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STRONG UNIFORM CONSISTENCY RATES FOR ESTIMATORS
OF CONDITIONAL FUNCTIONALS!

By W. HARDLE, P. JANSSEN AND R. SERFLING

Universitit Bonn, Limburgs Universitair Centrum and
The Johns Hopkins University

Strong uniform consistency rates are established for kernel type estima-
tors of functionals of the conditional distribution function, under general
conditions. The present treatment unifies a number of specific problems
previously studied separately in the literature. Some of these applications we
treat in detail, including regression curve estimation, density estimation,
estimation of conditional df’s, L-smoothing and M-smoothing. Various previ-
ous results in the literature are extended and/or sharpened.

1. Introduction, basic formulation and applications. Let (X,Y) be a
bivariate random vector with joint df F(x, y), joint density f(x, y), conditional
df F(y|x) for Y given X, conditional density f(y|x) for Y given X and marginal
density fy(x) for X, x and y € R. Let {B,, t € I} be a family of real-valued
measurable functions on R for which it is desired to estimate

(1.1) r(x) = E(B(Y)IX =z} = [B(y) dF(»Ix),

with a good almost sure (a.s.) convergence rate holding uniformly for ¢ € I and
x € J, where I is a possibly infinite, or possibly degenerate, interval in R and </
is a possibly infinite interval in R. In general, we may think of this type of
problem as one of nonparametric estimation of linear functionals of the condi-
tional df F(y|x). As will be seen from the examples, such a problem may arise in
nonparametric regression and related contexts, either as a given target problem
or as a technical problem to which a given target problem becomes reduced.
Expressing r,(x) in the form r(x) = d(x)/f,(x), with

(1.2) dfx) = [B(3)f(x,7) dy,
we shall consider estimators of the form
(1.33) rtn(x) = dtn(x)/fn(x)y
with
n — X.
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and

(130 ) = (k) AT )

n

where (X}, Y}),...,(X,, Y,) are independent observations on F, {K,,} and {K,}
are sequences of kernel functions K: R — R and {4,} is a sequence of positive
constants (bandwidths) tending to 0 as n — co. We recognize £,(-) to be in the
form of the familiar Rosenblatt-Parzen type of density estimator for fo(*),
except that we consider a sequence {K,} instead of a fixed kernel K.

The kernels under consideration may be smooth or discrete, although we shall
give some emphasis to the discrete case. Since smooth kernels become discretized
in computations with data, this case has considerable relevance to estimators
actually computed in practice. We consider sequences ihstead of fixed kernels K,
and K in order to include the case that K, and K, are step-function kernels
providing increasingly close approximation to given smooth kernels. The se-
quences {K,,} and {K,} may be selected to coincide, but this is not necessary,
and we avoid such an assumption in order to provide greater flexibility in
applications.

Under suitable restrictions, we shall establish the uniform a.s. rate

max , b a.s., n— o0,
nh

n

(1.4) sup sup|r,(x) — (%) = O
tel xed

where « is the order of uniform local Lipschitz (ulL) conditions imposed on fo(*)
and {d,(-), t € I}. [Under stronger smoothness conditions, the component A% in
(1.4) can be improved.] By allowing a family of B(-) functions instead of a single
one, we obtain a very useful type of extension of previous results in the
literature, and our results also yield certain improvements in previously consid-
ered special cases.

Section 2 provides general theory, in which the most fundamental results are
Theorems 2.1 and 2.2. These yield, in particular, a new result on density
estimation (Corollary 2.1), our main result on (1.4) (Theorem 2.3) and a corollary
giving conditions under which (1.4) provides the rate O((n/logn)~*/Ze+D),
Optimality of this rate, in the case of nonparametric regression function estima-
tion, is shown in Stone (1982).

The crucial role of (1.4) in establishing uniform strong consistency rates for a
variety of estimators involving conditional functionals may be seen from the
following examples, which will be treated technically in Section 3 by systemati-
cally applying the theory of Section 2.

EXAMPLE 1. Nonparametric regression function estimation. This corre-
sponds to (1.1) with the single B(-) function B(y) =y, in which case r(x) =
E(Y|X = x), the classical regression function, and r,(-) represents the classical
Nadaraya—Watson estimator [Nadaraya (1964) and Watson (1964)]. For general
background, see Collomb (1981) and Mack and Silverman (1982), with whose
results we make comparison in Section 3.
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EXAMPLE 2. Nonparametric scale curve estimation. A nonparametric ap-
proach to the problem of heteroscedasticity in linear models involves estimation
of the conditional variances

o(x) = E(YX =x) — [E(Y)X = x)]?

[see Carroll (1982)]. Here the first component is given by (1.1) with the single
function B(y) = y%, and the second component is handled by Example 1.
(Higher-order conditional moments may be treated similarly.)

ExXAMPLE 3. The conditional df. The conditional df itself, i.e., the function
F(tx), t € R, is given by (1.1) with B(y)=I(y<t), y€ R, t€ I=R. The
corresponding estimator F,(t|x) given by (1.3a) has been treated by Collomb
(1980). He proved consistency results, without rates, which are uniform in x and
pointwise in ¢. A Glivenko-Cantelli type theorem for F,(¢|x), uniform in ¢ and
pointwise in x, is given in Stute (1986). Besides the intrinsic interest of the
additional information provided by (1.4) in this case, such a result also plays a
fundamental role in obtaining uniform strong consistency rates in other prob-
lems, as in Example 5.

ExXAMPLE 4. The marginal density f,, With the single trivial function
B(y) =1, d,(-) given by (1.3c) becomes a density estimator for f,(:). A key
theoretical tool (Theorem 2.2) in Section 2 concerns the behavior of
sup,sup,|d,,(x) — d(x)| and, for this choice of {B,, ¢t € I}, yields new results on
density estimation [see Corollary 2.1 and Remark 2.3(i)].

EXAMPLE 5. L-smoothing. Denote by F~!(v|x) = inf{y: F(y|x) > v},
0 < v < 1, the conditional quantile function associated with F(:|x) and consider
estimation of a conditional L-functional

Ix) = /0 'J(0)F~(olx) do.

For J(v) = 1, I(x) reduces to the regression function r(x) considered in Exam-
ple 1. The same occurs in the case J(v) =I{p <v <1-p}/(1 — 2p), where
0 <p<1/2, with f(y|x) symmetric about r(x). Letting F,(¢|x) denote the
estimator of F(t|x) considered in Example 3, we consider for /(x) the estimator
1,(x) produced by substituting F, }(v|x) for F~'(v|x). In our treatment in
Section 3, we obtain uniform strong consistency rates for trimmed L-smoothers
by reduction of the problem to an application of results obtained for Example 3.

EXAMPLE 6. M-smoothing. For any given real function (), a correspond-

ing M-functional T,(-) may be defined on df's G by letting T;,(G) denote the
solution ¢, of the equation

J¥(y~4,)dG(y) = 0.

[The case y(x) = x yields T,(G) = [ydG(y), the mean functional.] In the case
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that G(-) is symmetric about 8, any antisymmetric ¢ yields T,(G) = 6. Thus,
for a class of such y(-), a class of competing estimators of § is given by T,( G),
with G estimating G.

Adapting this to regression curve estimation, we let r(x) be as in Example 1
and assume that, for each x € J, the conditional density f(y|x) is symmetric
about r(x). Then, for antisymmetric {, r(x) is the solution of the preceding
equation with G(-) replaced by F(-|x) and an estimator r,,(x) is given by
solving this equation with G(-) replaced by F,(:|x) defined as in Example 3. For
suitable choice of ¥(-), the function r,,(x) for estimation of r(x), x € J, is more
resistant to the presence of outliers than is the estimator r,(x) treated previ-
ously. We call r,,(x), x € J, the M-smoother corresponding to y. Pointwise
consistency of M-smoothers has been treated by Stone (1977), Tsybakov (1983)
and Hiardle (1984). Uniform weak consistency rates have been established by
Hirdle and Luckhaus (1984), by reduction, with 8(y) = ¥(y — t), y € R, to the
analogous problem for the estimators r,,(x) of r(x), for ¢ in a small neighbor-
hood of r(x). Following this approach, we establish a.s. uniform consistency
rates for M-smoothers in Section 3.

Our method in Section 2 will be to handle r,, — r, via the decomposition

(1'5) rtn - rt = Rtn + Stn’

with Rtn = (dtn - dt)/fn and Stn = dt( fO - fn)/( fOfn)' As noted in Example 4,
results for f, — f, may be obtained by specialization of results for d,, — d,. Thus
our treatment of r,, — r, via (1.5) will flow from study of d,, — d,. For this we
shall provide key foundational results in Theorems 2.1 and 2.2, from which our
target results, Corollary 2.1, Theorem 2.3 and Corollary 2.2 will be derived. We
shall deal with the stochastic component d,, — Ed,, of d,, — d, by analyzing, in
effect, the modulus of continuity of a certain randomly weighted empirical df.
The related bias component Ed,, — d, will be handled by imposing mild local
Lipschitz conditions. Without such conditions (for example, assuming only uni-
form continuity), the rate of convergence of the bias to 0 cannot be precisely
characterized and thus a rate cannot properly be asserted in (1.4).

2. Some general results on strong uniform consistency rates. Our
target results will follow from a basic theorem we establish on convergence of
quantities of the form

(2.1) y sup sup|D,,(x) — Dy(x)|,
tel xeJ

with |

(2.2a) D(x) = fnw(y)f(x, y)dy, x€R,

(2'2b) 'Dtn(x) = C;I[th(x + cr’z) - th(x - cr,z,)]! x € R’
{c;} and {c//} nonnegative sequences tending to 0, ¢, = ¢, + ¢;/ and

(2.20) Gulx) =n' Lv(Y)I(X;<z), zxeR.

i=1
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Here (X,Y), (X,,Y),1<i<n, f(x,y), f(y|x), f(x), I and J will be as in
Section 1, but the functions {B,, ¢t € I} there are replaced for the present by a
family {v,, ¢ € I] satisfying some specialized assumptions, and for the moment
we do not concern ourselves with kernels {K,}. The “randomly weighted”
empirical df G,, has mean function
X

(23) G(x) = BG,(x) = [ Df2) &,
and we readily see by the classical SLLN that for each fixed pair ¢ and x,
D,,(x) —» Dy(x) as., n = oo. Our purpose here is to strengthen this by giving a
rate for this convergence uniformly in ¢ € I and x € J.

The following assumptions come into play. We define a function g on R to be
uniformly locally Lipschitz of order a (ulL-a), where 0 < a < 1, if for some § > 0
and M < oo, sup, cglg(x + 2) — g(x)| < M|z|* for |2| < 8.

ASSUMPTIONS.
(A1) sup sup | v (y)f(ylx) dy = My < co.
tel xeJ 'R
(A.2) sup fo(x) = M, < co.
x€J
(A3) 0<v(y)<v(y), t<tel yeR.

(A.4) For some a,0 < « < 1, Dy(-) is ulL-a on o, uniformly for ¢ € I; i.e., for
some §, > 0 and M < oo,

sup sup |D,(x) — D,(x')] < M©®@|x — x'|%.
tel x,x'€d
Jx—x'|<8,

(A.5) Ey,(Y) is a continuous function of ¢ in I.

(A.6) The limit functions y,, = lim,_,y, and v, = lim,, .y, exist and are
finite a.s. (w.r.t. the df of Y), where ¢, = inf I (= —o0) and ¢* = sup I (< + ).

(A7) (Ely(Y)M)/* = M, < oo for some A, 2 <A < oo [in the case A = oo,
M,, denotes sup, ¢ g|v(¥)]]-

REMARKS 2.1. Consider the assumptions:

(B.1) inf f)(x) = m, > 0;
' x€d
(B.2) sup supfyf(y)f(x, y)dy = Ms* < o0;
tel xeJ 'R
(B.3) sup sup|D,(x)| = M, < .
tel xed

By simple arguments, we obtain:

(i) Under (A.1) and (A.2), (B.2) holds with M* < M,M,.

(ii) Under (B.1) and (B.2), (A.1) holds with M, < Mg*/m,.
(iii) Under (A.2) and (B.2), (B.3) holds with M, < (M,Mg*)"/2.
(iv) If sup,c ;sup, cq|Y(¥)| < oo, then (A.1) holds with J = R.



CONSISTENCY OF KERNEL ESTIMATES 1433

For the case v,(y) =y, (B2) is a type of assumption used by Mack and
Silverman (1982), who also assumed (B.1) and (A.2). Statements (i) and (ii)
indicate that we are enabled to have (A.1), (A.2) and (B.2) while bypassing (B.1),
thus providing our result on the quantity (2.1) with a broader scope of potential
application. [However, in dealing with r,, and establishing (1.4), we will need
(B.1).] Assumption (A.1) may be interpreted as requiring the conditional second
moments E[y2(Y)|X = x] to be uniformly bounded for ¢ € I, x € J. Statements
(i) and (iii) will be used in the proof of Theorem 2.3.

THEOREM 2.1. Assume (A.1)-(A.7). Let {c,} satisfy (i) 0 <c,— 0, (i)
A, =nc,/logn - o and (iii) 1 < c;! < (n/logn)=?/*, for X as in (A.7).
Then, with a as in (A.4),

(2.4a) sup sup|D,,(x) — D,(x)| = O(max{A;2, cZ})‘ a.s., n— oo.

tel xed

Further, in the case A = o in (A.7), there exists a number n, and for each real
k > 0 there exists a constant A,, not depending on the sequence {c,}, such that

(2.4b) P{ sup sup|D,,(x) — D,(x)| > A A, V% + M(“)c:} <n7",

tel xed

all k > 0 and n > n,, with M as in (A4).

REMARKS 2.2. (i) By the Borel-Cantelli lemma, if (2.4b) holds, then so does
(2.4a).

(ii) From (2.7), Lemma 2.1 and the proof of Lemma 2.2, it will be seen that the
constant A, in (2.4b) may be taken as 64 + 4, where A is chosen (sufficiently
large) to satisfy

(A - M1)2
2M0M1 + %(A - Ml)Moo
with My, M,, M, as in (A.1), (A.2) and (A.7).

(iii) Note that for 2 < A < oo condition (iii) implies condition (ii). For A =
the right inequality of condition (iii) follows from condition (ii).

>k + 2,

We prove the theorem by decomposing D,, — D, into a stochastic component
A,, = D,, — ED,, and a deterministic (bias) component B,, = ED,, — D,, each
to be treated separately. For the bias part, we readily obtain, using (2.3),

LEMMA 2.1. Under (A4) and for c, — 0,
(2.5) sup sup |B,,(x)| < M®c?, forall large n.

tel xed
For the stochastic component, it is easily checked that |A,,(x)| <
2¢,, 'V,(x, c,), where
(2.6)  Vi(x,8) = sup |Gy(x + 2) = Gp(x) = [Gy(x + 2) — G()]|.

l2|<8
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Putting
V, = sup sup V,,(x, c,),
tel xeJ
we have
(2.7) sup sup|A,,(x)| < 2¢,'V,.
tel xeJ

Consequently, Theorem 2.1 follows from Lemma 2.1 with the following central
result. '

LEMMA 2.2. Under the conditions of Theorem 2.1, excepting (A.4),
(2.8a) V,=0(A;"%,) a.s,n- w.

Further, in the case A = oo in (A.7), there exists a. number n, and for each real
k > 0 there exists a constant B,, not depending on the sequence {c,}, such that

(2.8b) P{V,>BA;Y%,} <n™*, allk>0andn > n,.

The proof of this lemma is given in Section 4.

From Theorem 2.1, we now can establish analogous results for the estimators
d,, and r,, introduced in Section 1, in'the case of {B,, t € I}.

We shall assume that the family {8,, ¢ € I} has a representation

Lo
(2'9) Bt(y)= Zquti(y)i yERstEI7
i=1
with fixed and finite i,, q;,..., q;, and with the families {y,, t € I}, 1 <i < i,
satisfying assumptions (A.1) and (A.3)-(A.7), with common « in (A.4) and
common A in (A.7).
We first consider kernel sequences of step-function form,

Jn
(2.10a) K, (u)= Y a,I{-b<u<b}, uceR,
j=1
with {j,},{a,;},{bs,}, {b;;} nonnegative constants such that, with b,; = b;; +
i
Jn
(2.10b) Y a,b,=1 [i.e., f K, (u)du = 1],
: j=1
Jn
(2.10¢) : sup ) a,by? < o
n j=1
and
Jn
(2.10d) sup Y a,;b%; < o.
n j=1

THEOREM 2.2. Let d,(-) be defined by (1.3c), with {8, t € I} having
representation (2.9), {K,} having form (2.10) and {h,} satisfying (i) h,B, = 0,
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(i) nh,b,/logn — o and (i) B, < h,' < b(n/logn)~** where b, =

n}in j<ibnjs By=max;_;b,; and A is given in (A.7). Assume also (A.2) and
either
(2.11a) A < o0 Ju.=Jo< o
or
(2.11b) A= o0; J,=0(n*), somes > 0.
Then -
(2.12) sup sup|d,,(x) — d,(x)| = O(max{A;"2, h2}) a.s.,n— oo,
tel xed

with A, = nh,/logn and a as in (A.4).

Proor. With the assumed forms for {B,, ¢ € I} and {K,}, the estimator d,
has a decomposition into terms of the type treated in Theorem 2.1, and
accordingly we obtain

to
(2.13) sup sup|d,,(x) — d,(x)| < 3 1g;lS:
tel xed , i=1
where
Jll . . .
(2.14) Sui= Y a,;b,,sup sup|Df(x) — DI(x)|,
j=1 tel xeJd
with

D(x) = fwm(y)f(x, y) dy,
D (x) = ¢;}[GP(x + ;) — GP(x - e7)],

G(x) =n7' X vu(Y)[{X, < x}
k=1

and

T/ ” —_—
J? an = hnbnj’ an = hnbnj°

cr,t J =h nbr,z

Fix i and j and put A, ; = A, b, ;. Then conditions (i), (ii) and (iii) assumed in

the present theorem yield their counterparts in Theorem 2.1 with {c,} replaced
by {c,;}»>1 and A, replaced by A, ;, n > 1, and Theorem 2.1 thus yields

(2.15) sup sup|D{(x) — DIN(x)| = O(max{A;}”, c:j}) a.s., n— .
tel xed

Now suppose that (2.11a) holds. Then (2.15) yields

Jo
(2.16) S,,=0| Y anjbnjmax{A;}/z, c;'{j} a.s., n — .
j=1
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It is easily seen, using (2.10c) and (2.10d) that the right-hand side of (2.16) is
O(A;'72, h%), and thus (2.12) follows, via (2.13).
Alternatively, assume (2.11b), choose real ¥ > 0 and put

jn jn
en =AMV Y a, b + M©@hG Y a,b50,

Jj=1 Jj=1
with A_, M® as in Theorem 2.1. Then .

Jn
P(S,;> ¢,} < X Psup sup|Dii-(x) — DO(x)] > A + Mg,

j=1 tel xed

and by (2.4b) of Theorem 2.1 we obtain ‘
P{S,;>¢,} <j,n", allnzxn,.

Choosing « > s + 1, with s as in (2.11b), and applying the Borel-Cantelli
lemma, we obtain

(2.17) S,;=0(e,) as.,n— co.

Again using (2.10c) and (2.10d), we have ¢, = O(max{A;'/? h%}), n - oo, and
thus (2.12) follows, via (2.13). O

As discussed in Example 4 of Section 1, Theorem 2.2 yields a result on density
estimation with discrete kernels, as follows.

COROLLARY 2.1. Let f,(-) be defined by (1.3b) with {K,} having form (2.10)
with j, = O(n®), some s > 0, and with {h,} satisfying (i), (ii) and (iii) of
Theorem 2.2 with A = . Assume (A.2) and that f, is ulL-a on J for some a,
0 <a<1. Then

(2.18) sup|f,(x) — fo(x) = 0(max{A;1/2, h2}) a.s,n- oo,

x€J

with A, = nh,/log n.

ProoF. With the family {8,, ¢ € I} reduced to the single function 8(y) = 1,
d,, given by (1.3c) reduces to f, in form, and, under the present assumptions, the
conditions of Theorem 2.2 are satisfied with the option (2.11b). Thus (2.12) holds,
which is the same as (2.18). O

This corollary not only extends the results of Serfling (1982) to a wider scope
of kernels and thus is of independent interest, but also serves as a tool in
developing our result for r,,, as follows.

THEOREM 2.3. (i) Discrete kernels. Let r,,(-) be defined by (1.3) with {8,
t € I} having representation (2.9), {K,} having form (2.10) and {K,,} having
form (2.10) with constants {J,}, {4, i (&, ik {l;,;’j} and with j, = O(n®) for some
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§ > 0. Let {h,} satisfy

(a) hnmax{Bn, B) -0, .

(b) (log n) " 'nh,min{b,, b,} - o,
(c) B,<h;'<b (n/logn)1 2/X and
(d) B, < ;! < b(n/logn),

with b, = min;_;b,;, B, =max;_;b,;, b, = j<jbnj,B J<;nl;njand
A as in (A.7). Assume (A.2), (B.1), f, ulL-a, on J for some a, 0 <ay<1, and
either (2.11a) or (2.11b). Then
(2.19)  sup sup|r,,(x) — r,(x) = O(max{A;"2, h}) a.s, n— o,

tel xed
with A, = nh,/logn and & = min{a, a,}, for a as in (A.4).

(ii) Smooth kernels. Let r,,(-) be defined by (1.3) with {B,, t € I} having
representation (2.9) and with K ,(-) = K(-), K,,(+) = K(-), where K is symmet-
ric, has bounded support and bounded first two derivatives and K, satisfies
similar conditions. Assume (A.2), (B.1) and f, ulL-a, on J for some a,,
0 < @y < 1. Assume that {h,} satisfies

(a) hn - 0’
(b) nh,/logn — o and
(¢) B < h;! < b(n/logn) =2,

for some constants b and B and for X as in (A.7). Then (2.19) holds.

ProoF. (i) It is immediate that, under the assumptions of the present
theorem, the conditions of Theorem 2.2 and Corollary 2.1 are satisfied, and we
have (2.12) as well as

(2.20) sup|f,(x) — fo(x)| = O(max{A;'2, h¥}) as., n— co.
x€J

We now apply relation (1.5). By (B.1), (2.12) and (2.20), we have
(2.21) sup sup|R,,(x)| = O(max{A,; 2, h2}) as.,n— .

tel xed
Using (B.1) again, as well as (B.3) [see statements (i) and (iii) of Remarks 2.1]
and (2.20), we Vhave
(2.22) sup sup|S, (x)| = O(max{A, 2, h%})  as,n-— oo.

tel xed

Combining (2.21) and (2.22), we have (2.19).
(i) Let K be symmetric with bounded support, say < [—1,1] and let us
introduce an associated sequence {K,} of discrete kernels, defined by

K, (u) = f‘, {(i-1)8, <u<ib,}K(i8,), u>0,

i=1

where j, =[8,; ']+ 1, with 0 <§, - 0 and K, (u) = K,(—u), for u <0, and
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K ,(0) = K(8,). For this kernel the regularity conditions (2.10c) and (2.10d)
reduce to

aup 3% [K(i8,) - K((i +1)8,)](18,) < oo

n =1

and

sup 3% [K(i8,) - K((i+1)8,)](i8,)° < eo.

n =1

For K" bounded, these reduce to

Jn
sup83/2 Y i'/?|K'(i8,)| <
n i=1 .
and
Jn
sup8? Y i2|K’(i8,)| < oo,
noi=1
which in turn are satisfied if we have [x% K’(x)|dx < oo, which indeed follows
from our restrictions on K(-). Similar considerations apply in connection with
K 0(‘)-
Now note that for y,(-) and K(-) bounded, we have

)
sup sp1d, (5 K) i K = O[3

tel xed n
where d,,(x; L) denotes (1.3c) based on the kernel L(-). Therefore, we can take
8, = O(h2) so that j, = O(h,?), which is O(n®), for some s > 0 under our
condition on the bandwidth. Thus we may now apply part (i) to obtain (2.19)
again in the present case. O

Useful corollaries of Theorem 2.3 are obtained by choosing 4, to make the
rates A;'/2 and h¢ agree. In particular, for the case of discrete kernels we have

COROLLARY 2.2. Let r,,(-) be defined by (1.3) with {B,, t € I} having repre-
sentation (2.9), {K,} having form (2.10) and {K,,} having form (2.10) with
constants {J,},{d, ks (b, it {5,;}} and with j, = O(n®), for some § > 0. Assume

a=1,in(A4)and A > 3in (A.7). Assume (A.2), (B.1), f, ulL-1 on J and either
(2.11a) or (2.11b). With the notation of Theorem 2.3, assume

(i) max{B,, B} = o((n/log n)l/a),
(ii) (n/logn) *? = o(min{bn, I;n}) < ¢ob,,
(iii) (n/log n) 23N < eob,

for some constant c, > 0. Let h, ~ c,(n/log n)~3 in (1.3). Then

(2.23)  supsup|r,(x) — r(x) = O((n/log n)_1/3) a.s., n— .

tel xed
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PROOF. It is readily seen that this choice of 4, and (i), (ii) and (iii) in the
preceding discussion yield (a)—(d) of Theorem 2.3(i). Also, the other assumptions
of Theorem 2.3(i) are obviously fulfilled by the present assumptions. Thus (2.19)
holds and yields (2.23). O

REMARKS 2.3. (i) An analogue of (2.23) for the density estimator f, may be
easily derived.

(ii) It would be of interest, in the case A< 0, to relax the restriction (2.11a)
on {J,} in Theorems 2.2 and 2.3(i) to a condition of form j, = O(n?), for some
s > 0. However, this would require a strengthened version of Lemma 2.2 with
(2.8b) extended to the case A < oo. The present proof of Lemma 2.2, given in
Section 4, does not appear to yield such a strengthening, due to the complication
presented by the truncation step involving the random variable W, in (4.9). A
possible approach could be to control the rate at which the rhs of (4.11)
converges to 0.

(iii) From the proofs of Theorem 2.2, Corollary 2.1, Theorem 2.3(i) and
Corollary 2.2, it is clear that the restrictions on {K,} and {K,} may be dropped
or relaxed, at the expense of introducing further factors (involving b,, b,, B,, B,,
etc.) into the rates expressed in the relations (2.12), (2.18), (2.19) and (2.22).

(iv) In the case of single step-function kernels K(-) and K(-), with finitely
many jumps in place of the sequences {K,} and {K,}, the restrictions on {A,}
in Theorem 2.2, Corollary 2.1 and Theorem 2.3(i) reduce to those given by (a), (b)
and (c) in Theorem~2.3(ii), with b = min{b,,..., bj, b Ce, JO} B =
max{b,,..., b/ ybyyen, bfo} and A as in (A.7)

(v) From the proof of Theorem 2.2 it is easily seen that in the case A = oo we
may express (2.12) in the form

sup sup|d,,(x) — d,(x)| < AA;Y2 + A’'h%, alllargen,as.,
tel xed

with A and A’ constants not depending on n.

(vi) We may also consider smooth kernels with unbounded support, by
restricting attention to a finite interval of increasing length. For example, in the
case of the standard normal density, we restrict to [—¢,, ¢,] with ¢, = n* for
some a > 0, take 8, = n~# > exp(—n2*/2) for some B > 0 and finally note that

= 0(1,8; ) = O(n**5).

3. Strong consistency rates in selected applications. Using Theorem
2.3(i) and Corollary 2.2, we develop strong consistency rates for the applications
discussed in Section 1, except for density estimation (Example 4), which has been
treated in Corollary 2.1.

For convenience and simplicity, we confine our attention to the case that the
kernels in (1.3b) and (1.3c) are step-functions not depending on n and having
finitely many jumps. Thus [see Remark 2.3(iv)] throughout this section we shall
assume the following standard conditions and notation with respect to the
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bandwidth sequence {4,} and kernels K and K|, in (1.3b) and (1.3c):

(3.1a) h,—- 0,

(3.1b) A, =nh,/(logn) - oo,

(3.1¢) B < h;' < b(n/logn)' **,

with b, B defined as in Remark 2.3(iv) and A a constant to be specified in each
particular application.

All of the results to be given have extensions to general kernel sequences of
form (2.39), at the expense of complicating the formulation. We also could
develop some analogous results for smooth kernels, but we omit this in the
interest of brevity.

3.1. Nonparametric regression function estimation. As in Example 1, we
take B,(y) = B(y) =y, in which case the representation (2.38) becomes B(y) =
11(¥) — v(¥), with y,(y) = max{0, y} and y,(y) = —min{0, y}. Then the as-
sumptions (A.1)-(A.7), (B.1) and f, ulL may be reduced to:

(3.2a) sup [ y*f(ylx) dy = M, < o0;
xeJ R '

(3.2b) E|Y* < 0, with2 <A < o0;

(3.2¢) 0<m <f(x) <M, <o, x€d;

the functions fy(x) and gy(x) = f ¥f(x, y) dy are ulL-a on J,

(3.2d) with0 <a<1.

Thus Theorem 2.3(i) and Corollary 2.2 yield the following result.

THEOREM 3.1. Assume (3.2) and let {h,} satisfy (3.1) with A as in (3.2b).
Then
(3.3) sup|r,(x) — r(x)| = O(max{A,; V2 h2}) a.s., n - c.
x€J
In the case a=1 and A>3 and for h, ~ Cyn/logn)~Y3, we have
O((n/log n)~/3) in (3.3). ‘

Let us compare, for example, with Theorem B of Mack and Silverman (1982).
There the kernels K(-) and K(-) are taken to be equal, symmetric and subject
to a set of smoothness conditions. Our (3.2b) and (3.2c) are also assumed,
but in place of (3.2a) is the stronger requirement (see Remark 2.1)
sup, ¢ ;/al¥1f(x, ¥) dy < oo, with A as in (3.2b). Also, the functions f, and g, in
our (3.2d) are assumed to have bounded second derivatives [thus implying (3.2d)
with @ = 1]. As bandwidth assumptions, our (3.1a) and an equivalent of (3.1b)
are assumed, and a slightly stronger version of (3.1c), namely that n"h, — oo for
some 11 <1 — 2/A, is assumed. Also, 2, k% < oo for some s > 0, and (*) h, =
O(A;'?), where A, = nh,/log(1/h,), are assumed. (Note that A, ~ A, for all
typical choices of {A,}.) Their theorem asserts for the quantity in (3.3) the a.s.
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rate O(A;'/2), which is compatible with our rate under their additional assump-
tion (*). In summary, our theorem considers step-function kernels instead of
smooth kernels, requires weaker moment assumptions, weaker regularity as-
sumptions and weaker bandwidth restrictions and provides a rate in (3.3) more
sensitive to the regularity assumptions.

In particular, given (3.2d) with a = 1 (implied by Mack and Silverman’s
conditions), the optimal rate in (3.3) is n~'/3 (ignoring log factors). This, in view
of (*), is also the optimal rate attainable in Mack and Silverman’s Theorem B.
For such a rate, our theorem requires A > 3 in (3.2b), whereas their theorem
requires A > 3 and regularity stronger than (3.2d) with a = 1.

3.2. Nonparametric scale curve estimation. This may be handled very much
like the previous application (see discussion of Example 2 in Section 1), and we
shall leave the details implicit.

3.3. The conditional distribution function. With the family {B,, ¢t € I} given
by B(y)=I{y<t}, yeER, te€l=R, the quantity r(x) defined by (1.1)
becomes the conditional df F(¢|x). Let us take K(-) and K(-) in (1.3b) and
(1.3c) to be equal, in which case the quantity r,,(x) in (1.3a) becomes a df (in the
variable ¢), which we shall denote by F,(t|x), ¢ € R, for each x. For the present
choice of B,(-), representation (2.38) holds trivially and assumptions (A.1)-(A.7),
(B.1) and f, ulL may be reduced to:

(3.4a) F,, the marginal df of Y, is continuous;
(3.4b) 0<m <fx) <M, <0, x€d;

fo(+) is ulL-a on J, and the functions F(¢| - ), t € R, are ulL-a
on J, uniformly in t € R, with 0 < a < 1.

Thus Theorem 2.3(i) and Corollary 2.2 yield

(3.4¢)

THEOREM 3.2. Assume (3.4) and let {h,} satisfy (3.1) with A = co. Then
(3.5) sup sup|F,(t|x) — F(t|x)| = O(max{A;"2, h2}) a.s., n - c.

x€J teER

3.4. L-smoothing. For L-smoothers with trimmed weight functions, uniform
strong consistency rates may be obtained by reduction to an application of rates
established for conditional df estimators, for example as given in the preceding
section. As discussed in Example 5 of Section 1, we consider a conditional
L-functional of the form

(3.6) I(x) = j:Jo(v)F_l(v|x) dv, =x€d.

Let fn(x) be a corresponding estimator defined by replacing F~ (v]x) in (3.6) by
FY(v|x), where E (- |x) is a df for each x and is uniformly strongly consistent for
estimation of F(-|x), in the sense that

(3.7) Z, = sup sup|F.,(t}x) — F(t|x) > 0 as., n— .
x€J teR
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Assume that J(-) satisfies

Jo(+) is bounded on [v,, v;] and vanishes elsewhere, with

(38) 0<v,<v, <1

We shall utilize the following elementary reduction lemma. For any function
&(+), let ||g|l,, denote sup|g(-)].

LEMMA 3.1. Let Ji(-) satisfy (3.8) and let F and G be arbitrary df ’s. Then
[a(G = F)
0

where § = ||G — F||, and v,, v, are as in (3.8).

(3.9) < N olloo [F~ (0, + 8) = F~(v, — 8)]8,

ProOF. Put Hy(u) = [(Jy(v)dv, 0 <u <1, and yy=F v, —8), y, =
F~Yv, + 8). Then, using integration by parts, (3.8) and the inequalities
max{F(y), G(y)} < v, for y <y, min{F(y), G(y)} > v, for y > y,, we have

[(0)[67 (o) = F (o) do = = [* [H(G(3)) ~ Hy(F(»))] dy
- "[H(G(5)) = HF(¥))] db.
Now, using |Hy(u) — Hy(u')| < ||Jyllo|le — ©’|, we obtain (3.9). O

We now give a general uniform strong convergence result for estimators fn(x)
formulated as before. We shall suppose that the given family of conditional df’s,
{F(-|x), x € J}, satisfies

(3.10) ayg < F Y vy—gplx) < F Y v, + gplx) <a,, allx €,
with —o0 < @, < a, < 0, g, < min{v,,1 — v} and v,, v, as in (3.8).
THEOREM 3.3. Let () be defined by (3.6), with J(-) satisfying (3.8) and

(F(-|x), x € J} satisfying (3.10). Let [ (-) be based on a family {F(-|x), x € J}
satisfying (3.7). Then

(3.11) sup|f (x) — I(x)] = O(Z,) a.s.,n— .
x€J
PRQOF. i.For each x € J, we apply Lemma 3.1 with F and G given by F(-|x)
and F(-|x), respectively. Combining these results, we obtain
(312)  sup|l(x) — Ux)| < || plluZ,sup [F~ (0, + Z,Jx) — F~}(v, — Z,Jx)].
x€J x€dJ

By (3.7) and (3.10), the third factor on the right-hand side of (3.12) is a.s.
bounded above by (a, — a,) for all large n. Thus (3.11) follows. O

Let us now consider the special case that I(x) is estimated by /,(x) based on
the family {F,(-|x), x € J} considered in Section 3.3. We have in this case the
following explicit rate.
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COROLLARY 3.1. Let I(-) be defined by (3.6), with J(-) satisfying (3.8) and
{F(-|x), x € J} satisfying (3.10). Let I, (x) be based on the family {F(-|x),
x € J} considered in Theorem 3.2 and assume the conditions of that theorem.
Then

sup|l,(x) — I(x)| = O(max{A;'2, h2}) a.s, n - co.
xed

3.5. M-smoothing. Continuing the discussion in Example 6 of Section 1, we
establish here, for a fixed () function, a uniform strong convergence rate for
r,,- We apply the results of Section 2 by taking B,(y) = y(y — ¢), y € R, for
t € I = R. In this case (1.2) becomes

(3.13) d(x) = fn W(y - t)f(x, ) dy

and (1.3c) becomes, for a fixed kernel K(-),

o1 e x - X,
(3‘14) dtn(x) = (nhn) Z ‘IJ(Yt - t)K h .
i=1 n

Clearly, we may characterize r(x) and r,,(x) as the solutions, with respect to ¢,
of the equations ,
(3.15a) d(x) =0,
(3.15b) d,(x) =0,
respectively. Accordingly, we shall reduce the problem of strong convergence of
Ty(x) to r(x), uniformly in x, to an application of the strong convergence of
d,(x) to d(x), uniformly in x and ¢, as given by Theorem 2.2.

To apply Theorem 2.2, we satisfy the representation (2.38) for {8,, ¢t € R} by
taking ¢, = g, = —1, y4(¥) = max{0, —¥(y — t)} and v,,(y) = min{0, —y(y -
t)} and adopting the following assumptions:

(8.16a) () is bounded, antisymmetric, monotone (incr.) and continuous;

(3.16b) 0<m <f(x)<M <o, x€dJ;

the conditional densities f(:|y), y € R, are ullL-a on J,
uniformly in y € R, with0 < a < 1.

It is readily seen that these yield (A.1)-(A.7), with A = o0 in (A.7), and thus
from Theorem 2.2 and Remark 2.3(v) we immediately have

(3.16¢)

LEMMA 32. Letd(-) andd,,(-) be given by (3.13) and (3.14). Assume (3.16)
and let {h,} satisfy (3.1) with A = oo. Then, for some constant A*, we have a.s.

(3.17)  sup sup|d,,(x) — d,(x)| < A*max{A,'?, h%}, alllargen.

teR xeJ

For our result on r,,(-), we shall also require
J¥(3 = r(x) + &) dF(31%)| = qolel, for |e] <3,

where 8 and g, are some positive constants. [This assumption is also used by
Hirdle and Luckhaus (1984); see their discussion.]

3.18 inf
(3.18)  inf
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THEOREM 3.4. Under the conditions of Lemma 3.2 and also assuming (3.18),
we have a.s.

(3.19) sup|r,,(x) — r(x)| < B*max{A;/2, h%}, alllargen,
x€J
with B* = 2A* /m,q,.

Proor. By the monotonicity of ¢ and the definition of r,,(x) as solution of
(3.15b), we have, for ¢ > 0, :

(3.20) ryn(x) > r(x) + e =d, )., (x) > 0.

Now

(321) dr(x)+e,n(x) < dr(x)+e(x) + sugldtn(x) - dt(x)l‘
te

Also, by monotonicity of y(-) and the identity d,(x)(x) = 0, the function
d,(xy+{x) is nonpositive and by (3.16b) and (3.18) has magnitude > m,gg¢, for
0 <e<d. Thatis, for 0 < e < §,
(3.22) drxy+ (%) < —mygoe.
Combining (3.20), (3.21) and (3.22), we have, for 0 < ¢ < §,

Tyn(x) > r(x) + 6= fggldm(x) — dy(x)| > mygoe.

With a similar inequality proved for the case r,,(x) < r(x) — ¢, we obtain, for
0<e<d,
(3.23)  sup|ry,(x) — r(x)| > e = sup sup|d,,(x) — d,(x)| > mgoe.

x€J reR xed

It readily follows that (3.23) and (3.17) imply (3.19). O

4. Proof of Lemma 2.2. Put
(4.1) a,=A;"Y%,=n"2(c,logn)">.

We first reduce sup,.; in (2.7) to a maximum over a finite set. By (A.3),
(A.5)-(A.7) and the monotone convergence theorem, the function g(t) = Ev,(Y)
is nondecreasing and continuous in ¢ with finite limits g(¢,) and g(¢*) as t — ¢,
and t*. Let us partition I by finite points ¢ < ¢, < --+ < ty, such that
8(t) — g(ty) < a,, g(t*) — g(ty) < a, and g(t;) — &(t;_) <a, for 2<j<
N,,. Clearly, we may arrange that
(42) - Nn = 2(g(t*) - g(t*))/an°
Also, for fixed x and z, the functions G, (x + z) — G,,(x) and G(x + 2) — G/(x)
are monotone in ¢ and, by (A.3) and (A.6) a.s., these functions for all x and 2
have finite limits as ¢ — ¢, t*.

Letting I, denote the set {t.f,...,ty,t*} and IF the set {({4,¢),
(2, 89), - -+, (Ey,, t*)}, we therefore have, for arbitrary ¢ € I,

Gon(x + 2) = Gy(x) — [Gy(x + 2) — G(x)]]

(4.3) =< Itnea}f|Gm(x +2) = Gp(x) - [Gt(x +2) - Gt(x)]l

+ max [Gx +2) - Gx) - [G,(x +2) - G
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Now, by nonnegativity of {y,, t € I} [by (A.3)], for s < ¢, the function G,(x) —
G/(x) is nonnegative and nondecreasing in x, so that for (s, t) € I* we have
(44) |1G(x) — Gy(x)| < G(o) — Gy(0) = g(t) — &(s) < a,, allax.

It follows from (4.3) and (4.4) that

(4.5) V, < max sup V,,(x, ¢c,) + 2a,.

tel, xedJ

Next we reduce sup, . ; to a maximum over a finite set. In this case, we first
transform to a supremum over a finite interval, as follows. Define

Gl0) = ' 3 W G)I{F(X,) < v)

i=1

and d,(v) = EG, (v), 0 < v < 1, where F, denotes the (continuous) df of X.
Then G, (x) = G, (Fy(x)) as., G(x) = G(Fy(x)) and, by (A.2), |Fy(x + 2z) —
Fy(x)| < M,|z|. Define

Vinl0,8) = |STlpald'”(v +u) = Gu(0) = [Gi(0 + ) = G(0)]I.
Then V,(x, ¢c,) < V,(Fy(x), Mc,) as. and hence (4.5) yields
(4.6) V,<max sup V,(v,Mgc,) + 2a, as.

tel, veFy(J)

We now partition the interval [0,1] by v, =0 and v, = k[2/M,c,]" " for
1 < k <[2/Mc,], where [ -] denotes greatest integer part. Let |u| < Mc,. For v
and v + u in the same subinterval [v,, v, ,], we easily find

|dtn(v +u) - dtn(v) - [ét(” +u) - ét(”)]l = 2Vm(vk’ Mc,),
and for v and v + u in [v,, v, ,] and [v}, v}, ], respectively, with & < j, we find

IG~tn(D +u) - th(v) - [ét(v +u) - ét(v)h
= th(uj’ Mlcn) + 2th(vk+l’ Mlcn)'

It follows that
(4.7) V, < 3max max V, (v, M,c,) + 2a, as.,

tel, ved,
with J, = {0,[2/M,c,]7%,2[2/M,c,]7%,...,1}.
In order to set the stage for an application of Bernstein’s inequality, we now
replace V,, (v, M,c,) by an analogue given by replacing G,, and G, by analogues
based on truncation of {y,(Y;)}. Put

(4.8) Q,=Ma,V*P,  n=x1,
and
H,(v) = n™" ¥ v (Y)I{v(Y) < @}{F(X,) < v},
i=1
deﬁi~1e V,*(v, 8) by substitution of H,, for G,, and EH,, for G, in the definition
of V,,(v,8) and define

V.* = max max V,*(v, M;c,).

tel, ved,
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Then (4.7) yields
(4.9) V,<38V*+3a,2/3+ W, +86,) as.,
where
W, =a;'sup sup sup |Gp(v +u) = G(v) = [Hy(o + u) = H,(0)]]

tel, ped, lul<Mc,
and ,
0,=a,'sup sup sup |G,(v+u)— G(v) — [EH,(v + u) — EH,(v)]|.

tel, ved, lul<Mc,

Note that W,, = 0 and 6§, = 0 in the case A = oo.
Using monotonicity of Y, in t [by (A.3)] and (A 6) and noting that a,' =
(Q,./M,)*~ 1, we readily obtain

MQ_IWL = Q;);_ln—l Z Yt'(Yi)I{Yt‘(Yi) > Qn}
(4.10) o
<n7! Z [Yt*(Yi)] }\I{Yt*(Yi) > Qn}
=1
For fixed @, we have by (A.7) and the classical SLLN,
411 27 X [ve(0] H{re(¥) > @) = E{[v(V)] 1{xe(Y) > @} }
i=1

Thus, since the nght-hand side of (4.11) a.s. dominates limsup,W, and — 0 as
@ — oo, we have

(4.12) W,->0 as,n— .

Also, we see via (4.10) that

(4.13) 0,<EW,-0, n- .
By (4.9), (4.12) and (4.13), it suffices for (2.8a) to show

(4.14) V*=0(a,) as,n— .

We shall establish this and (2.8b) as well, by developing a suitable upper bound
for P(V,* > B,a,}, for appropriate choice of B,. We write

(4’15) . P{ Vn* 2 Boan} = E Z P{Vt:(v’ Mlcn) = BOan}’

tel, De,]:t

with B, to be specified later, and we estimate the terms of this summation by an
adaptation of the proof of Lemma 2.2 of Serfling (1982).
By (4.1) it is seen that

(4.16) a,/c,>0, n- oo.

 Now define
2Q,c
w, = [ U + 1},
an
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with [ -] denoting greatest integer part. Fix v and put
rMc,

My, r =0+ , forr=-w,, -w,+1,...,w,.

n
Note that 2, ,., — 1, , = M,c,/w,. Defining
gtnr = |th(nn,r) - th(v) - [Eth(nn,r) - Eth(v)]l’
we have, by monotonicity of H,,(v) and EH,,(v) as functions of v, that
Vt:(v’ Mlcn) =< max gtnr + max IEth(nn,r+ 1) - Eth(nn, r)l .

—w,<r<uw, —w,<r<w,_;
Now
E[th(nn,r+l) - th(nn,r)] < QnP{nn,r < F;)‘(X) =< nn, r+1}
= Qn(nn,r+1 - nn,r)
<MQ,c,/w,
<Ma,/2 < Ma,,
so that
P(V(0, Myc,) > Boa,} < P _max £, > (B~ M)a,)

= Zw P{¢,,, > (B, — M))a,}.
By Bernstein’s inequality [Uspensky (1937)],
Pt > (B~ My)a,} < 2exp( 3, ,),
where
5 — (B, — Ml)znzarzz
™" 2nop, + 3(B, — M})Q,na,
and o2, = Var{Z,,,}, with
Zypy = Yt(Y)I{yt(Y) = Qn}I{v <F(X)< "7n,r}'
Applying (A.1), we obtain

ot%tr = Ethnr
(417) < [ [V()I{(1(5) < Q) < Fy(x) < v + Mic, }f(x, y) dxdy
<MMyc,. |

By (4.8) and restriction (iii) on {c,} in the hypothesis of the lemma, we obtain

e logn )0\—2)/20\—1)

< M}‘Cn.

(418)  Q,a, = Mad /"D = Mx( o

By (4.1), (4.17) and (4.18), we thus have
(4.19) 8, .= Bglogn,
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with
(Bo B M1)2
4.2 Bf = .
(4.20) T = 2MM, + 3(B, - M) M,
Since (4.19) holds uniformly in r, r = —w,, —w, + 1,...,w,, we have
(4.21) P{V,*(v, Mc,) > Bya,} < 6w,n" B¢,
And since (4.21) holds uniformly in ¢ € I, and v € J,, (4.15) yields
(4.22) P{V,* > Bya,} < 6(N, + 2)Nw,n" 58,
where N, denotes the cardinality of the set J,,. By (4.1) and (4.2) we find
1/2
4.2 N +2<2(M,+1 .
(4230) 425200+ )| ]
Also, using the restriction c, < 1,
(4.23b) N, < [2/Mc,] + 1 < (2/M, + 1)c; .
By (4.1) and (4.8), we have
20 ¢ ’ n \MEA-D
w, < ’”‘+1=2Mkc,,( ) .+ 1
a, c,logn
Using the restriction (iii) on {c,}, we easily obtain
N \M2A-D
c >, 0D > 1.
" ¢c,logn "
Thus
A/2(A—1)
(4.23¢c) w, < (2M, + l)cn( o log n)
Putting
(4.24) Ly = 12(M, + 1)(2/M, + 1)(2M, + 1)
and combining (4.22) and (4.23), we obtain
n @2A-1)/2(A-1)
25) * > <L ~Bs,
(4.25) P{V* > Bya,} < )\( cnlogn) n

Again using the restriction (iii) on {c,}, we find ¢, ! < (n/log n)*/*~?, whence
(4.25) yields

n~ B8,

n @A-1)/(A-2)
. * > <L
(4.26) P{V* 2 Bya,} < x( logn)

Now, for given A and for given real k > 0, the constant Bg* can be made to
satisfy
22 -1

A—2

By >« +
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by taking B, sufficiently large in (4.20). Let B, ) denote such a determination of
B,. Then (4.26) yields [using 2A — 1)/(A — 2) > 2 for A > 2],

(4.27) P{V}*> B, \a,} < Ly(logn) *n"".
In particular, taking k = 2 in (4.27) and applying the Borel-Cantelli lemma,
we obtain (4.14), thus establishing (2.8a).

To obtain (2.8b), we take A = o and apply (4.9) with W, =0 and 6, =0 to
write, for any B > 2,

(4.28) P{V, > Ba,} < P{V,* > (B - 2)a,}.
For each real « > 0, define B, = 3B, ,, + 2. Then (4.27) and (4.28) yield
(4.29) P(V, > B.a,} <L _(logn) *n"",

which, recalling the definition (4.1) of a,, yields (2.8b). O
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