions can be, for example, different known classes of
the same tumor—such as acute leukemia (Golub et
al., 1999) or non-Hodgkin’s lymphoma (Alizadeh et
al., 2000)—or controlled experimental factors such as
sex and age (Jin et al., 2001). The different experi-
mental conditions can also be time points when the
experimenter wishes to analyze the evolution of a
physiological response (Iyer et al., 1999), identify ge-
nomic features of a cell cycle (Pilpel, Sudarsanam and
Church, 2001) or track down the genetic mechanisms
that switch a locally growing tumor into a metastatic
killer (Clark, Golub, Lander and Hynes, 2000). These
different experiments are designed to answer different
questions and they require different data analysis tools.

7.1 Main Objectives

Data are typically collected in a G × n array Y ,
where G is the number of genes that have expression
levels measured in each of the n samples. Each row
yg = (yg1, . . . , ygn) collects the expression level ygj

for gene g measured in the n samples, while each
column ej = (y1j , . . . , yGj ) collects the expression
level of the G genes in sample j . The expression
levels can be either absolute or relative with respect
to a common reference sample. The n samples are
typically collected from c ≤ n conditions. We will
continue to denote by ni the number of samples taken
in each condition i, so that n = ∑c

i=1 ni . The main
experimental goals of multiple microarray experiments
fall neatly into two broad classes:

Class prediction. The experimenter chooses c condi-
tions and measures repeatedly the expression level of
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the same set of genes in each condition. Each con-
dition is regarded as a class label and the goal of
the analysis is to detect the genes that are differen-
tially expressed in at least two conditions or that are
good predictors of the class. The analysis described
in Section 6 is a particular example of this type of
analysis, although its goal is mainly to “describe” the
molecular differences of two conditions. In cancer
genomic experiments, for example, the goal may be
the development of new diagnostic tools based on the
molecular profiles of tumor cells. To do this, the ex-
perimenter may collect samples from patients known
to be affected by different types of the same tumor
class—such as different types of leukemia (Golub
et al., 1999) or breast cancer (West et al., 2001)—
and use each patient sample as an instance of the
molecular profile of the specific type of tumor. The
goal of the analysis would be to determine the mole-
cular profile of each type of tumor to make possi-
ble a molecular-based diagnosis of a specific tumor
(Lakhani and Ashworth, 2001).

Class discovery. Multiple microarray experiments can
also be used to help investigators create new clas-
sifications by discovering new classes characterized
by a specific molecular profile. There is little doubt
that the current taxonomy of cancer lumps together
molecularly distinct diseases with distinct clinical
phenotypes, with the consequence that patients who
receive the same diagnosis can have different clin-
ical courses and treatment responses (Alizadeh et
al., 2000). For example, in the analysis of gene ex-
pression data collected from tissues of breast cancer
patients, the goal may be the identification of new
molecular taxonomies of breast cancers character-
ized by particular profiles. Again, the advantage of
such discovery could be to aid the diagnosis, as well
as to tailor treatments to more specific diagnoses.
Sometimes, the distinction among different classes
is observable only through the dissection of the dy-
namics of the genomic system. In these cases, the
different conditions are represented by time points
and the goal is to identify groups of genes that be-
have in a similar way.

The solution to class prediction problems requires
the development of classification rules able to label
the molecular profile of a sample, whereas the goal of
class discovery studies is to create new classes from
the available data. Formally, the distinction between
the two tasks is that the former relies on a labeled
data set, while the latter relies on an unlabeled data
set. Supervised and unsupervised machine learning
methods are currently used to tackle both tasks.

7.2 Supervised Classification

Supervised classification techniques are used to
learn a classification rule from a set of labeled cases
(called the training set) to classify new unlabeled cases
in a test set. Each condition i is regarded as a class la-
bel, and the columns of the data matrix Y are the la-
beled cases used to learn mappings of molecular pro-
files to class labels. This mapping can be constructed
in two ways. One approach models the dependency of
the class labels on the gene expression, and this de-
pendency is used to compute the probability of each
class label given its molecular profile. The classifica-
tion can be based on a decision rule that selects a class
by minimizing the expected loss. We call this approach
model-based in contrast to a model-free approach that
partitions the space of gene expression data so that each
element of the partition corresponds to one and only
one class label. Well known model-based classification
methods are multinomial logistic or probit regression
(McCullagh and Nelder, 1989) and naive Bayes clas-
sifiers (Hand, 1997). In multinomial logistic/probit re-
gression, the probability distribution of the class labels
p(i|y1, . . . , yG), i = 1, . . . , c, is modeled as

p(i|y1, . . . , yG) = F −1
(

β0 + ∑
g

βgyg

)
,

where F is the cumulative distribution function of the
logistic distribution or of the standard normal distribu-
tion and βg are regression parameters. The probabil-
ities are estimated directly from the training set and
to classify a case with known gene expression data,
say y1, . . . , yG, it is sufficient to compute the probabil-
ity p(i|y1, . . . , yG) for all i and select the class with
maximum probability. The classification rule can be
adjusted to account for misclassification costs. A dif-
ficulty with this approach, known as the “small n

large p” problem, is the typical sparseness of microar-
ray data, which often consist of thousands of genes
(large p) and few observations for each gene (small n).
A Bayesian method for fitting probit regression and
tackling the “small n large p” problem was proposed
by West et al. (2001) for the classification of different
types of breast cancers.

Naive Bayes classifiers rely on the assumption that
expression measurements within a microarray are con-
ditionally independent given the class membership, so
that the stochastic dependency between class labels and
gene expression values can be modeled as

p(i, y1, . . . , yG) = p(i)
∏
g

p(yg|i),
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where p(yg|i) is the density function of the expression
level of gene g in class i and p(i) is the marginal
probability of the ith class. Once the terms p(i) and
p(yg|i) are estimated from the training data, it is
possible to predict the class of a new unlabeled case
by computing the posterior distribution of the class
labels given the gene expression values observed in the
new case. The conditional independence assumption
of the classifier simplifies the dependency structure
of the class labels on the gene expression data, and
the classification rule can be learned efficiently and
accurately, despite the small number of observations
available for each gene (Keller, Schummer, Hood and
Ruzzo, 2000).

The classification accuracy of both regression and
naive Bayes classifiers can be improved by selecting
the subset of genes with the highest predictive accu-
racy. In logistic regression, for example, the selection
of genes can be done by using standard large sample
model selection techniques, which are reliable when
the number of observations for each pair (yg, i) is at
least 25 (McCullagh and Nelder, 1989). Similar fea-
ture selection methods are available for the naive Bayes
classifier (Mitchell, 1997). However, the staggering
cardinality of the model space requires the adoption of
heuristic search strategies. For example, if one limits
attention to the set of all additive logistic regression
models, the cardinality of the model space would be
2G, where G can be as large as 12,625 as in the case
of experiments carried out with the Affymetrix Human
Genome U95A chip.

Although model-based approaches provide a quan-
tification of the uncertainty of the predictive model
and a principled way to select a subset of the most
predictive genes, model-free approaches are currently
the most popular. Examples of model-free approaches
to classification are methods for discriminant analy-
sis such as Fisher linear discriminant analysis, nearest
neighbor classification trees (Hand, 1997) and support
vector machines (Vapnik, 1998). A comprehensive re-
view of classical statistical methods for discriminant
analysis applied to gene expression-based tumor dis-
crimination was presented by Dudoit, Fridlyand and
Speed (2002) and gives a critical assessment of the
pros and cons of each method. The selection of genes
with predictive properties is often based on heuristic
rules, such as filtering out genes with a fold-change that
does not exceed a particular threshold (Tamayo et al.,
1999) or selecting genes that are highly correlated with
a dummy pattern of 0’s and 1’s that mirrors the class
partition (Golub et al., 1999).

Support vector machines are a supervised classifica-
tion technique that is increasingly popular and that uses
the training data Y in which genes known to belong to
the same functional class are assigned the same class
label, say i = 1, and genes known not to be members
of that class are assigned the same different class la-
bel, say i = −1. The two-labeled data constitute the
training set for the support vector machine that is used
to learn to distinguish between members and nonmem-
bers of the functional class on the basis of their expres-
sion data. Formally, a support vector machine maps
the binary labeled training data y1, . . . , yG into a high-
dimensional feature space F , where fg = φ(yg). In the
feature space F , the two classes of data are separated
by a hyperplane (w, b) with maximum margin γ . The
optimal solution is known to be w = ∑

g αgigφ(yg),
where ig is the label assigned to the gene g and the pa-
rameters αg are positive real numbers chosen to maxi-
mize the function∑

g

αg − ∑
gh

αgαhigih〈φ(yg), φ(yh)〉

subject to
∑

g

αgig = 0,

where 〈φ(yg), φ(yh)〉 is the dot product in the feature
space. The real number b is found by maximizing the
hyperplane margin:

γ = min
g

ig{〈w, φ(yg)〉 − b}.
Having learned the expression features of the two
classes, the support vector machine can be used to
recognize and classify the genes in the data set on
the basis of their expression (Brown et al., 2000). The
classification is based on the decision function

d(y) = sign(〈w, φ(y)〉 − b)

= sign
(∑

g

αgig〈φ(yg), φ(y)〉 − b

)
,

so that if the decision function for the new gene with
expression profile y is d(y) > 0, the gene is assigned to
the same functional class of the genes labeled by i = 1
in the training set. Note that the parameter αg associ-
ated with the profile yg expresses the weight that this
point has on the decision function. Particularly, only
a subset of the initial training point will have nonzero
weights αg . These points are called the support vectors.
Because both the learning algorithm and the decision
function depend on the dot product 〈φ(yg), φ(yh)〉, the
specification of the map φ(·) can be done indirectly
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via the kernel function K(x, y) = 〈φ(x), φ(y)〉. Typi-
cal kernel functions are the dot product, when φ(·) is
the identity, and some power or exponential function of
the dot product.

7.3 Unsupervised Classification and Clustering

Unsupervised classification techniques, such as clus-
tering or multidimensional scaling, can be used to
group either genes with a similar expression profile or
samples (e.g., patients) with a similar molecular pro-
file, or both. The average-linkage hierarchical clus-
tering proposed by Eisen, Spellman, Brown and Bot-
stein (1998) is today one of the most popular analytical
methods to cluster gene expression data. Given a set
of n expression values measured for G genes, this ap-
proach recursively clusters genes, or samples, accord-
ing to some similarity measure of their measurements.
When applied to gene expression profiles, the method
treats each row of the G × n data matrix Y as an n-
dimensional vector and iteratively merges genes into a
single cluster. Relationships among the genes are rep-
resented by a tree (dendrogram), the branch lengths
of which reflect the degree of similarity between the
genes. The similarity measure commonly used is the
correlation between pairs of gene expression data, but
other measures have been used, such as Euclidean dis-
tance or information-theoretic metrics. The resulting
tree sorts the genes in the original data array Y , so that
genes or groups of genes with similar expression pat-
terns will be adjacent. The ordered table can be dis-
played graphically, together with the dendrogram, for
the investigators’ visual inspection. Figure 8 provides
an example of such a graphical display, which is known
as an Eisen plot. Software for the cluster analysis and
visualization is available from the Eisen Lab web page
(http://rana.lbl.gov/EisenSoftware.htm).

The same approach can be applied to the columns
of the data matrix to identify samples with a similar
molecular profile. Hierarchical clustering applied to
the rows and columns of the data array Y will return
a sorted image of the original data. The image of the
sorted data is typically used to support the operation
of partitioning genes or samples into separated groups
with common patterns. This operation is done by visual
inspection, by searching for large contiguous patches
of color that represent groups of genes that share
similar expression patterns or groups of samples that
share similar molecular profiles. Identification of these
patches allows the extraction of subgroups of genes
to be used to recluster the samples and, conversely,
the extraction of subgroups of experiments to be used

FIG. 8. Example of an Eisen plot applied to 517 gene expression
data measured in 13 experiments displaced along time. The image
is a graphical display of the data array Y with rows sorted
using the average-linkage hierarchical clustering procedure. Each
row of the image represents a gene and each column represents
an experiment. Each cell (g, j) of the image represents the
fold-change of gene g, relative to the first time point expression
value, in logarithmic scale. Cells with log fold-change equal to 0
are colored black, increasingly positive log fold-changes are reds of
increasing intensity and increasingly negative log fold-changes are
greens of increasing intensity. A representation of the dendrogram
is appended to the image. Contiguous patches of color, labeled by
the investigators with the letters A, B, C, D and E, are taken to
indicate groups of genes that share similar expression patterns.
The image is reproduced from Eisen, M. B., Spellman, P. T.,
Brown, P. O. and Botstein, D. (1998). Cluster analysis and display
of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A.
95 14863–14868, with permission. Copyright (1998) National
Academy of Sciences, U.S.A.
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to recluster gene expression patterns. Although the
choice of subsets is arbitrary and the final result heavily
depends on the genes or samples selected at each step
of the procedure, this method has been successfully
applied to identify, for example, new molecular classes
of non-Hodgkin’s lymphoma (Alizadeh et al., 2000),
cutaneous malignant melanoma (Bittner et al., 2000),
breast cancer (Sorlie et al., 2001) and lung cancer
(Bhattacharjee et al., 2001).

Notwithstanding these interesting results, this ap-
proach is not without problems. The subjective na-
ture of partitioning by visual inspection may lead one
to disregard some important information or to include
irrelevant information. Decades of cognitive science
research have shown that the human eye tends to
overfit observations, selectively discount variance and
“see” patterns in randomness (Tversky and Kahneman,
1974; Gilovich, Vallone and Tversky, 1985). Permu-
tation tests are sometimes used to validate the parti-
tions found by this procedure (Eisen et al., 1998) and
a bootstrap-based validation technique is presented in
Kerr and Churchill (2001a). The gap statistics of Tib-
shirani, Walther and Hastie (2001) can also be used
to find the optimal number of groups in the data.
A second problem of this approach is the dilution of
distance measures in average-linkage hierarchical clus-
tering. When genes are assigned to the same subtree,
the similarity measure between subtrees or between
single genes and subtrees is computed by using a sub-
tree profile calculated as the average of the subtree
member profiles. As the subtree grows, this average
profile becomes a less adequate representation of the
subtree members. A solution to this problem can be
the adoption of single-linkage clustering or complete-
linkage clustering (Quackenbush, 2001).

Relevance networks (Butte et al., 2000) are a non-
hierarchical clustering method which does not suffer
from this dilution problem. For each pair of genes, the
method computes a similarity between their expression
measures, such as correlation or mutual information
on appropriately discretized expression measures, and
assigns genes that have a similarity measure above a
preset threshold to the same cluster. This method can
be regarded as a graphical representation of the ma-
trix of all pairwise distances between gene expression
profiles, since genes assigned to the same cluster are
linked by an edge that has a thickness proportional to
the similarity between the two elements. Although this
method does not rely on visual inspection, the division
into clusters is entrusted to an arbitrary threshold.

When some prior knowledge about the number of
groups in the data is available, k-means clustering can
be used as an alternative to hierarchical clustering to
provide an optimal grouping of rows and/or columns of
the data array Y into a preset number of clusters. The
k-means clustering starts with a random assignment
of the rows (columns) of the data matrix into k dis-
joint groups, and the rows (columns) are iteratively
moved among the clusters until a partition with optimal
properties is found. Typically, the criterion to find the
optimal partition is to minimize the within-cluster vari-
ability while maximizing the between-cluster variabil-
ity. The within-cluster variability is measured by the
average distance between cluster members and the
cluster profile, while the between-cluster variability is
a measure of the distance of each cluster member from
the other cluster profiles. Tavazoie et al. (1999) used
k-means clustering to identify groups of genes with
similar patterns across different experimental con-
ditions. Similar to k-means clustering are the self-
organizing maps of Kohonen (1997). A self-organizing
map uses a two- or three-dimensional projection of
each cluster profile and provides a straightforward
graphical representation of the result. Self-organizing
maps have been used to identify classes of genes with
similar functions in the yeast cell cycle (Tamayo et al.,
1999) and have been combined with the nearest neigh-
bor classification method to discriminate between two
types of acute leukemia (Golub et al., 1999). An imple-
mentation of the method is GeneCluster 2.0b.

One potential danger of searching an optimal sort-
ing of the data array Y by independently looking for
an optimal arrangement of rows and columns is to
overlook the association between gene expression data
and samples. Clustering methods that address the is-
sue of simultaneously sorting rows and columns of the
matrix Y have been proposed, such as gene shaving
(Hastie et al., 2000), biclustering (Cheng and Church,
2000), coupled two-way clustering (Getz, Levine and
Domany, 2000) and the plaid model (Lazzeroni and
Owen, 2002). Gene shaving is a block clustering tech-
nique for clustering genes and samples simultaneously.
The algorithm uses an iterative procedure to identify
subsets of highly correlated genes that vary greatly
between samples. Biclustering is a method for simul-
taneously clustering genes and samples by using a
similarity measure of genes and samples. The idea of
coupled two way clustering is to cluster pairs of small
subsets of genes and samples. The rationale of this ap-
proach is that only a small subset of the genes is ex-
pected to participate in any cellular processes, which



54 SEBASTIANI, GUSSONI, KOHANE AND RAMONI

by themselves are supposed to take place only in a sub-
set of the samples. Therefore, the algorithm looks for
pairs of a relatively small subset of genes and samples
that yield stable and significant partitions. The plaid
model is a block clustering technique that produces
overlapping clusters.

All these clustering methods are model-free: they do
not rely on any assumptions about the distribution of
genes or samples. In contrast, model-based procedures
(Banfield and Raftery, 1993; Cheeseman and Stutz,
1996) regard clustering as the task of merging the ob-
servations generated by the same probability distribu-
tion. Cast in this framework, the simultaneous cluster-
ing of genes and samples can be regarded as the task
of identifying a hidden variable that labels the cells of
the array Y . In this way, the problem of simultaneously
grouping rows and columns could be solved by esti-
mating the hidden variable and, subsequently, by find-
ing the genes and the samples that share the same la-
bel. If we let H be the hidden variable that assigns the
same label (r, c) to similar cells of Y , then the likeli-
hood function of the data matrix Y , conditional on a
known labeling h of rows and columns, can be repre-
sented as

p(Y |h, θ) = ∏
r

∏
c

∏
g(r)

∏
j (c)

p(yg(r)j (c)|θr,c),

where θ = {θr,c}. The index g(r) specifies the genes
assigned the same label r , whereas the index j (c)

specifies the samples assigned the same label c, and
p(yg(r)j (c)|θr,c) is the density function of the genes and
samples assigned the same label pair (r, c). The overall
likelihood can then be written as

∑
p(Y |h, θ)p(h|η),

where p(h|η) is the probability that H = h that de-
pends on parameters η. The EM algorithm can be used
to estimate the unknown parameters for a specification
of the density function p(yg(r)j (c)|θr,c) and the proba-
bilities p(h|η). Alternatively, if some initial labeling of
the experiments is available, an agglomerative cluster-
ing procedure can be used to iteratively relabel rows
and columns. Some relevant work in this area was
presented in Yeung et al. (2001) for one-dimensional
clustering and in Bhattacharjee et al. (2001). Although
model-based clustering relies on distributional assump-
tions of gene expression profiles and samples, the va-
lidity of these assumptions can be assessed using statis-
tical validation techniques. One of the main advantages
of a model-based approach is the possibility of using
sound statistical methods to assess the significance of
the similarity between genes or samples and to iden-
tify the best number of clusters consistent with the data
(Fraley and Raftery, 2002).

7.4 Time Series Analysis

Several applications of genomewide clustering meth-
ods focus on the temporal profiling of gene expres-
sion. The intuition behind this analytical approach is
that genes that show a similar expression profile over
time are acting together, because they belong to the
same or, at least similar, functional categories. Tempo-
ral profiling offers the possibility of observing the regu-
latory mechanisms in action and tries to break down the
genome into sets of genes that are involved in the same,
or at least related, processes. However, the clustering
methods described in the previous section rest on the
assumption that the set of observations for each gene is
exchangeable over time: pairwise similarity measures,
such as correlation or Euclidean distance, are invariant
with respect to the order of the observations and if the
temporal order of a pair of series is permuted, these dis-
tance measures will not change. While this assumption
holds when expression measures are taken from inde-
pendent biological samples, it may no longer be valid
when the observations are a time series.

Although the functional genomic literature is be-
coming increasingly aware of the specificity of tem-
poral profiles of gene expression data, as well as of
their fundamental importance in unravelling the func-
tional relationships between genes (Clark, Golub, Lan-
der and Hynes 2000; Coller et al., 2000; International
Human Genome Sequencing Consortium, 2001), tradi-
tional clustering methods are still used to group genes
on the basis of their similarity. For example, Holter et
al. (2001) described a method for characterizing the
time evolution of gene expression levels by using a
time translational matrix to predict future expression
levels of genes based on their expression levels at some
initial time, thus capturing the inherent dependency of
observations in time series. This approach relies on
the clustering model obtained using a timeless method,
such as singular value decomposition (Alter, Brown
and Botstein, 2000), and then infers a linear time trans-
lational matrix for the characteristic modes of these
clusters. The advantage of this approach is that it pro-
vides, via the translational matrix, a stochastic charac-
terization of a clustering model that takes into account
the dynamic nature of temporal gene expression pro-
files. However, the clustering model which this method
relies upon is still obtained by disregarding the dy-
namic nature of the observations, while we expect that
different assumptions on the correlation between tem-
poral observations will affect the way in which gene
profiles are clustered together.
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When the goal is to cluster gene expression
patterns measured at different time points, the ob-
servations for each gene are serially correlated and
clustering methods should take into account this de-
pendency. The method of Ramoni, Sebastiani and Ko-
hane (2002) is a Bayesian model-based approach to
cluster temporal gene expression patterns that accounts
for the temporal dependencies using autoregressive
models. The method represents gene expression dy-
namics as autoregressive equations and uses an ag-
glomerative procedure to search for the most probable
set of clusters, conditional on the available data. Fea-
tures of this method are the ability to take into account
the dynamic nature of gene expression time series dur-
ing clustering and a principled way to identify the
number of distinct clusters. As the number of possible
clustering models grows exponentially with the num-
ber of observed time series, a distance-based heuristic
search procedure is used to render the search process
feasible. In this way, the method retains the important
visualization capability of hierarchical clustering but
acquires an independent measure to decide when two
series are different enough to belong to different clus-
ters. Furthermore, the reliance of this method on an
explicit statistical model of gene expression dynam-
ics makes it possible to use standard statistical tech-
niques to assess the goodness of fit of the resulting
model and validate the underlying assumptions. When
the autoregressive order is equal to zero, this method
subsumes, as a special case, model-based clustering of
atemporal (i.e., independent) observations. The method
is implemented in the program Caged (available at
http://www.genomethods.org/caged) described in Se-
bastiani, Ramoni and Kohane (2003).

8. OPEN CHALLENGES

Microarray technology makes possible the simulta-
neous execution of thousands of experiments to mea-
sure gene expression levels in a variety of conditions.
This article has reviewed the biology of gene expres-
sion, the technology of microarrays and several statis-
tical issues involved in the analysis of gene expression
data, including experimental design, data quality, data
analysis and validation. Although a massive effort is
under way to improve methods and technology, several
issues are still open and are particularly relevant to the
statistical community.

Experimental design. The design of a microarray
experiment is an unprecedented challenge. The main
character of microarray technology is to make possible

the parallel execution of thousands of experiments that
are not independent of each other. For example, mea-
surements of the gene expression data are subjected to
common experimental errors, such as those due to the
amount of fluorescent dye used to label the target in
each experimental replicate or the amount of mRNA
in each sample target. The challenge is the design of
parallel and dependent experiments that can exploit
the full power of this technology. Because no agree-
ment exists about the appropriate statistical analysis of
gene expression data produced with microarrays and
because many experiments with microarrays are con-
ducted to generate rather than test hypotheses, critical
experimental design questions are still far from being
answered.

Quality assessment and normalization. A very im-
portant issue in analyzing gene expression data is the
ability to assess whether the execution of an exper-
iment was successful, that is, to evaluate the quality
of the experimental data. By this we mean the ability
to decide whether the effects of random components,
such as variations in the amount of dye or variations of
the mRNA samples, are not large enough to irremedia-
bly mask the signal in the data. The normalization and
gene filtering techniques discussed in Section 5 seem
to be ad hoc bias-correction procedures, but their effect
is unclear and their use is questionable in many appli-
cations. Some initial efforts in this direction were pre-
sented by Hoyle, Rattray, Jupp and Brass (2002). They
investigated whether probability distributions such as
the Benford law of the first significant digit or the Zipf
law can provide reference distributions to be used as
the gold standard in data quality assessment. Although
their results are very preliminary, they are suggestive
and open the way to a general probabilistic means to
measure the reliability and quality of microarray data.

Differential analysis. The last two years have wit-
nessed an increasing number of research articles that
propose methods for the differential analysis of gene
expression data measured in comparative experiments.
Many of these methods use one of the t-statistics de-
scribed in Section 6 with an ad hoc chosen denomi-
nator, and the most disconcerting fact is the lack of
empirical and theoretical studies to help choose the
best method. The consequence seems to be that the
choice of the differential analysis method is driven by
the availability of software rather than the quality and
appropriateness of the method. Furthermore, many of
the original problems associated with gene expression
data measured by the Affymetrix software MAS 4.0
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have been overcome by the latest statistical software
MAS 5.0 with a consequent change in research pri-
orities. In particular, the improved quality of the data
produced by the new software opens the way to the de-
velopment of full parametric methods.

Survival analysis. While extensive work has been
conducted to develop methods for the differential
analysis of gene expression data measured in two
conditions, very little is known about the analysis of
gene expression data in which the training signal is a
continuous variable. Particularly important to cancer
genomics applications is the development of methods
for the selection of genes that are predictive of the
survival time of patients treated with a particular
therapy. Some preliminary work is this area can be
found in Nguyen and Rocke (2002) and Park, Tian and
Kohane (2002).

Metric selection. An open issue in the analysis of
gene expression data is the selection of the metrics
most suitable to answer specific biological questions.
As an example, popular clustering methods use corre-
lation, Euclidean distance, Kullback–Liebler informa-
tion distance and, typically, different distances to sort
gene expression profiles in different ways. Similarly,
the classification induced by support vector machines
depends on the specification of the kernel function. An
important contribution would be the development of a
formal way to determine which metrics are most rele-
vant, or robust, for different questions.

Does clustering provide the right answer? Cluster-
ing techniques are extremely popular tools for the com-
parative analysis of gene expression data collected in a
variety of conditions. The main reason for using clus-
tering methods is the intuition that co-regulated genes
have similar patterns, or similar levels of expression
(Eisen, Spellman, Brown and Botstein, 1998). How-
ever, clustering techniques by themselves cannot dis-
cover the dependency structure between genes. Popular
knowledge representation formalisms such as Bayesian
networks (Cowell, Dawid, Lauritzen and Spiegelhal-
ter, 1999) and dynamic Bayesian networks seem to be
the ideal modeling tool for capturing the dependency
structure among genes. The big challenge is whether
the data structure available—a large number of pa-
rameters for few observations—makes Bayesian net-
works induced from gene expression data reliable. The
wealth of genomic information grows daily and one
may imagine that full Bayesian methods could be used
to integrate the data with prior knowledge in a coherent

way. Some initial attempts are discussed in Friedman,
Linial, Nachman and Pe’er (2000), Segal et al. (2001)
and Yoo, Thorsson and Cooper (2002).

Validation. Validation of cluster analysis is a very
important issue that deserves further attention. Because
clusters of similar genes/experiments are often iden-
tified by visual inspection or by imposing arbitrary
thresholds, an independent quantitative validation of
the results is required to assess whether the clusters
are indeed capturing the signal in the data. Permuta-
tion tests as in Bhattacharjee et al. (2001) or bootstrap-
ping the results (Kerr and Churchill, 2001a), are often
used to show that clustering applied to data in which
the signal has been removed does not identify mean-
ingful groups of genes/experiments. However, it is im-
portant to stress that these tests do not prove the func-
tional validity of the groups identified in the data. An
increasing number of studies use an independent bio-
logical validation of the identified groups (Alizadeh et
al., 2000; Golub et al., 1999), but on such a small num-
ber of cases (e.g., 40 patients in Alizadeh et al., 2000),
this validation does not seem to provide much support.
Some authors have shown the validity of their results
by using different clustering techniques (Bhattacharjee
et al., 2001; Bittner et al., 2000). The development of
sound validation tests ranks among the top priorities in
the field.

Lander (1999) wrote that developing experimental
designs able to take advantage of the full power of
microarray technology is the challenge for biologists
of this century, but he also acknowledged that the
greatest challenges are fundamentally analytical. The
newly born functional genomic community is in great
need of tools for data analysis and visual display of
the results, and the statistical community could offer an
invaluable contribution toward efficient collection and
use of functional genomic data.
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Comment
Henry V. Baker

The following monograph will attempt to highlight

several issues raised by Sebastiani, Gussoni, Kohane
and Ramoni regarding the use and analysis of DNA

microarray experiments and will focus on noise asso-
ciated with uncontrolled experimental variables, meth-

ods to reduce this noise, methods to reduce experimen-
tal error, and the use of unsupervised and supervised

analysis methods.
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1. DNA MICROARRAYS—ONE OF THE GREAT
UNINTENDED CONSEQUENCES OF THE

HUMAN GENOME PROJECT

In the late 1980s as the Human Genome Project
was being debated, its detractors argued that it would
result in little more than a DNA sequence made up
of A’s, T’s, G’s and C’s, if even that were possible.
On the other hand, the proponents argued that the
genomic sequence would provide valuable insights
into biology that would have untold ramifications on
human health. DNA microarray technology spawned
from the Human Genome Project provides a window
to the dynamic genome as it functions within cells
to allow them to respond to their environment. DNA
microarray technology has been compared to both the
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telescope and the microscope. Both of those earlier
technologies changed the way the world we live in
was viewed. DNA microarray technology as a tool is
changing the way the living world is viewed.

Early investigations utilizing microarray technology
demonstrated the promise and potential of this new
technology as a major research tool in the biological
sciences. Unfortunately some early studies also served
to illustrate potential pitfalls associated with improper
experimental methodologies and inadequate or faulty
computational analysis.

2. USE OF MEASUREMENTS OF HYBRIDIZATION
SIGNAL INTENSITIES TO INFER GENE

EXPRESSION INVOLVES MANY STEPS, SOME
OF WHICH ARE POORLY UNDERSTOOD

Key to the design, analysis and interpretation of
microarray experiments is the understanding that the
parameter being measured, signal intensity of indi-
rectly labeled probes, is many steps removed from the
parameter being inferred, gene expression. A typical
microarray experiment represents a large-scale physio-
logical study in which cells are isolated, RNA is har-
vested, and labeled representations of the harvested
RNA are prepared and then used in hybridization ex-
periments to indirectly label the nucleic acid probes
that constitute the array. The signal intensity of the la-
bel at each probe on the array is taken as a measure of
gene expression for the genes specified by the probes
on the array. It is also important to realize that the in-
ferred gene expression is not that of a single cell, but
rather that of a population of cells. In some cases the
population of cells under investigation is composed of
many different cell types, each of which may have var-
ied expression profiles unique to itself.

Microarray experiments are sensitive, albeit indirect,
assays capable of measuring the genomic response to
subtle changes in the environment that occur during the
RNA harvesting process. Uncontrolled experimental
variables may be introduced at any step in the wet labo-
ratory workup of microarray experiments and may add
to observed variances from array to array. In designing
microarray experiments, it is important to recognize
areas where uncontrolled experimental variables may
be introduced so that they may be guarded against, al-
though in some cases they are unavoidable. In these in-
stances variations in the experimental protocol should
be documented.

Potential sources of uncontrolled experimental vari-
ables vary with individual applications. In clinical stud-
ies involving patient volunteers, the greatest potential

for uncontrolled experimental variables exists. For in-
stance, in clinical studies aimed at identifying gene ex-
pression differences between various tumors and nor-
mal tissue, uncontrolled experimental variables may
include age of subject, diet, diurnal variations in gene
expression, type of anesthesia used, length of ischemia
prior to tissue removal, time from tissue removal to
RNA stabilization and method of RNA isolation. Stud-
ies involving laboratory animals are potentially af-
fected by similar sources of uncontrolled experimental
variables as encountered in clinical studies except that
it is usually within the investigator’s power to control
many of the variables such as animal demographics,
diet, light–dark cycles and time of day at which mate-
rial is harvested. In considering experiments with tis-
sue or cell cultures, passage number also needs to be
added to the list of potential sources of variation men-
tioned above for material harvested directly from an-
imals. Important variables to consider in experiments
aimed at measuring changes in gene expression in re-
sponse to exposure to a drug or other stimulus include
concentration and potency, length of exposure, time be-
tween stimulus administration and RNA harvest, and
stabilization.

In addition to apparent gene expression differences
associated with uncontrolled experimental variables,
biases and artifacts may be introduced by virtue of the
methods used at each step of the procedure, includ-
ing cellular and tissue harvest, RNA isolation and la-
beling methods. Differential recovery of specific cell
types from tissue may bias the gene expression profile
observed for a particular tissue type. Likewise, RNA
isolation protocols may introduce bias if they differ-
entially recover membrane bound RNA versus solu-
ble RNA. In one large study involving gene expression
profiling of human leukocytes before and after Staphy-
lococcus aureus enterotoxin B (SEB) treatment, the
largest response variable was method of RNA isola-
tion and not SEB stimulation, although with both RNA
isolation protocols, gene expression differences due to
SEB stimulation were readily apparent. In the spot-
ted array realm, differential incorporation of nucleotide
analogs that contain Cy3 and Cy5 during labeling reac-
tions is well known, necessitating the need of dye swap
experimental designs. Labeling reactions that involve
limited amplifications of the target material, such as
those used with Affymetrix GeneChips and some spot-
ted array protocols, can result in skewering if unequal
amplification occurs during the in vitro transcription
reactions.
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The last step in the indirect labeling of the array is
the hybridization of the targets to the probes. The hy-
bridization reaction is governed in large part by the
specific sequences of the individual targets and probes,
and is affected by the ability of the target to form sec-
ondary structures with itself and other molecules that
may be present in the hybridization mixture. Target
molecules that form extensive secondary structure with
themselves tend to produce dimmer signals than targets
that are devoid of secondary structure. Some hybridiza-
tion protocols employ a target fragmentation step in an
attempt to circumvent secondary structure problems.
Other factors that may affect hybridization from exper-
iment to experiment, and hence hybridization signal in-
tensity, are temperature and duration of hybridization,
both of which are important experimental parameters
that should be highly controlled.

Microarray experiments by their nature are very
complex experiments that indirectly provide a measure
of gene expression. The steps between gene expression
at the level of mRNA expression and measurement of
the signal intensities of the probes arrayed are numer-
ous and some are poorly understood. Yet with care it is
possible to use microarrays as a tool to begin to discern
the dynamic changes that occur within cells as they re-
spond to their environment, but great precautions must
be taken to avoid contaminating the data set with noise
that results from uncontrolled experimental variables.

3. SPOTTED ARRAYS—ISSUES WITH SPOT
MORPHOLOGY, CONCENTRATION AND

QUALITY OF PROBES

Spotted array technology and quality has improved
since spotted arrays were first introduced. Early exper-
iments utilized cDNA products as probes, which pre-
sented a number of technical challenges, not the least
of which was the production of the PCR products to be
arrayed. A number of factors contribute to variances
with spotted arrays. Use of cDNAs of gene coding se-
quences usually identified by the presences of open
reading frames (orfs) resulted in probes of different
lengths from one gene to the next. The size of genes
can vary by more than an order of magnitude. For ex-
ample, an orf for one gene may be 300 nucleotides
in length and for another gene, 3000 nucleotides. If,
during the labeling reactions, 1 labeled molecule were
incorporated per 100 nucleotides, the orf of 300 nu-
cleotides would incorporate 3 labeled molecules on
average, while the orf of 3000 nucleotides would in-
corporate 30 labeled molecules. Longer probes are ca-
pable of hybridizing to more labels and hence, for a

given amount of gene expression, longer genes would
tend to have greater hybridization signal intensities
than shorter genes that express mRNA transcripts at
the same molar amounts. Spotting PCR fragments of
cDNAs is giving way to the use of oligonucleotides of
constant length, typically on the order of 60 to 70 mers,
thereby eliminating differences in hybridization signal
intensities due to differences in probe length.

Spot morphology and consistency are major quality
control issues in the fabrication of spotted arrays.
Initially, spotted arrays were prepared by dipping metal
pins into DNA solutions of the various probes and
repeatedly touching the pins to a solid support, be it
glass slides or nylon membranes. The DNA solutions
were deposited onto the surface of the solid support
by virtue of the process of capillary attraction. This
process tends to be imprecise and variable during the
course of the arraying process. Size and shape of the
spots are also affected by relative humidity at the
time of spotting, and the method and duration of spot
rehydration. Use of ink jet technology in the spotting
process has served to reduce some of the variability
inherent in the spotting process.

Competitive hybridization reactions with mixed la-
bels (Cy3/Cy5) served to circumvent some of the prob-
lems associated with inconsistencies of spot size and
morphology from one array to the next, since the flu-
orescence intensity of each label is measured at each
probe on a single array. The resulting data typically
are reported as a ratio or a log ratio of one dye la-
beled target to the other and not in terms of absolute
fluorescence, thereby minimizing the effect of differ-
ences in spot size and morphology. The use of ratios
or log ratios provides a difference measure, not an ab-
solute measure of gene expression. In the case of arrays
prepared on nylon membranes, where competitive hy-
bridizations with fluorescent dyes cannot be used due
to autofluorescence of the membrane, spot-to-spot vari-
ation from array to array can be circumvented to some
extent by stripping and reusing arrays. The process of
stripping hybridized target from the probe is harsh and
can remove bound probe, thus leading to variances in
the resulting data set due to loss of probe affixed to the
array from one hybridization to the next.

4. NUMBER OF REPLICATES AND THE LEVEL AT
WHICH TO REPLICATE

Microarray experiments are no different from any
other experiment; for meaningful results, experiments
must be replicated. The question that confronts most
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serious investigators is not whether to replicate, but the
number of replicates to perform and the level at which
to replicate. Differences in gene expression due to un-
controlled experimental differences tend to dampen,
while differences due to the controlled response vari-
able tend to reinforce with replication. The number of
replicates to perform is dependent, in part, on the noise
associated with the system under study. For the sim-
plest of experiments, such as those aimed at identify-
ing differences between two cell lines, a minimum of
three replicates per condition should be budgeted. Four
replicates per condition are better and more appropriate
if one is considering cross-validation methods such as
leave-one-out cross-validation or other statistical vali-
dation measures.

The level of replication is dictated in part by the
question being addressed. If one were interested in de-
termining the variances in hybridization signal intensi-
ties associated with length of hybridization time, then
technical replicates would be appropriate. One would
want to have hybridization time as the sole variable
and one would design an experiment where one prepa-
ration of labeled target was prepared and repeatedly
hybridized to different arrays for various amounts of
time. If, however, one wishes to determine the gene
expression differences between different tumor types,
say glioblastoma multiforme and anaplastic oligoden-
droglioma, then the level of replication should be at
the biological level of the tumors. Different tumors
should be assayed from different donors, holding all
other variables constant, so that an inference can be
made about gene expression patterns in a particular
type of tumor. With clinical specimens more replicates
are usually required than for laboratory studies utiliz-
ing cell lines or isogenic strains due to the higher coef-
ficients of variation in hybridization signal intensities
usually encountered with clinical material.

5. SUPERVISED VERSUS UNSUPERVISED
ANALYSIS METHODS

The development of analytical methods for use on
data sets derived from microarray expression studies is
a rapidly changing and progressing field. Most inves-
tigators utilize a combination of supervised and unsu-
pervised methods in their analysis, and the individual
methods of analysis used are somewhat of an art form
that varies from investigator to investigator.

The first level of microarray data analysis is usu-
ally supervised. One simply seeks to determine which
genes are most affected by a particular condition or

treatment protocol. In this line of endeavor the inves-
tigator makes use of the class labels of the samples,
for example, wild type versus mutant, to determine the
probes that display differential signal intensities. As
Sebastiani et al. noted, early studies tended to rely on
fold-change differences and not the use of statistics. In
several studies published early in the microarray era
it was not even clear that replicates were performed.
Among reports that utilize p-values or estimates of er-
ror based on permutations of the data set in setting sig-
nificance levels, the cutoff levels used remained largely
arbitrary. In some cases p-values as low as p = 0.05
for arrays with greater than 12,000 probes have been
used. With such a modest threshold, 600 probes would
be expected to exceed the threshold by chance alone.
Clearly for larger arrays a Bonferroni correction should
be applied to the traditional p-value of 0.05, or a more
stringent p-value such as p = 0.001 should be used or
an estimate of the false discovery rate based on per-
mutations of the data set should be included in setting
significance cutoffs.

In many cases supervised analyses are used for the
purpose of identifying probes that can be used for class
prediction, for example, to diagnose and differentiate
diseased from normal tissue. In this case the goal of the
investigator is to identify probes that are predictors of
the class labels, which then can be used in future stud-
ies to identify the nature of the specimen as normal or
diseased using one or more of several prediction mod-
els. Investigators, however, should be aware that mi-
croarray experiments exemplify the “small n large p”
trap. The number of probes on a typical microarray,
tens of thousands, vastly exceeds the number of cat-
egories into which the arrays can be classified. Thus,
by chance alone it is likely that many probes can be
identified out of a typical data set that can distinguish
between the small numbers of class labels in a typical
study. Cross-validation studies and Monte Carlo sim-
ulations should be employed to gauge the significance
of the probes identified as predictors.

Supervised analyses are only as good as the super-
vision applied. In cases where the class labels of the
specimens are definitively known—as in comparing
gene expression of a wild-type tissue versus tissue of
a knockout organism, where the genotypes of the wild
type and knockout are precisely known—supervised
analyses can be very powerful. However, when pheno-
typic distinctions are subtle and class labels are known
with less certainty—as is the case often encountered in
the clinical setting, where highly skilled pathologists
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may disagree over the diagnosis of a tumor as a partic-
ular cancer or grade—supervised analysis methods are
hampered by misclassification errors at the supervision
stage.

Unsupervised analysis methods, including hierarchi-
cal clustering, k-means clustering and self-organizing
maps, can be used as tools for class discovery in situa-
tions where standard methods of assigning class labels
are incomplete or inadequate. In situations where class
labels can be assigned with impunity, as in studies de-
signed to identify gene expression differences between
wild-type and knockout animals, unsupervised cluster
analysis can be used as an assessment of overall re-
producibility of measurements between replicates. Ex-
perimental replicates should cluster together according
to the controlled response variable in this case; that is,
wild type with wild type and knockout with knock-
out. If replicates do not cluster together or if cluster-
ing occurs according to some other identifiable vari-
able, such as date of tissue harvest or date of labeled
target preparation, then responses to uncontrolled ex-
perimental variables are likely contaminating the data

set, obscuring gene expression changes resulting from
the controlled experimental variable.

6. SUMMARY

DNA microarray technology has established itself
as a major new research tool for the analysis of gene
expression. The inference of gene expression is indi-
rect and involves many steps, each of which can be-
come a source of noise if left uncontrolled. The nature
and characteristics of microarray experiments present
a number of challenges that must be overcome so as to
obtain high quality data sets with low noise and high
informational content. With appropriate experimental
design, execution, and proper analytical and statisti-
cal methods, DNA microarray technology will likely
take its place with the microscope as an invaluable tool
in the biological sciences, providing a window with
which to view the genome as it dynamically responds
to changes in its intracellular and extracellular environ-
ment.

Comment
Gary A. Churchill

1. INTRODUCTION

The field of molecular biology has made tremen-
dous advances in the half century since the discovery
of the structure of the DNA molecule. The functions
and mechanisms of nucleic acids have been unraveled
through a series of singular, often elegant, experiments
that had conclusions that did not require statistical in-
terpretation. Indeed, it has been a commonly held view
among molecular biologists that experiments that re-
quired statistical interpretation were not done well. Sta-
tisticians are equally guilty of ignoring developments
in molecular biology and the two fields have gone their
separate ways for all this time. Until now.

It seems that nothing has caught the attention of the
statistical community like microarrays. The promise
of large and highly structured data sets waiting to be
mined for valuable information has caught on like a

Gary A. Churchill is a Staff Scientist affiliated with
The Jackson Laboratory, Bar Harbor, Maine 04609
(e-mail: garyc@jax.org).

gold rush. The presence of more than 60 microarray
talks at the most recent Joint Statistical Meeting is just
one indication of the amount of statistical attention
that this technology is receiving. Likewise, many
biologists, who for years prided themselves on never
having computed a t-test, suddenly find themselves in
need of statistical advice on the interpretation of these
large and complex data sets.

The intertwined histories of genetics and statistics go
back to the very roots of both fields. Indeed, the grand-
father of statistics, R. A. Fisher, is known to many pri-
marily for his contributions in genetics. (Upon learning
of the origin of the F -statistic, a surprised colleague
once asked, “Do you mean to say that Fisher was a sta-
tistician too?”) The deep connection of the past makes
the present rift all the more important to bridge, but the
divergence of goals, language and concepts presents
challenges. As statistical concepts are adapted to ap-
plications in molecular biology, the terminology is of-
ten misused and, as a result, fundamental concepts are
misconstrued; the problem is not one-sided. Statisti-
cians are too often willing to accept the most superficial
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understanding of biological concepts which they spin
into elaborate statistical models that have little connec-
tion with the data or the reality of biological processes.
There is much to relearn on both sides.

I wish to express my admiration for the authors of
this article for taking on the task of bridge building.
Their review serves to connect two divergent fields of
investigation. The task is daunting. Even in the rela-
tively narrow context of gene expression microarray
technology, which is the primary focus of the review,
there are thousands of publications that express diverse
and often conflicting opinions on complex issues, the
background of which requires two Ph.D. degrees to
grasp. My commentary may focus on some points of
disagreement, but it is mostly an opportunity to voice
some of my own opinions on the issues raised here. On
the whole, Sebastiani, Gussoni, Kohane and Ramoni
have done a remarkable job. A lot of ground is covered
and one is appropriately left with the impression that
we have a long way still to go. After all, there is 50
years of catching up to do between old friends.

2. GENE EXPRESSION TECHNOLOGIES

There are a number of new (and some not so new)
methods to assay relative quantities of mRNA species
in a sample. Most of these methods rely on the mirac-
ulous property of specific hybridization between com-
plementary nucleic acid molecules. However, none of
the hybridization-based methods is capable of absolute
quantitation of mRNA species and none is accepted as
a gold standard, even for relative measurements. Al-
ternative approaches to mRNA quantitation, so-called
tag count methods (Velculescu, Zhang, Volgelstein and
Kinzler, 1995; Brenner et al., 2000), are based on se-
quencing of short signature tags which results in counts
of mRNA molecules. Thus they promise to yield
direct measurement of mRNA abundance with (appar-
ently) fewer biases and greater depth. Tag count meth-
ods are not constrained by the availability of probe
sequences and are enhanced by, but do not require,
complete genome sequence data. They are time con-
suming and involve multiple steps (potential sources
of variation and bias), but the same is true of microar-
ray experiments. We should not dismiss these methods
lightly and, for the statistician, they offer abundant op-
portunities to explore new methods of analysis.

The discussion of Affymetrix technology by Sebas-
tiani et al. is too uncritical. The studies cited that
claim superior performance of this system were either
conducted by Affymetrix employees, using conditions

(i.e., large sets of probe pairs) that are not used in prac-
tice, or by groups studying the properties of longer
oligos in contexts also quite different from actual prac-
tice. The characterization of MAS 5.0 as a “well ac-
cepted data analysis protocol” suggests complacency
in an area where skepticism should reign. Someone
needs to question the fundamental principles on which
these analyses are based. The role of the MM probe
is one point of concern. A careful examination of the
logic that justifies the MM probes is needed. What is
being measured by the probes (PM and MM) and how
should this information be combined? Some efforts to
study the properties of oligonucleotide probe sets have
been made (Li and Wong, 2001; Irizarry et al., 2003),
but it appears that further critical investigation of this
measurement system is needed.

Two-color cDNA microarrays present their own set
of challenges, both in the wet lab and in their analy-
sis. An underappreciated advantage of cDNA arrays is
that they are inherently comparative. Pairing is a well
established and powerful approach to controlling vari-
ation when experimental materials are heterogeneous
(Fisher, 1951). Direct comparison of RNA samples
on the same slide effectively eliminates an important
source of variation—fluctuations in size and quality of
the printed spots—which might otherwise contribute to
noise in the measurements. Single color systems, such
as Affymetrix arrays, must rely on tightly controlled
production to minimize the between array component
of variance. When there are more than two samples of
interest in a cDNA microarray experiment, some com-
parisons must necessarily be indirect and the resulting
experimental design has an incomplete blocking struc-
ture. This restriction of the two-color system has led to
a practice of making all of the comparisons in a mi-
croarray experiment to a common reference sample,
which can lead to inefficient experiments and poten-
tial biases (Kerr and Churchill, 2001b, c). Additional
concerns arise because it is apparent that the relation-
ship between mRNA concentration and signal intensity
is not identical for the two most commonly used dyes.
However, this problem is easily corrected by repeating
hybridizations with dye labels reversed. Affymetrix ar-
rays almost certainly suffer from the same nonlinearity
dye effects; however, they are not as simple to detect or
to correct.

Possibilities for new gene expression technologies
simply await the next imaginative technique for ma-
nipulating nucleic acids. One thing is certain, the tech-
nology will change. If statisticians are going to play a
role in these developments it will be best not to wait
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for things to change, but rather to keep abreast and to
anticipate. By the time we will have worked out all of
the nuances of any one of the existing gene expression
technologies, it will have become obsolete and every-
one will be using the next greatest thing. The real chal-
lenge here is to stay one step ahead.

3. DESIGN OF EXPERIMENTS

Despite the trend toward “discovery driven” experi-
mentation, it is my belief that the very best experiments
are motivated by specific scientific questions (hypothe-
ses). Such questions may involve interrogating thou-
sands of genes, but the focus of a hypothesis helps one
to avoid the situation of having assembled an uninter-
pretable hodgepodge of data. The goal of an experi-
ment drives the choice of experimental units and the
treatments or conditions under which they will be ex-
amined. A good experiment should include replication
of units at appropriate levels in the design to ensure that
valid estimates of error are available for assessing the
significance of results. Many microarray experiments
are carried out without appropriate replication. Quot-
ing Fisher (1951), “perhaps these should not be called
experiments at all, but be added merely to the body
of experience on which, for lack of anything better,
we may have to base our opinions” (emphasis added).
The temptation to overinterpret microarray data must
be kept in check and it should be the responsibility of
the statistical community to set a good example in this
regard.

What is appropriate replication? In most cases this
will involve independent sampling of biological units
to assure that inferences apply in a broad sense. In
some situations this is not feasible or desired and tech-
nical replication, achieved by repeated measurement of
the same biological material, can be used to provide
a narrow sense inference that refers only to the sam-
ples in hand. The generalization of narrow sense in-
ference to a wider biological context is not necessar-
ily wrong, but it is subject to an unassessable degree
of error. Technical replication plays an important role
in microarray experiments by providing increased pre-
cision in the measurement of individual samples. Use
of multiple arrays is the most effective method and it
provides an appropriate variance estimate for narrow
sense inferences. Repeated spotting of the same clone
on a single microarray is rarely, if ever, appropriate for
error estimation, but it can be effective for quality con-
trol and increased precision of measurements.

Although counterintuitive, increased variability
among replicates can be a desirable property of an

experiment. If, by our attempts to control variability,
we introduce correlations into the data that are not
properly accounted for, we run the risk of replicating
biases (Rosenbaum, 2001). The recommendation by
Sebastiani et al. to use the same pooled sample for ex-
perimental conditions is dangerously misleading. By
repeatedly measuring the same pooled samples, we
will amplify the apparent significance of both real and
chance differences among the conditions. It would be
better to use several independent pools and thereby ob-
tain an estimate of the between pools variance.

Decisions regarding the allocation of resources, such
as the relative balance of biological and technical repli-
cation in an experiment, can be informed by knowl-
edge of the magnitude of variance components. One
such analysis is summarized in Figure 1. This par-
ticular analysis illustrates the importance of technical
replication (the largest variance components are be-
tween arrays) and suggests that pooling, at least of in-
bred mice, is not an effective variance reduction strat-
egy. Last, certainly not first, one must make the choice
of direct versus indirect comparisons. Direct compar-
isons are more efficient, but there can also be practical
considerations that motivate indirect comparisons via
a common reference sample (Yang and Speed, 2002;
Churchill, 2002).

As statisticians we should not be fooled by the appar-
ent novelty of microarray experiments. The classical
principles of experimental design are based on sound
arguments that apply to the new situation. Factorial de-
signs are still the most efficient means for investigat-
ing the simultaneous effects of multiple experimental
factors. Combinatorial strategies will be essential if we
ever hope to tackle the enormous task of understanding
the functions of all genes in a genome (Jansen, 2003).
Left to the biologists, this task will be taken on by
“knocking out” one gene at a time, an inefficient and
inadequate strategy.

4. DATA TRANSFORMATIONS

The most important reason to log transform microar-
ray data is to obtain a scale on which the sources of
variation in the experiment are (roughly) additive. Log-
arithm is the obvious choice because of the assumed
proportionality of effects in microarray experiments.
Twice as much RNA should produce twice as much
signal over a wide range of absolute quantities. A sec-
ondary goal of transformation is to obtain constant
variance across the full intensity range of the signal.
Logarithm tends to overcorrect variance heterogeneity,
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(A)

(B)

FIG. 1. A factorial experiment was carried out to measure gene
expression in liver tissue for all combinations of three inbred mouse
strains on two different diets. (A) Direct dye swap comparisons
were made using cDNA microarrays. Arrays were printed with
duplicate clones and the entire experiment was repeated two times
using independent biological samples. A mixed model analysis of
variance was carried out on a gene-by-gene basis and restricted
maximum likelihood (REML) estimates of the variance components
corresponding to measurement error, spots, arrays and mice were
computed for each gene on the array. (B) Smoothed histograms of
the variance component estimates.

resulting in higher variances at low intensities. A third
function of data transformation is to correct for non-
linear effects associated with physical properties of the
dyes. Although the latter purpose predominates in dis-
cussions of data transformation for microarrays, most
solutions to this problem are variations on the logarith-
mic transform. A more detailed discussion of these top-
ics can be found in Cui, Kerr and Churchill (2003).

The presence of negative values in background cor-
rected data does not provide a valid argument against
using the logarithmic transform. Rather it is an indica-
tion that the background correction method is flawed.
Converting an inherently positive value (essentially a
count of photons that hit a photomultiplier tube) into
a negative value violates what should be a fundamen-
tal principle of modeling, the Hippocratic oath of data
transformations: first, do no harm.

Filtering based on data values is also a common and
dubious practice in cDNA microarray experiments. It
results in a missing data pattern that does not satisfy the
standard missing at random (MAR) condition and thus
could lead to biases. Correcting these effects would re-
quire a model of the missingness mechanism. Consider
the case of a spot which is near the background inten-
sity on one microarray and is discarded. On another
array the same spot appears bright, but since the corre-
sponding dim spot has been culled, a potentially inter-
esting result is not noted.

Among the many small problems that have yet
to be addressed in microarray analysis, missing data
methods stand out in my mind as one of the more
pressing. Despite my objections to filtering, it is quite
common that scratches or debris obscure data points
and these should be discarded from further analysis
(and unless the scratch is targeted, they should be
MAR). A few missing points may be acceptable loss
in a large experiment, but the cumulative effects of
missing data can sometimes lead to elimination of the
majority of genes. Robust imputation methods seem
most promising.

5. THE ANALYSIS OF VARIANCE

Not all of the problems presented by microarray
analysis are novel. With the current emphasis on
novelty in scientific research it can be easy to overlook
connections between new problems and older ones.
This can lead to a failure to see obvious solutions.
Rather than spend the effort to reinvent classical
techniques, we should take advantage. When a giant
offers his shoulders, stand on them—and enjoy the
view.

The recognition that cDNA microarray experiments
have split plot features and an incomplete blocking
structure opens the possibility to apply sophisticated
analysis techniques that have been developed for simi-
lar experiments in other contexts. Analysis of variance
(ANOVA) models for microarray data were introduced
by Kerr, Martin and Churchill (2000) and have been
extended to allow for random variation at multiple lev-
els in the experiment (Wolfinger et al., 2001). Although
a discussion of mixed model analysis of variance falls
outside the scope of this commentary, a key feature of
mixed model analysis is worth keeping in mind. Mixed
models can be constructed to admit general variance–
covariance structures among the observations. There
are dramatic correlations present in most microarray
data sets and failure to account for these can lead to
overly optimistic inferences.
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Do we believe that the ANOVA model is true? Cer-
tainly not. It is, however, a flexible model that can pro-
vide a reasonable approximation to the truth; further-
more, it leads to powerful and robust analysis meth-
ods. The strongest modeling assumption is additivity
of effects. Intensity data on the raw scale have both
additive and multiplicative components (Rocke and
Durbin, 2001), but for the bulk of observations, mul-
tiplicative effects are dominant. Variations on the log-
arithm transform are available to obtain approximate
additivity over the full intensity range of the data (Cui,
Kerr and Churchill, 2003). Distributional assumptions
in testing can be overcome by permutation analysis,
provided that there is sufficient replication in the ex-
periment. We currently prefer approaches that permute
sample labels over residual permutations. Permutation
can also be used to compute multiple testing adjust-
ments (both Family-wise error rate and False discov-
ery rate control), but it has the obvious disadvantage of
computational burden. In practice we find that permu-
tation analysis results agree well with tabulated statis-
tics, but we remain skeptical. The least squares fitting
procedures could be robustified and, last, the distribu-
tional assumptions on the random components of the
mixed model might be relaxed somewhat by consid-
ering normal mixtures. There are plenty of opportuni-
ties to improve microarray analysis within the ANOVA
framework.

6. OPEN CHALLENGES

Sebastiani et al. have identified a number of interest-
ing open problems in microarray analysis. However,
their vision is perhaps too narrow in light of the title
of their article. The real challenges in functional ge-
nomics will come from attempts to integrate multiple
diverse data types, including, but not limited to, gene
expression data, data on quantities and modification
states of proteins, metabolite flux and the allelic states
of genes. All of these must be combined to achieve a
detailed understanding of the physiological state of an
organism.

In addition to the human genome, a number of other
complete genomic sequences are available or soon will
be. These include mouse, rat, fruitfly, nematode and
yeast. These organisms present opportunities for exper-
imental manipulation of the genome and the environ-
ment in which it exists. Unraveling the developmen-
tal program of gene expression will be possible only
in experimental organisms. The same is true of gene
expression response to environmental challenges. The

problem of relating gene expression variation to ge-
netic polymorphisms is another wide open challenge,
where controlled crosses are likely to yield valuable
insights (Brem, Yvert, Clinton and Kruglyak, 2002).
An interesting twofold multiple testing problem arises
in this context and is in need of immediate attention,
because many groups are already running experiments
of this type. It will also be of interest to study natural
populations. We will want to examine the role of gene
expression variation in adaptation and evolution (Olek-
siak, Churchill and Crawford, 2002). In human popula-
tions there are complex sampling issues that have been
largely ignored in gene expression studies, but are a
cause for concern in an epidemiological context.

Tissue samples are mixtures of cell types. They
range in complexity from the fairly homogeneous
liver to the brain that has thousands of cell types.
Tumor samples are notoriously heterogeneous. In a
mammary tumor study, it may be helpful to subtract
out the signal contributed by the adipose and normal
epithelial components so as to focus on expression in
the cancerous cells themselves. Whenever we assay
gene expression in a tissue, we are observing a mixture
of cell types. Is it possible to deconvolve this mixture?
Perhaps we can, but it looks like a challenging problem
to me.

There is plenty of room for novel statistical de-
velopments in functional genomics. Hierarchical clus-
ter methods for the analysis of gene expression data
caught on like the hoola hoop. I, for one, will be glad
to see them fade. However, what will fill the void? Se-
bastiani et al. mentioned the promise of Bayesian net-
work models. These are often elaborate models that can
specify complex conditional dependence relationships
among many variables acting simultaneously. There is
a concern that we cannot adequately infer the para-
meters (or the structure) of a Bayesian network model
with currently available data which sample only a small
number of states of the system. Here is a challenge in
design. How can we construct a set of observations that
can be obtained within limits of available resources and
still yield sufficient information to estimate such com-
plex models?

The real challenges for the statistician are to stay
connected to the biology even (especially) when things
get messy, to stay in touch with the realities of the
data and to keep the (biological) goals of an investiga-
tion foremost in mind. This will mean that one should
develop and apply methods of data analysis that are
effective and robust even if they are not mathemati-
cally elegant. At the same time we should not forget
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our roots or ignore the lessons of the past. We should
not allow the flashy appeal of computationally inten-
sive visualization to take precedence over sound design
and proper inference techniques. I would like to close
by, again, quoting from Fisher (1951): “Statistical pro-
cedure and experimental design are only two different

aspects of the same whole, and the whole comprises
all the logical requirements of the complete process of
adding to natural knowledge by experimentation.” It is
a great tradition to uphold. We should not lose sight of
that.

Rejoinder
Paola Sebastiani, Emanuela Gussoni, Isaac S. Kohane and Marco F. Ramoni

We would like to thank the discussants for their con-
tributions that have significantly enhanced the value of
the article by reinforcing some of our points and draw-
ing attention to other challenging problems.

Microarray technology offers incredible opportuni-
ties for scientific discoveries, but there are still serious
limitations at technology and data analysis level. We
agree with Curchill’s comment that our description of
the Affymetrix technology is uncritical, but the main
objective of our contribution was to describe rather
than evaluate microarray technology in the context of
data analysis for the benefit of the statistical commu-
nity. We have noted elsewhere (Kuo et al., 2002) that
there are cross-platforms and cross-generation repro-
ducibility issues related to the measurement of gene
expression level from synthetic oligonucleotide mi-
croarrays and we have addressed elsewhere more tech-
nical details of this technology (Kohane, Kho and
Butte, 2002). Still, we must stress that this technology
is considered more reliable than cDNA microarrays
(Kuo et al., 2002). The high risk of cross-hybridization
of cDNA technology is well documented, as pointed
out by Kothapalli, Yoder, Mane and Loughran (2002)
and Li, Gu, Mohan and Baylink (2002), just to mention
two recent publications that quantify this risk in con-
trolled experiments, and the technology of synthetic
oligonucleotide microarrays based on competitive hy-
bridization attempts to minimize this risk through a
careful oligonucleotide selection. The probe set selec-
tion also normalizes for GC content [the A and T bases
are known to be less stable than the G and C bases,
so that sequences with larger contents of A and T nu-
cleotide bases do not have the same chances of hy-
bridization as sequences with larger contents of G and
C nucleotide bases (Kohane, Kho and Butte, 2002)].
There is no doubt, however, that both the probe set se-
lection and the preprocessing of perfect match and mis-
match intensity values implemented in MAS 5.0 could

be improved, as shown by recent efforts by Antipova,
Tamayo and Golub (2002), Irizarry et al. (2003) and
Kasif et al. (2002).

Both discussants emphasized the importance of ex-
perimental design of microarray experiments. We fully
agree with Baker that adding replications improves the
results of any analytical methods. However, we hesi-
tate to adhere to his suggestion to budget a minimum
of three replicates. The costs of microarray experi-
ments still impose serious sample size limitations and
the designer of the experiment needs to trade off the
number of independent samples with the number of
replications. The best solution depends, of course, on
the objective of the analysis: if the interest is to have
an accurate estimate of the error variance, then an ex-
periment with a large number of replications and a
small number of independent samples will be prefer-
able to an experiment with one replication of each in-
dependent sample. However, in experiments in which
the variability between sample units is expected to be
large, such as clinical samples, it is better to invest
in independent samples rather than replications. This
dilemma in the design of the experiments and the lack
of an “out-of-the-box” answer shows the need to re-
search this area further. We agree with Churchill’s ob-
servation that pooling samples can be misleading and,
in fact, we do not recommend this strategy in the arti-
cle, but simply describe it as a strategy used because of
mRNA paucity. Although the continuous improvement
of amplification techniques will render the problem of
mRNA paucity less serious, further research is needed
to assess the effect of amplification of the mRNA in the
preparation of the target.

The analysis of microarray data is full of chal-
lenges and there is wide disagreement about the best
preprocessing steps to conduct. We do not share
Churchill’s view about the need to log transform
the data. Although it is generally acknowledged that
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the corrected intensity values measured with compet-
itive hybridization on cDNA microarrays should be
transformed, the choice of the best transformation to
use is still an open issue. The log transformation is
just an example of a wider family of power transfor-
mations that could be used, such as the cubic root
transformation (Tusher, Tibshirani and Chu, 2001),
which, incidentally, is more appropriate when data fol-
low a Gamma rather than a log-normal distribution. We
would suggest that the decision as to whether and how
to transform the data should not be made independently
of the data analysis to conduct. Furthermore, careful
modeling of gene expression data could eliminate the
need for arbitrary data transformation and normaliza-
tion (Sebastiani and Ramoni, 2002). After all, appro-
priate modeling rather than “ad hoc” data transforma-
tion was the motivation behind the introduction of the
family of generalized linear models (McCullagh and
Nelder, 1989).

The discussion contributions have emphasized the
fact that gene expression analysis is an important and
challenging area for statisticians and data analysts
in general. Particularly, we fully endorse Churchill’s
conclusions about the need for close collaborations
between statisticians and biologists: interdisciplinary
collaborations are crucial for the full exploitation and
understanding of functional genomic data.
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