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Comment

Roger L. Berger

“We believe that the LR criterion remains a gener-
ally reasonable first option for non-Bayesian para-
metric hypothesis-testing problems.”

“[The LR criterion is] a very general method, one
that is almost always applicable, and is also opti-
mal in some cases.”

The first quote is from the preceding paper by
Perlman and Wu which I will refer to as PW. The
second quote is from Casella and Berger (1990,
page 346). There is a good deal of agreement here
about the usefulness of likelihood ratio tests (LRTs).
So what has prompted PW to feel the need to
defend the LR criterion so vigorously?

The question is whether, in some problems, an-
other test might be preferable to the LRT. Despite
calling the LRT a “generally” reasonable first op-
tion, PW really seem to argue that the LRT is the
primary option, to be abandoned only in very ex-
traordinary circumstances. On the other hand, near
the end of their Section 10 they do say, “It would be
of interest to characterize those problems where the
LRT is or is not successful,” and they say, “The LR
criterion is not infallible.” This indicates to me that
PW would be willing to use some other test besides
the LRT in some circumstances. I will assume this
to be true in the remainder of my comments.

1. WHAT CRITERION TO JUDGE TESTS?
1.1 a-Admissibility

I think PW agree with me that, after a LRT is
derived in some problem, it needs to be scrutinized
to determine if the LR criterion did produce a good
test in this particular problem. Then the question
is, “What criteria should be used to judge the LRT?”
In the articles by other authors and me to which
PW refer, the criterion is clear, a-admissibility.
More precisely, if two tests are both level-«, and
the power of the first test is greater than the power
of the second test everywhere on the alternative,
then the first test is preferred. It was never my
intent to assert that a-admissibility is the only
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reasonable criterion. I do not believe this is true.
But «a-admissibility is a well-understood criterion
that has been considered by statisticians for over
sixty years. I find that it is easily understood and
reasonable also to my colleagues who are scientists
in other areas. I think it is a reasonable way to
compare error probabilities of tests. In my papers, I
have simply pointed out that, if one uses this classi-
cal criterion, tests that are superior to the LRT can
be found in some problems. If the reader rejects
this method of comparing tests, then he or she will
have little interest in my results.

In any case, the criterion for comparing tests
must be stated clearly, first, then applied to the
problem at hand. The Emperor should not kill the
messenger because he does not like the message.
But this is exactly what PW propose. They say in
Section 2 that if the a-admissibility criterion deliv-
ers the wrong message, that the LRT is inferior,
then it is the criterion that should be abandoned.
Kill the messenger for delivering the wrong mes-
sage.

So clearly, PW do not want to use a-admissibility
to determine if a LRT is reasonable in a particular
problem. What criterion will they use? Unfortu-
nately, the answer is unclear. In this article they
use numerous criteria for different problems. It is
not explained why one criterion is used in one
problem and another criterion is used in another. It
seemed that, for each problem, the criterion was
used that would put the LRT in the best light for
that problem. This was very unconvincing to me. I
hope that in their rejoinder to these comments, PW
will clearly state what criterion they use, after
deriving a LRT, to determine if it is a reasonable
test for the problem at hand. I will now comment on
some of the various criteria that PW use to compare
tests.

1.2 Decision Theoretic Admissibility

Frequently, PW use decision theoretic admissibil-
ity (d-admissibility) to defend LRTs. For several
examples they point out that the LRT is d-admissi-
ble and that a-inadmissibility does not imply d-in-
admissibility. Through the first nine sections, I
thought that PW’s criterion was this: derive the
LRT; if it is d-admissible, it is a good test. But then
in the first example in Section 10, they describe a
LRT that is inadmissible. Does this mean the LRT
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is not good? No, they engage in “mathematical
acrobatics” to decide the LRT is appropriate despite
its inadmissibility. Once again, when the criterion
(d-admissibility) delivers the wrong message, that
the LRT is inferior, PW quickly abandon the crite-
rion rather than the LRT.

I think that d-admissibility is a reasonable crite-
rion. Certainly, if one test dominates another in the
d-admissible sense, the first test is preferred. But,
in these testing problems as in most problems, the
difficulty is that d-admissibility is not a very dis-
cerning criterion. Many tests are d-admissible. As
PW note, in many problems both the New Tests
and the LRT are d-admissible. So this criterion
does not choose which is better. Here a-admissibil-
ity gives a way of comparing two tests that might
both be d-admissible.

The first example in Section 10 might lead one to
conclude that some criterion based on the ancillary
principle is appropriate for comparing tests. But,
arguments involving the ancillary principle are
usually unconvincing to me. Difficulties in imple-
menting the ancillary principle, such as those dis-
cussed by Cox and Hinkley (1974, pages 33 and
following) in discussing Basu (1964), lead me to
conclude that it is not a generally applicable princi-
ple for the comparison of statistical procedures.

1.3 Bayesian Criterion

Although PW often say they are recommending
the LRT as a non-Bayesian test, they use a Bayesian
criterion to defend the LRT several times. In Sec-
tions 4 through 6 they discuss priors against which
the LRT or the New Tests are Bayes or approxi-
mately Bayes. Then they defend the LRT by assert-
ing that its prior is more reasonable than the prior
for the New Test. To use this criterion to decide if a
test is reasonable, the user must decide what prior
is reasonable, even to choose a non-Bayesian test. If
the user is going to go through this effort of deter-
mining a reasonable prior, I think he should bite
the Bayesian bullet, choose his prior and use a
Bayesian test for this prior. This Bayesian test will
not be the LRT for any easily expressed prior in the
examples in Sections 4 through 6.

Actually, PW pose a harder problem than a stan-
dard Bayesian analysis. It is more difficult to start
with a test and then determine for what prior it is
Bayes than to find a Bayes test for a given prior.
PW did not usually state specific priors, only gen-
eral features of priors. I sometimes had difficulty
following their reasoning as to why a test was
approximately Bayes versus a prior with some fea-
tures. Because they are proposing that one should
determine what prior a test is Bayes against to
determine if the test is good, it would have been

instructive if they had worked out the details for at
least some examples. For example, for testing (18)
they say the LRT is approximately Bayes for a prior
that puts equal weight on L; and L,; while test
(21) is approximately Bayes for a prior that puts
unequal weight on these two sets. Surely, not all
priors with these equal and unequal weights will
work. I would be interested in the details of how
they determined these features for the priors.

1.4 Significantly Better Fit
At the end of Section 2, PW state

...the question to be addressed by a statistical
hypothesis test (= significance test) is the fol-
lowing: based on the observed data, does the
family of observed distributions represented by
the alternative hypothesis H; fit (or support,
or explain) the observed data significantly bet-
ter than the family represented by the null
hypothesis H;? Only if the fit is significantly
better should we reject H,, in favor of H,. The
tests discussed in this paper are evaluated on
the basis of this (we believe) generally accepted
criterion.

PW say this is the criterion they will use to
evaluate tests. But I do not see a criterion for
comparing tests here! The quote expresses the
question to be addressed by a hypothesis test, but
the quote gives no indication of how one judges if
one test answers this question better than another.
It does not give a definition of what is meant by
“the fit is significantly better.” How can one judge if
one test statistic measures this fit better than an-
other? PW hint at an answer in Section 3. After
defining a LRT as a test that rejects H, if A(X) > c,
they say that because they require significantly
better support, ¢ must be greater than 1. This
suggests that A(X) measures the support in H,
versus the support in H,. Are they saying A(X) is
the only test statistic that properly measures this
support? What about y? statistics, score statistics,
Wald statistics and so on? I hope that in their
rejoinder to these comments, PW will define how
the above quote defines a criterion for comparing
tests.

1.5 Closeness to H,

In Sections 4-6, PW discuss in great detail
whether certain sample points should be in the
rejection region or the acceptance region. In these
sections the criterion seems to be based on the
Euclidean distance from the sample point (= the
MLE) to H,. It is not clear to me if PW consider
this Euclidean distance criterion to be a generally
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applicable criterion or whether they are using it in
these normal mean problems because Euclidean
distance gives the same ordering to the sample
points as the LRT statistic. If it is the former, I do
not know an argument for why Euclidean distance
is always appropriate and how this criterion is
implemented in the presence of nuisance parame-
ters. If Euclidean distance is used as a perfect
surrogate for the LRT statistic, then there is not
much to be discussed. Having defined the LRT
statistic as the appropriate measure, there is no
way PW can be convinced that the LRT is inappro-
priate!

1.6 Appropriate Power Functions

The criterion used in Endnote 6 is perhaps the
most indecipherable to me. PW speak of undefined
concepts like “distributions most difficult to distin-
guish from H,.” Then they declare it “entirely ap-
propriate” that the power of the LRT be less than «
at u = (0,0). Is this a defense of the LRT? As PW
themselves recall, every level-a test (except the
trivial test), including the New Tests that have
been proposed, have power less than « at u = (0, 0).
Are their power functions “entirely appropriate,”
also? Or are PW asserting that the LRT’s power of
a? at (0,0) is the one, true “entirely appropriate”
power and other powers, such as a? ! /2, although
less than «, are inappropriate?

2. COMMON SENSE, INTUITION,
SCIENTIFIC APPROPRIATENESS

In the previous section, I have tried to list some
of the many criteria PW used to defend LRTs. I
have expressed my hope that PW will choose and
defend the one criterion they recommend for com-
parison of tests. However, I do not think this is
really PW’s goal. I think the criteria they really
wish to espouse are the vague, subjective and unde-
fined concepts of common sense, intuition and sci-
entific appropriateness. Such subjective concepts
seem to me to be of little use in an objective com-
parison of tests, but, in the spirit of PW, let me tell
my own fantasy.

Two graduate students and their dissertation ad-
visor come to PW for help in analyzing their data.
These three will each give a talk about their scien-
tific work at a professional symposium. The stu-
dents will each talk about their work, and then the
advisor will give an overview of the work in her lab.
The following conversations ensue.

On Day 1, the first student (S1) comes for a
consulting appointment. After a discussion of the
experiment PW and S1 agree that the student’s

data can be modeled as X; ~ N,(uq,1), and the
scientific question to be addressed can be answered
by testing Hy: u, = 0 versus H;: u; # 0.

S1: The data I obtained in my experiment were
X; = 2.00.

PW: Because X7 = 4.00 > 3.89 = x{ 05, you
have found significant evidence that w, # 0.

On Day 2, the second student (S2) comes for a
consulting appointment. After a discussion of the
experiment, PW and S2 agree that the student’s
data can be modeled as (X,, X;) ~ Ny(( g, p3), Iy),
and the scientific question to be addressed can be
answered by testing H;: (u,, u3) = (0,0) versus
H,: (py, pngy) # (0,0).

S2: The data I obtained in my experiment were
(X,, X3) = (v6.00,0).

PW: Because X; + X7 = 6.00 > 5.99 = x3 (5,
you have found significant evidence that (u,, uy) #
(0,0).

On Day 3, the advisor (AD) comes for a consulting
appointment.

AD: My students have reported to me on their
meetings with you. I just wanted to verify that,
based on the data (X, X,, X;) = (2.00,v6.00,0)
collected in my lab, I can conclude that u, # 0 and
(pg; pg) # (0,0).

PW: Oh, no! You must use common sense and
intuition to reach the scientifically acceptable con-
clusion. Because X7 =4.00 <5.99 = x3 05, you
cannot conclude w, # 0.

AD: That stupid S1! He said that because X =
4.00 > 3.89 = x{ 405, We had found significant evi-
dence that u, # 0.

PW: No, S1 can compare X? to 3.89. But, be-
cause you will also discuss (X,, X;), you must com-
pare X7 to 5.99.

AD: I get it. This is one of those multiple testing
problems I learned about in my stats class in grad-
uate school. Because I am doing multiple tests, I
have to use a bigger critical value.

PW: No, you can test Hy: p; = 0 or (u,y, pug) =
(0,0) and reject this H, because X?Z = 4.00 > 3.89
and X? + X% = 6.00 > 5.99. This test has a type I
error probability of « = 0.05, but it would not be
the common sensical, intuitive and scientifically
acceptable conclusion.

I leave it to the reader to decide. Will AD leave
PW’s office appreciating the simplicity and clarity
of statistical analysis? Or will she think it is ridicu-
lous that at the symposium S1 and S2 will speak on
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the significance of their results, then she will rise
and speak on the nonsignificance of the same data?

Other authors have criticized some New Tests
because their rejection regions are nonmonotone or
nonconnected or because they contain sample points
for which the MLE is in H,. However, PW are the
first likelihoodlums that we have encountered who
are so die-hard that they prefer the LRT (20) to the
simple, size «, uniformly more powerful, intersec-
tion—union combination of the individual LRTs in
(21). Some readers may be interested in the more
complete discussion of combining individual LRTs
that can be found in Berger (1997). Saikali and
Berger (1998) discuss a problem related to (20) and
(21), that of testing two normal means using sam-
ples of unequal sizes.

Comment

D. R. Cox

Michael Perlman and Lang Wu have produced
some striking examples where application of the
formal theory of optimal tests leads to procedures
which they regard as unacceptable. I entirely agree
with that interpretation.

In Section 9 they produce a list of quotations
essentially to the effect that the notions of Ney-
man-Pearson theory are inapplicable, at least in
many situations of the interpretation of data, and
that what the authors broadly call Fisher’s position
is to be strongly supported. While again I broadly
agree, I do not think this makes the Neyman—Pear-
son approach unimportant for inferential problems,
only that some care in interpretation and applica-
tion is needed. I tried to argue this in the later
parts of Cox (1958) and in a different form in Cox
(1977) and the following brief notes are in amplifi-
cation and extension of those remarks. I suggest
that many of the differences between different
viewpoints get much less if we take the position
that:

1. The notions of error rates, acceptance and rejec-
tion of hypotheses and so on give certain quanti-
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3. CONCLUSION

PW argue that intuition and common sense have
a role in determining good statistical procedures.
Intuition can be very useful, even essential, in guid-
ing one toward the correct solution to a problem,
but intuition should never be the criterion used to
justify a solution. Scientific and statistical conclu-
sions must be based on objective, well defined, veri-
fiable and consistently applied criteria. They must
never be based on personal, subjective criteria. If
we are indeed teaching our students that intuition
is the primary criterion in scientific inquiry, then a
fundamental reassessment of the mission of mathe-
matical statistics is urgently needed.

ties hypothetical physical intepretations and are
not instructions on how to apply the methods.
For example, we do not have to choose an « and
firmly reject or not according to the specified
rule. Such hypothetical procedures, however,
clarify the meaning of p-values as measuring
instruments in a way entirely in line with the
common device of defining quantities opera-
tionally via measuring procedures which are in
fact not used directly. Think, for example, of the
definition of the acceleration due to gravity mea-
sured at sea level under the peak of Mt. Everest.

2. Some very plausible operational requirements,
for example similarity of tests, are appealing but
if insisted on exactly may have unexpected and
unpleasant consequences. Other requirements,
like the unbiased property of tests, are more
clearly somewhat arbitrary and provisional. That
such requirements lead to trouble is not in itself
fatal to the whole approach of assessing statisti-
cal procedures via hypothetical operational prop-
erties. They reflect both on the care needed in
formulating and interpreting optimality require-
ments, in fact in generality, and in this particu-
lar context probably also on the need to impose
conditions of a quasi-logical character before
looking for sensitivity.

3. To be relevant to the problems under analysis
and to satisfy Fisher’s definition of probability
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(Fisher, 1956, page 33), calculations must be
exactly or approximately conditional, this being
a more fundamental concept than sensitivity.

4. The object of significance tests is to calculate
approximately p-values.

5. We may wish to assess procedures that are not
in a technical sense optimal either because none
such exist or because of considerations such as
transparency or robustness. Neyman—Pearson
arguments are clearly very fruitful for this.

In the particular context of significance tests it
may be helpful to draw some further distinctions.
First, the following formulation assumes null hy-
potheses specifying point values for parameters, in
general with nuisance parameters. It does not re-
gard, for example, 6 < 6, as an appropriate null
hypothesis. This seems a rather clear distinction
between Fisherian and some Neyman-Pearson for-
mulations. There are then a number of possibilities
including the following:

e Only two possibilities are contemplated, two
simple hypotheses, 6 = 6, or 6 = 0; regarded as
essentially on an equal footing, one called the null
hypothesis and the other the alternative. There are
quite strong arguments for using the observed like-
lihood ratio as it stands. This formulation does not
seem to cover well the typical situation in which
significance tests are applied. It is, however, close
to simple forms of discriminant analysis.

e Only a null hypothesis is firmly established.
We think about the kinds of alternative against

Comment

Michael P. McDermott and Yining Wang

We congratulate Professors Perlman and Wu on
a very interesting article that brings together many
examples of multiparameter hypothesis testing
problems in the literature for which the likelihood
ratio test (LRT) has been long thought to be “defi-
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which we want sensitivity and formulate these pro-
visionally via alternative models, for example via a
parametric family defined by 6 > 6,. These are not
necessarily to be taken as a base for interpretation.
A realistic example is testing linearity of regression
by including a quadratic term. If we find nonlinear-
ity, we may well not use the quadratic model but
transform either or both the response or explana-
tory variables or fit a nonlinear model in line with
subject matter considerations. The Neyman—Pear-
son theory is ideal for discussions of this general,
somewhat exploratory, situation. It seems prefer-
able to Fisher’s notion of a pure significance test,
although in the last analysis it is often essentially
equivalent to it, the former requiring choice of al-
ternatives, the latter the choice of a test statistic.

e We have, say, a full parametric family, all of
them serious candidates as a base for interpreta-
tion, and a special value 6,, say. Often but not
always this situation is best addressed as a prob-
lem of interval estimation, especially if the null
hypothesis is what is sometimes called a dividing
hypothesis.

A final general point is that to be useful in
realistic problems, a general theory has to deal
effectively with situations in which in some sense
only approximate answers are achievable.

Of course the relation of all this with Bayesian
theory is another story. Note, however, that the last
of the above three formulations is reasonably di-
rectly formulated in Bayesian terms.

cient.” The article raises many philosophical issues
regarding how to approach hypothesis testing prob-
lems and, as the authors point out, echoes the
famous Fisher—-Neyman debate. In general, we
agree with much of what Perlman and Wu (and,
yes, Fisher) have to say, particularly with regard to
the notion of using “statistical common sense” in
choosing a test. In addition, the authors’ description
of the nature of the prior distributions required to
render the New Tests Bayes (or approximately so)
is very helpful in conveying the authors’ point about
the practical utility (or lack thereof) of some of
these tests. On the other hand, while Perlman and
Wu appear to equate “appropriate inferences” with
those provided by the LRT, we are not convinced
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that it is easy to characterize what is meant by an
“appropriate inference” or, for that matter, “statis-
tical common sense.” Critical regions that clearly
violate “statistical common sense” are often easy to
spot; however, it is not so easy to draw the line
between tests that are and are not violators.

Our interest in the problem discussed in Section
4, namely that of testing hypotheses concerning
linear inequalities, was stimulated by its mathe-
matical, rather than practical, aspects (McDermott
and Wang, 1999). We agree with the general point
that adding regions to the critical region of the LRT
that are not connected or that are in close proxim-
ity to the origin (or that are even “inside the null
hypothesis”) yields tests that are objectionable from
the standpoint of a practitioner. For this reason, we
were careful not to label the LRT for this problem
as “deficient.”

On the other hand, adding a region that is con-
nected to the critical region of the LRT and is not
in close proximity to the origin will yield a more
powerful test and, to some, may not be practically
objectionable. For example, the critical region of the
test first proposed by Liu and Berger (1995) for the
problem discussed in Section 4 is shown in Figure 1
as the union of the shaded and unshaded regions.
Note that the scale in this figure (transformed us-
ing ® ()) differs from that in Perlman and Wu’s
Figure 1. One could take the critical region to be
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Fic. 1. Truncated critical region of Liu and Berger’s (1995)
test. The union of the shaded and unshaded regions is the critical
region proposed by Liu and Berger (1995), and A is the critical
region of the LRT. The shaded region A, U A, is the truncated
critical region.

only the shaded region A, U A, to avoid including
points in close proximity to the origin (on the X;-X,
scale). Two natural questions arise: (1) How does
one determine the lower boundaries of this added
region? (2) Isn’t this New Test still objectionable on
the grounds that the rejection region is nonmono-
tone? We don’t have an objective basis for determin-
ing an answer to the first question; it would seem
to depend on the researcher’s notion of “common
sense.” Perlman and Wu would argue that the criti-
cal region of the LRT provides an objective and
satisfactory boundary. Their criticisms of a more
powerful New Test having a slightly expanded criti-
cal region (as above) would include the lack of
monotonicity and the need for “mathematical acro-
batics.”

With regard to the issue of monotonicity, Laska
and Meisner (1989) make the case that

...restriction to monotone functions seems
natural. An experimenter who obtains values
of each component test statistic at least as
large as those observed by his colleague would
not find reasonable a test procedure that re-
sults in his colleague rejecting H,, but denies
such rejection to him. Since regulatory agencies
are subject to judicial review, allowing non-
monotone procedures cannot help but lead to
accusations of unfairness. Imagine how the
courts would view the fairness of the FDA if
the outcome (a, a) rejected H, but the outcome
(%, @) did not.

While this argument is convincing, it can also be
argued that if the outcome (a, a) does not violate
the experimenter’s “common sense” (or that of the
regulatory agency) in terms of providing evidence
against H,, then one should not deny “the col-
league” the opportunity to reject H, as long as he
or she (and the regulatory agency) is willing to risk
a small increase in the probability of falsely doing
so. Of course, the LRT would not reject H, in either
case [(a, a) or (o, @)], but “the colleague” may view
that as an “inappropriate inference” that violates
his or her notion of “common sense.”

Other weaknesses of nonmonotone tests support
the argument against their use in practice. One
cannot sensibly define a p-value associated with
such a test. Also, as demonstrated in Figure 2
below for Liu and Berger’s (1995) test, there may be
sample points for which one rejects H, at the 5%
significance level but fails to reject H, at the 10%
level [interestingly, Berger’s (1989) Test I does not
have this property]. The use of a test exhibiting
such behavior in practice is difficult to justify. To
the extent that a researcher (or agency) is uncom-
fortable with drawing conclusions from a nonmono-



376 M. D. PERLMAN AND L. WU

B(X,)

1.0

0.9

0.7

0.5
|

I I I I T T
0.5 0.6 0.7 0.8 0.9 1.0
3(X,)

Fic. 2. Critical regions of Liu and Berger’s (1995) test for
a = 0.10 (solid lines) and for a = 0.05 (dashed lines, shaded).
Note that portions of the latter region are not contained in the
former region, so that for some sample points it is possible to
reject H,, at the % significance level yet fail to reject H, at the
10% level.

tone test, he or she will side with Perlman and Wu
on this issue.

The objection of Perlman and Wu to the need for
“mathematical acrobatics,” which was raised in the
context of the bioequivalence problem in Section 7,
is less convincing. Acknowledging some well-
founded criticisms of their unbiased test for the
bioequivalence problem, Brown, Hwang and Munk
(1997) proposed a modification of their test (C;)
that truncates the rejection region. This modifica-
tion is similar in spirit to the truncation proposed
in Figure 1 above with the important exception that
C; retains a desirable monotonicity property. Perl-
man and Wu state that “The need for such mathe-
matical acrobatics reinforces our contention that
the quest for (nearly) unbiased tests more powerful
than the LRT is misguided.” We don’t see the basis
for this statement; the authors have not offered a
substantive criticism of this test. They argue that
the LRT “already makes perfectly appropriate in-
ferences” and that “if this is deemed unsatisfactory,
then the solution is very simple: more observations
are needed, not Better New Tests.” This, however,
is not a strong argument against the C; procedure
of Brown, Hwang and Munk (1997). We believe that
this example is evidence against the authors’ opin-
ion that “the goal of constructing tests that are less
biased and everywhere more powerful than the
LRT is without intrinsic merit.” The C; test of

Brown, Hwang and Munk (1997) does not appear to
provide “unwarranted and inappropriate infer-
ences,” nor does it appear to be “practically unac-
ceptable.”

In general, the New Tests are associated with an
increased probability of falsely rejecting H,. How-
ever, this probability is still bounded below a fixed
significance level, and the New Tests also have
increased probability of correctly rejecting H,,. The
relative merits of this trade-off are certainly de-
batable when there is not universal agreement
regarding what constitutes a rejection region that
represents “statistical common sense.” Defining this
region as the rejection region of the LRT, as Perl-
man and Wu would advocate, would add an ele-
ment of circular reasoning to the authors’ argu-
ment.

The “conditionally anticonservative” property of
our conditional LRT (Wang and McDermott, 1998)
revealed by Perlman and Wu in Section 8 raises
other interesting issues. If p is large and the ob-
served V assumes a particular form, the conditional
LRT will nearly always reject H, for sample points
consistent with the alternative hypothesis but close
(in terms of Mahalanobis distance) to the origin.
The use of the term “anticonservative” here implies
that this is an undesirable property, but this is not
necessarily the case. In fact, it is often not difficult
to identify a statistic upon which to condition in
order to render a test “conditionally anti-conserva-
tive,” even severely so. This is illustrated in the
following example.

ExamMPLE. Consider the problem of testing H,: u
= 0 versus H;: u > 0 based on a random sample of
n observations from a N(u,1) distribution. The
uniformly most powerful test rejects H, when VnX
> 1.645, assuming « = 0.05. If one conditions on
the sum of the first n — 1 observations,

Py |VnX > 1.645

i=1

n—1
v x k)
=1 - ®(1.645Vn — k),

which tends to 1 as £ — .

Obviously the “conditionally anticonservative”
property is not necessarily undesirable. A key as-
pect of this example is the fact that large values of
the statistic being used for conditioning are them-
selves evidence against H,. The same is true of the
statistic K [the number of positive components of
7¢(X; @)], as discussed by Bartholomew (1961) and
Perlman and Wu (1999). When p is large, the fact
that all of the components of the sample mean
vector are positive is itself evidence against H,. It
is not so clear that rejecting H, for such sample
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points is an inappropriate decision, even if the
sample mean vector is close to the origin. Indeed,
the LRT for the same problem, but with ¥ com-
pletely known (Kudo, 1963), exhibits similar “condi-
tionally anticonservative” behavior (the conditional
LRT and the LRT for known 3 are asymptotically
equivalent). For example, when « = 0.05, X =1,
and p = 100, the null probability that Kudd’s LRT
rejects H, given K = p is equal to 0.991. We con-
jecture that for certain other values of X, a smaller
value of p will suffice to render this conditional
probability to be close to 1. We believe that this
behavior of the LRT is reasonable and that, for the
problem involving completely unknown 2, the con-
ditional LRT is the preferred test. All of this rein-
forces our belief that the search for tests that are
less biased and (generally) more powerful than the
LRT is not misguided.

Rejoinder

Michael D. Periman and Lang Wu

We are grateful to the Editor and the discussants
for their interest in, and contributions to, these
important issues. If our paper has achieved nothing
other than to serve as a vehicle for bringing Profes-
sor Cox’s eminently sensible views on hypothesis
testing to the pages of Statistical Science, then we
deem our efforts to be highly successful. In particu-
lar, his item 2 expresses our views perhaps even
more aptly than we have done ourselves. His re-
minders of the need for care “in formulating and
interpreting optimality requirements” and for im-
posing “conditions of a quasi-logical character be-
fore looking for sensitivity” epitomize what we have
called “statistical common sense.”

Berger and McDermott and Wang, themselves
being Creators of New Tests, do not entirely agree
with our position, but we have found many of their
comments to be constructive and have modified
some of our assertions accordingly, as will be indi-
cated below. Nonetheless, our message remains
clear.

Science, above all, must be consistent with itself
and with the real world. Science progresses when
inconsistencies are discovered in an existing theory.
Newtonian mechanics served adequately for two
hundred years, but its inconsistencies on the sub-
atomic and cosmological scales led to the develop-
ment of quantum mechanics and general relativity.

Finally, it is worth noting that there has been a
movement away from hypothesis testing and to-
ward parameter estimation (point and interval /re-
gion) in applied research (Gardner and Altman,
1986; The Standards of Reporting Trials Group,
1994). Relatively little research has been devoted to
this aspect of inference under order restrictions,
perhaps because it is a difficult area. It would be
interesting and informative to see, for example,
what the shapes of the confidence regions would be
as obtained from inverting the LRT and the New
Tests for the problems considered in this paper.
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Analogously, while Neyman—Pearson testing the-
ory has been one of the most widely applied and
successful tools for statisticians in the past six
decades, it has been almost as widely recognized
that it can lead to troubling inconsistencies, even
from a non-Bayesian perspective. As indicated in
Section 9 we are far from the first to note this, but
we feel that the examples that we have collected
here, especially those in Sections 4, 5 and 7, are
more dramatic and convincing than those known
previously.

We reiterate our case briefly here. Even in rela-
tively uncomplicated testing problems involving
only normal (Gaussian) distributions, application of
the classical NP criterion of a more (or most) pow-
erful size a test and the related criterion of «-ad-
missibility (as opposed to d-admissibility) may lead
to New Tests that are transparently untenable, as
in the examples of Sections 4, 5 and 7 (more on this
below). Even the Creators admit their misgivings,
for example, Berger’s retreat from his Test II to the
less powerful Test I (Section 4), Brown, Hwang and
Munk’s retreat from their unbiased test to the less
powerful truncated version (Section 7). Their doubts
(note: based on statistical common sense!) show
that they agree, at least implicitly, with our and
our many predecessors’ contention that the NP cri-
terion is not absolute and that its applicability in a
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testing problem must be governed by the reason-
ableness of the resulting test.

We fully agree with L. D. Brown, who wrote to us
as follows:

I don’t believe the Emperor needs new clothes
—I agree the LRT is a valid default procedure.
Any proposed alternatives should be inspected
according to standards of Common Sense. (On
occasion, the LRT also deserves to be criticized
by those standards, as well.)

We freely admit that neither we nor any other
non-Bayesians have formulated a precise definition
of statistical “reasonableness” or “common sense,”
but like the Emperor, most statisticians know them
when they see them. Berger himself has very good
statistical intuition, as evidenced by his example in
Section 2 of his discussion. While aimed (effectively,
we concede below) at the example in our Section 6,
when applied to the testing problem (6) in our
Section 4, his intuition provides the final nail in the
coffin for his New Tests.

For, suppose that Berger’s students S1 and S2
observe independent normal variables X; ~
Ni(pqy, 1) and X, ~ Ny(pgy, 1), respectively. S1
wishes to test w; <0 versus pu; >0, while S2
wishes to test u, < 0 versus u, > 0. On Day 1, S1
comes to Berger and says, “I have observed X; =
—1,” to which Berger replies, “You have not found
significant evidence that w,; > 0.” On Day 2, S2
comes to Berger and says, “I have observed X, =
—1,” to which Berger replies, “You have not found
significant evidence that w, > 0.” On Day 3, AD
comes to Berger and says, “Based on the data
(X;, X,) = (=1, —1) collected in my lab, I cannot
conclude that w, > 0 or u, > 0. This is disappoint-
ing, since I was hoping to find at least one signifi-
cant effect.” But Berger immediately replies, “Cheer
up! By applying my New Test II, which is every-
where more powerful than the LRT while maintain-
ing the same size, based on these data we can
conclude that both w, > 0 and p, > 0!” The AD
leaves Berger’s office with a renewed respect for
modern statistical theory.

Clearly, such a New Test is the statistical equiva-
lent of cold fusion; no statistician would recommend
its use. We suggest that the reader, especially any
young researcher tempted to create her/his own
New Test, keep this example in mind as he/she
weighs Berger’s statement that the NP criterion
of a-admissibility “is a well-understood criterion
that has been considered by statisticians for over
sixty years... . If the reader rejects this method of
comparing tests, then he or she will have little
interest in my results.” To quote another Berger
(Jim): “Statistics looks very bad when it recom-

mends a conclusion that clearly contradicts com-
mon sense.” (Berger and Wolpert, 1988, page 141).

Those who know us know our healthy respect for
mathematical theory. But we must question the
value of statistical research “stimulated by its
mathematical, rather than practical, aspects” [MW]
when such work produces impractical procedures
that are then promoted (fortunately unsuccessfully)
to the applied community. Perhaps the strongest
criticism of the advocacy of statistical procedures
that may be mathematically optimal but that would
be unacceptable to scientific investigators was
stated by Fraser and Reid (cf. Brown, 1990, page
507): “[The] statistician who advertises the [scien-
tifically unacceptable procedure] is guilty of profes-
sional misconduct.”

Perhaps anticlimatically, but as requested by
Berger (Roger), let us examine the statistical basis
for our “common sense” criticisms of the New Tests
more closely. For the Gaussian examples of Sec-
tions 4, 5 and 7, where the sample and parameter
spaces can be identified, the rejection regions of the
New Tests include sample points either (a) in the
alternative hypothesis but arbitrarily close?® to
the null hypothesis (Sections 4 and 7), (b) closer to
the null hypothesis than to the alternative (Section
5) or (c¢) actually inside the null hypothesis (Sec-
tions 4 and 7).

As Cox writes, “...the object of significance tests
is to calculate approximately p-values.” Because
the p-value associated with a testing procedure is a
device for assessing the fit of the data to the null
hypothesis relative to the alternative hypothesis,
tests should reflect the quality of this fit. Because,
for normal distributions, sample points satisfying
(a), (b) or (c) do not fit the alternative better than
the null hypothesis, no one?® would reasonably
conclude that such sample points support the alter-
native significantly better than the null hypothesis,
but this is what the New Tests would have us do.

The NP criterion and a-admissibility, which here
favor these New Tests, simply fail in these exam-
ples. This is more than mere “common sense” or
“intuition,” it is statistical common sense based on
experience with statistical theory and practice and
is shared by many eminent statisticians, such as
those cited in Section 9.

It should be noted that we are using “fit” and
“distance” only in a qualitative, ordinal sense. That
is, we take it as self-evident that (at least for
normal models) if the data fit the null hypothesis as
well as, or better than, they fit the alternative
hypothesis, it cannot be claimed that they provide
statistical evidence favoring the alternative. We are
not asserting that distance itself always should be
used directly as the test statistic, for as Berger



THE EMPEROR’S NEW TESTS 379

correctly notes, this would be equivalent to saying
that the LRT always should be used. In fact, as
noted below, we now accept Berger’s argument that
his IUT is preferable to the LRT for problem (18) in
Section 6.

Berger says that it was never his intent “to as-
sert that a-admissibility is the only reasonable cri-
terion.” But the hard reality is that a-admissibility
is often unreasonable, not, as Berger would have us
say, because it may contradict the LRT, but as we
actually said and again demonstrate in the AD’s
example seven paragraphs above, because it may
contradict the evidence provided by the data.

We believe, like Fisher and many others, that the
purpose of statistical testing is to assess this evi-
dence, not to maximize a mathematical criterion.
(Recall Cox’s statement four paragraphs above.) If
the AD’s data are insufficient to detect significant
effects, like any good scientist her recourse should
be to obtain more data and /or redesign her experi-
ments, not to resort to New Tests. To paraphrase
Cox’s item 1, power, size, and bias are only inci-
dental tools for, not the ultimate goals of, statistical
testing in a scientific context. This is the crux of our
difference with Berger, McDermott and Wang and
their colleagues.

Classical NP testing theory works well in its
original domain, for example, simple point hypothe-
ses (perhaps with nuisance parameters) or interval
hypotheses for one-parameter monotone likelihood
ratio families. But because the examples in Sec-
tions 4, 5 and 7 demonstrate that the NP criterion
is unreliable for testing problems outside this do-
main, the New Tests in Sections 6 and 8 cannot be
deemed “superior” merely because they prevail un-
der the NP criterion and a-admissibility.

Having established this, we now concede that for
problem (18) of our Section 6, Berger’s defense of
his test (21) is convincing (see Section 2 of his
discussion). Qur criticism was too hasty, for (21)
does not exhibit unreasonable behavior of type (a),
(b) or (c) described seven paragraphs above.?’” As
Berger’s discussion shows, (21) is the intersection—
union test (IUT) for (18) (cf. Berger and Sinclair,
1982; Casella and Berger, 1990; Berger and Hsu,
1996), another generally reasonable approach to
hypothesis testing.

The failure of the LRT for (18) is even more
dramatic if the dimension is large. Suppose that
X = (XI,XZ,...,XP) and u = (,LLI,/.LZ,...,/.LP) in
(17) are now p-dimensional and that the subspaces
L,, L,s in (18) and (19) are replaced by

le{ﬂ|ﬂ*2: =H’p=0}’

Ly..,={ulp =0},

respectively, orthogonal linear subspaces of dimen-
sions 1 and p — 1. The size o« LRT and IUT are
now given by (20) and (21) with xj , replaced by
X. 1. Now consider a sample point (X;,
X,,...,X,) such that X7 + - +X? > p, so that
we may safely conclude that u & L;. Then the origi-
nal testing problem (18) reduces to that of testing
nqy = 0 versus u, # 0. Because X, is independent
of (X,,..., X,), we may base our inference on X;
alone and reject u, = 0 (i.e., reject H,)if X7 > x{ .
This agrees with the IUT, whereas the LRT would
have us reject pu, =0 if X7 > x? , ., which is
much too conservative. Thus we see that the accep-
tance region of the LRT includes sample points
located (d) inside the alternative while very far
from the null hypothesis. We deem this just as
unreasonable as the properties (a), (b), (c) of the
rejection regions of the New Tests that we have
criticized so vigorously.?

We reemphasize that Berger’s derivation and de-
fense of his IUT (21) [and our criticism of the LRT
(20)] rest upon the reasonableness of the IUT ap-
proach, not on its superiority under the NP crite-
rion. In fact, we no longer refer to (21) as a New
Test, for certainly Berger could construct a Newer
Test that is everywhere more powerful than (21) by
enlarging its rejection region to include points arbi-
trarily close to the origin, along the lines of his New
Test I for (6) and his New Test for (10), both in our
Section 4.

Furthermore, if Berger indeed believes in the
IUT approach, then why did he not also adopt that
approach for problem (6) in Section 4, where the
IUT coincides with the LRT, not with his New Test
IorlIl?

In fact, Berger consistently ignores his own call
for “consistently applied criteria” rather than “per-
sonal, subjective criteria.” Suppose for a moment
that, even in the aftermath of our AD example,
Berger maintains his faith in the NP criterion and
a-admissibility. Now suppose that he attempts to
reconcile his advocacy of the New Tests with his
advocacy of union—intersection tests (UIT) in
Casella and Berger (1990, page 379):

Since the LRT is uniformly more powerful than
the UIT in Theorem 8.3.4, we might ask why
we should use the UIT. One reason is that the
UIT has a smaller Type I Error probability
[everywhere on the null hypothesis].

If “New Test” is substituted for “LRT” and “LRT”
for “UIT,” then this statement remains entirely
valid, hence denies the very basis of the New Tests.
Thus Berger directly contradicts himself.

What do we “likelihoodlums” actually believe
about the LRT? In our paper we clearly state our
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conviction that the LR criterion is “a generally
reasonable first option” for hypothesis testing prob-
lems but “is not infallible.” At the beginning of his
discussion, however, Berger says that we “really
argue that the LRT is the primary option” (em-
phases added). Taking issue with this statement
that we did not make, he goes on to ask why we
ignore other generally reasonable first options such
as the chi-square, Wald and Rao score test statis-
tics. (We would add the IUT /UIT methods to this
list of generally reasonable approaches.) We em-
phasize that nowhere did we exclude any generally
reasonable approach to testing, nor did we intend
to do so.

In fact, for any testing problems involving normal
distributions with known covariance matrices, such
as those in our Sections 4, 5 and 6, the Wald and
Rao tests are always identical to the LRT, while for
such problems with unknown variance or covari-
ance matrix, such as those in Sections 7 and 8, the
three tests closely resemble each other and are
dissimilar to the New Tests. Furthermore, when
they are applicable, IUT and UIT tests often coin-
cide with (Sections 4 and 7) or closely resemble
(Section 8), the LRT rather than the New Tests. By
asserting that his New Tests render the LRT infe-
rior, Berger is in fact asserting that they render the
Wald, Rao and IUT /UIT tests inferior as well. We
doubt that he intended to wield such a blunt instru-
ment.

If we have managed to convince McDermott and
Wang that the NP criterion does not represent the
primary goal of statistical testing, then their “con-
ditional LRT” for problem (25) in Section 8 has no
prima facie advantage over the LRT and the two
tests must be compared according to some notion of
reasonableness. Focusing on the case where C = @,
the nonnegative orthant, MW say in their discus-
sion above:

When [the dimension] p is large, the fact that
all of the components of the sample mean vec-
tor are positive [i.e., when K = p] is itself evi-
dence against H, [ n = 0]. It is not so clear
that rejecting H, for such sample points is an
inappropriate decision, even if the sample mean
vector is close to the origin.

This seems transparently clear to us, since a
sample mean close to the origin simply cannot pro-
vide compelling evidence for the alternative hy-
pothesis, but let us examine this issue more closely.

We agree with MW that, in general, conditional
anticonservative behavior of a test is not undesir-
able per se. A notable exception occurs if the condi-
tioning statistic 7' is ancillary or approximately
ancillary (cf. Cox, 1958). In MW’s Example, their

conditioning statistic 7 = X"} X; is highly nonan-
cillary so this exception does not apply and as they
properly note, the conditional anticonservative be-
havior is fully appropriate: large values of T al-
ready provide strong evidence for H, and the condi-
tional probability of rejecting H,, is appropriately
large in this case.

The situation is similar for the LRT for problem
(25) in our Section 8 when 3 is completely known,
say X =1,, and T =K, the number of positive
components of the projection of X onto the nonneg-
ative orthant @ in R?. MW perceptively note that
when p is large the LRT is also conditionally anti-
conservative in this case. Again this behavior is not
undesirable, because K is highly nonancillary: as
MW would assert, the fact that all of the compo-
nents of the sample mean vector are positive (i.e.,
K = p) is itself evidence against H,,, because

P, [K=pl=1/27

is very small for large p.

However, when 3 is completely unknown, the
case actually treated in Section 8, it is important to
note that while K is still not ancillary, it is now
much less informative. In this case, MW’s assertion
that “the fact that all of the components of the
sample mean vector are positive (le., K =p) is
itself evidence against H,” is incorrect, because
now

sup Py s[K =p] =1/2
3

no matter how large p might be. (Apply Lemma 2.1
of Perlman and Wu, 2000a). Thus the conditional
anticonservative behavior of MW’s test is less de-
fensible in this case.

As with our other examples, however, our main
purpose merely was to demonstrate that the rejec-
tion region of the MW test contains sample points
that, while they do not satisfy (a), (b) or (c) above,
are (e) not significantly farther from the origin than
would be expected under H,. In fact, (53) and (54)
show that if n — p is large, then the critical value
¢, (v) of MW’s test can be as small as

(n—p+ 1)_1/\/12’2& =(n—-—p+ 1)_10(1),

whereas it follows from (37) that the critical value
c, of the LRT is no smaller than

(n—p+1 'x2,,
=(n—-p+ 1)71[p +O(\/}7)]

if p is also large. But when K = p, the MW and
LRT statistics both reduce to the sample Maha-
lanobis distance XS 'X’, whose null distribution
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when n — p is large is
XS X' ~(n—-p+ 1)_1)(1,]2

:(n—p+1)_1[p+0(\/]7)]

both unconditionally and conditionally given K = p.
Thus, for large p and n — p, MW’s test tells us to
reject H,, for certain sample points that actually fit
H, extremely well.

By contrast, for the case X =1, (completely
known) the null distribution of the LRT statistic is
a mixture of the chi-square distributions i =0,
Xi»---» X; With weights proportional to the bino-
mial coefficients (%),(?),-,(£) hence symmetric
about p/2, so the critical value is p/2 + O(/p).
Therefore, unlike the critical value of MW’s test as
discussed above, this at least increases with p at
the proper rate, since now under the null hypothe-
sis,

XX' ~x2=p+0(Vp)

for large p, both unconditionally and conditionally
given K = p. Reduction of the critical value from
p+O0G/p) to p/2 + OG/p) may be appropriate
because, as noted above, occurrence of the event
K = p gives more evidence against the null hypoth-
esis in this case.

Returning now to the testing problem (6) in our
Section 4, McDermott and Wang, citing Laska and
Meisner (1989), join our criticism of the New Tests,
based on the nonmonotonicity of the rejection re-
gions (RR). Although we entirely agree with MW, it
is of some interest to examine the criterion of mono-
tonicity in a decision-theoretic framework.

When the null and /or alternative hypotheses are
not points or linear subspaces, tests that are proper
Bayes and therefore d-admissible may not possess
monotone acceptance or rejection regions. For prob-
lem (6), consider a three-point prior distribution for
(pq, my) that assigns mass (7, 7,1 — 27) to (1,0)
e H,, (0,1) e H,, and (v,v) € H;, respectively,
where v > 0. Then for v > 1, the RR of the Bayes
test is monotonically increasing: if (x;, x,) belongs
to the RR and x| > x;, x% > x,, then (x], x3) also
belongs to the RR. For v = 1/2, however, neither
the RR nor the AR is monotone; the AR is a sym-
metric strip centered about the line x;, = x, and
the RR is its complement. Furthermore, as » |0 it

is the AR, not the RR, that approaches a monotoni-
cally increasing limit. Thus a monotonically in-
creasing RR is desirable only under the additional
assumption (probably justified) that (u,, u,) tends
to assume larger values under H; than under H,,
but this is not necessarily specified by (6) alone.

In conclusion, we have no Grand Unified Testing
Theory to present, no universal mathematical crite-
rion for judging all tests in all testing problems as
Berger asks of us, and think it unlikely that such a
criterion exists. Depending on one’s point of view,
this nonexistence may be seen as either a strength
or a weakness of statistics, but in any event it is
better to have no universal criterion than cling to
an inappropriate one. We hope that we have alerted
statisticians to the dangers inherent in uncritical
application of the NP criterion, and, more gener-
ally, convinced them to join Fisher, Cox and many
others in carefully weighing the scientific relevance
and logical consistency of any mathematical crite-
rion proposed for statistical theory.
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