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MINIMUM COST TREND-FREE RUN ORDERS OF
FRACTIONAL FACTORIAL DESIGNS!

BY DANIEL C. COSTER AND CHING-SHUI CHENG

Purdue University and University of California, Berkeley

Run orders of fractional factorial designs which minimize a cost function
based on the number of times the factors change levels during the time
sequence in which the runs are performed and which simultaneously have all

" factor main effects components orthogonal to a polynomial time trend are
found for a wide variety of factorial plans. A construction technique based on
a generalized foldover scheme is presented.

1. Introduction. Suppose an experiment is to be performed according to a
given fractional factorial plan. In some cases, the time order in which the runs or
treatment combinations are performed need not be randomized. Instead, certain
systematic run orders may be preferred. For example, if the runs are made in
some time or space sequence, each observation may be affected by a trend which
is a function of time or position. In the presence of a time trend, a nonran-
domized run order may improve the efficiency with which factor effects are
estimated. A design objective of full efficiency is attained when the factor effects
are orthogonal to the time trend effects.

The cost of conducting an experiment is often of practical importance. A
second design criterion is a cost function based on the number of times each
factor changes levels. The practical interpretation is that it costs a certain
amount to change the levels of each factor, for example, to reset a measurement
instrument, change the fertilizer on a field trial, restart an industrial plant and
so on. If all level changes are equally expensive, run orders that minimize the
total number of factor level changes are optimal with respect to this second
criterion.

Cox (1951) began the study of systematic designs, for replicated variety trials,
with the single criterion of efficient estimation of treatment effects in the
presence of a smooth polynomial trend. Certain 2" factorial designs robust to
both linear and quadratic trends were found by Daniel and Wilcoxon (1966). The
cost criterion was introduced by Draper and Stoneman (1968) in their exhaustive
searches of some eight-run factorial plans. Dickinson (1974) extended the work of
Draper and Stoneman to 2* and 2° complete factorial plans with the search
restricted to minimum cost run orders. Joiner and Campbell (1976) took an
approach in which each factor changed levels from one run to the next with a
given probability. More expensive factors were assigned smaller probabilities of
changing levels. In an unpublished report, P. W. M. John extended the method
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of Daniel and Wilcoxon to certain designs for factors at two and three levels and
discussed the foldover properties of such systematic run orders. Cheng (1985)
gave a theoretical description of the cost structure in two-level factorial designs
and provided some examples of run orders optimal with respect to both our
design criteria. The theory presented in Section 4 extends Cheng’s results and
provides an algorithm for constructing optimal orders for many fractional
factorial designs. In particular, our results may be applied to the designs listed in
two National Bureau of Standards tables (1957, 1959). A majority of these
designs can be optimally ordered with respect to both design criteria.

In Section 2, we briefly summarize the definition and group properties of
fractional factorial designs and the notation we use to describe these designs.
The design criteria are defined in Section 3 while the main results are presented
in Section 4. Proofs are left until the Appendix. Section 5 contains applications
of the construction results of Section 4. A summary discussion appears in Sec-
tion 6.

2. Fractional factorial designs. Attention is restricted to designs in which
all factors are at the same number of levels. Consider n factors, each at s levels
where s is a prime power. Let the s levels of each factor be the s elements of the
Galois field of order s, GF(s). We denote the s factor levels by 0,1,...,s — 1,
with 0 the additive identity and 1 the multiplicative identity in GF(s).

A complete factorial design in all n factors requires s” runs. Let G = (s*~P)
denote a s™? fraction of the complete factorial, blocked in s” blocks each of size
s"P77 Let N = s"7? be the number of runs in the design G. Let R = s» P~
be the size of each block.

DEFINITION 1. A design G is defined by a set of (p + r) linearly indepen-
dent vectors whose elements are in GF(s), say «; SE€GF(s), i=1,...,p+r,
J=1..,nIf o= (a;...,a;,)T, the treatment combinations in the principal
block are the R solutions z = (¢,,...,{,)", {;€ GF(s), j=1,...,n, to the

system of equations
(2.1) alz=0, i=1,...,p+r.

The remaining s” — 1 blocks, each of size R, are cosets of the principal block and
correspond to solutions z of the first p equations only in system (2.1).

The n-tuples a,,..., a, represent the'p independent defining effects of the
fraction while o, ,,...,a,,, are the blocking effects. The group operations
involved in solving system (2.1) are those of addition and multiplication in the
field GF(s). To find the R solutions to system (2.1), it is sufficient to find
h =n — p — r independent solutions z,,...,z, and from them form all linear
combinations '

(2.2) bz, + -+ +b,z,, forall be GF(s), j=1,...,hA.

Ifz,,,,...,2,_, are r independent solutions of the first p equations of system
(2.1), but not of all (p + r) equations, they may be used to find the cosets of the
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principal block by forming the s” runs
(2.3) by 1Zpt+ o +b,_z forall b, € GF(s), j=h+1,...,n—p,

n—-p“n—p?’
and adding each resulting run to all R treatment combinations in the principal
block.
The notation we use to describe the treatment combinations of the design G is

as follows. Let the n factors be named a,,..., a,. If z is in design G, we write
run z equivalently as
(2.4) ° g = a{la% oo ain_

Then design G is a group {g;,...,8y}. Without loss of generality, G is generated
by {g:,---8,_p), the first A of which are independent solutions to all p + r
equations of system (2.1) and generate the principal block. From expression (2.4),
these A principal block generators are in one-to-one correspondence with the
independent solutions z,,...,z, of (2.2). We call {g,,...,g,) the within-block
generators. The between-block generators g, ,,...,&,_, correspond to solutions
Zpit---rZpp Of (2.3). Any treatment combination in G is of the form

g=grgr - ghy, b€ GF(s), j=1,...,n —p.

Write g = 1 to denote the treatment combination corresponding to all factors at
level 0. We assume that any design G is at least a main effects plan, that is, the
p + r n-tuples {a;} of Definition 1 are chosen to ensure that no main effect is
aliased with another main effect or confounded with block effects.

3. Optimal design criteria. Both the polynomial time trends and the
values taken by the main effects components of the n factors in the design
matrix are defined in terms of systems of orthogonal polynomials. We begin with
a definition.

DEFINITION 2. The system of orthogonal polynomials on m equally spaced
points i = 0,..., m — 1 is the set {P,,, £ =0,1,2,...,m — 1} of polynomials
satisfying

m—1
(3.1) Y, P,.(i)=0, forall k>1,
i=0
m—1
(3.2) Z Pkm(i)Pk,m(i) ‘=0, forall &+ &,
i=0

where F,,(i) = 1 and P,,(i) is a polynomial of degree k. We assume that each
polynomial in the system is scaled so that its values are always integers.

Note that if ,,, is any polynomial of degree 2 < m — 1 on m eqﬁally spaced
points i = 0,..., m — 1, then, for some {w,...,w,}, @, may be expressed as

k
(3.3) ka( i)= Eo ijjm( i).
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DEFINITION 3 (Factor effects). The s coefficients of the jth main effects
component of each factor, 1 <j < s — 1, are P,(i), 0 <i < s — 1, the values of
the orthogonal polynomial of degree j on s equally spaced points.

DEFINITION 4 (Trend effects). The R values of a polynomial trend of degree
J»1 <j < R —1,inablock of size R are P(i), 0 < i < R — 1, the values of the
orthogonal polynomial of degree j on R equally spaced points.

The linear model for the N observations is
(3.4) Y=XB+e,

where ¢ is an N-vector of zero mean, uncorrelated random errors. Let X =
(xy,..,x,)=(x;), t=1,..., N, j=1,...,7. Each column x; of the N X r
design matrix X is either a factor, trend or block effect. The first R rows of X
correspond to the R treatment combinations in the principal block, the next R
rows to the runs in the second block and so on. There is one column in X for each
block of G. Without loss of generality, these are the last s” columns of X. For
any block columnx;, 7 —s"+ 1 <j <, x,; = 1,ifrun i isin block j — (7 — s"),
otherwise x;; = 0.

Let the first ¢, columns of X correspond to the factor effects in the model.
Unless otherwise stated, we assume that interactions are negligible. Then ¢, =
n(s — 1). By Definitions 1 and 3, if column x; represents the mth main effects
component of a factor a, which is at level u € GF(s) in run i of G, then

(3.5) x;;= P, (u).

We assume that the same polynomial time trend of degree & is present in each
block. Let columns x, ,,...,X, ., of X represent such a time trend, that is, the
coefficients in column g, + m, 1 < m < k, are given by the polynomial of degree
m from the orthogonal system defined in Definition 2 for the R equally spaced
positions in each block. By Definition 4, for j = g, + m, if run position i = i,
(mod R), then x;; = P, p(iy).

Partition the design matrix X into two parts, (X;,X,), where X, is the N X g,
matrix of factor effects and X, the N X q,, ¢, = k + s’, matrix of trend and
block effects. Partition the parameter vector B similarly into two vectors B, and
B, of dimensions g, and g,, respectively. The following facts are immediate: The
q, columns of X, are orthogonal; the g, columns of X, are orthogonal; the g,
columns of X, are orthogonal to the s” block effects columns of X,.

For any main effect column x, of X, and trend column x, of X,, we define the
time count between factor effect x; and trend component x, as xTx,. The
design criterion based on efficient factor effect estimation in the presence of a
smooth polynomial time trend may now be defined using the orthogonal poly-
nomial structure of the linear model described previously. The objective is to
eliminate the effect of the time trend by finding run orders for which all the
main effects components of all n factors are orthogonal to the k£ trend columns
of X,. Such run orders are said to be k-trend free. If the time counts between all
factor effects and trend effects are 0, the run order is optimal with respect to our
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first design criterion. If this is achieved, X, will be orthogonal to X, and the
factor effects will be estimated with full efficiency.

As stated in Section 1, our second optimality criterion is a cost function based
on the number of times each factor changes levels. We assume that all factor
level changes are equally expensive. Then a run order is optimal if it minimizes
the total number of level changes. The compatibility of this cost function with
the group structure of a fractional factorial design is used in Section 4 to produce
a construction method that generates run orders optimal with respect to both
design ecriteria. The restrictive assumption of equally expensive factor level
changes is discussed in Section 6.

4. Construction of optimal run orders. We present conditions under
which the main effects components of each factor become or remain orthogonal
to a polynomial time trend during a stepwise construction of a run order of a
design. We begin by assuming that design G is run in a single block of size N.
Later in this section, we present results that allow this restriction to be dropped.
In addition, the construction method is adapted to produce run orders that are
optimal with respect to our second design criterion. Proofs of all the results in
this section are given in the Appendix.

Consider a single factor, a, say. Let U = (uz,,,..., U, ), u; € GF(s), i =
£+ 1,..., &+ sv, be a sequence of sv consecutive levels of a, in rows § + 1,...,
£ + sv of design matrix X. Usually, v is a power of s. Let x be the column of X,
representing the main effects component of degree g of a,. By (3.5), x, = P, (u,).

DEFINITION 5. Factor a, is k-trend free over U if

(a) each of the s levels of a, appears v times in U and
(b) all s — 1 main effects components of a, are orthogonal to trend compo-

nents Pyy,..., P,y over the sv runs of U.

Let i,,, m = 1,..., v, be the v run positions in U at which a, is at level ¢, for
each t=0,...,s — 1. Suppose q, is k-trend free over U, for some k& > 0. For
each main effects component of degree ¢ = 1,..., s — 1 and each trend of degree
J=0,..., k, we have, by Definition 5,

s—1 v s—1
(4.1) 0=Y X Pu(t)Py(ivy) = X P (t)W(t; j, N),
t=0 m=1 ! t=0

where W(¢; j, N) is the sum of the values of the jth trend over the v runs of U
in which @, is at level ¢ The term W(¢; j, N) is simplified by Lemma 1. Then
with Definition 6, Theorem 1 is true.

LEMMA 1. If a, is k-trend free over U, then W(t; j, N)= W(J, N) is
independent of the level t, forj=1,..., k.

DEFINITION 6. For sequence of levels U as before and for some e € GF(s),
let U(e) be another sequence of sv levels of factor a, located at run positions
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¢ +1,...,¢ + sv, where the level of factor a, at position £ + i is given by
Ugy, t e

THEOREM 1. Let a, be k-trend free over U, for some k > 0. Then a, is also
k-trend free over U(e).

We may now define the generalized foldover of U in terms of some nonzero
element e € GF(s). Then Theorem 2 which follows Definition 7 provides the
main method for constructing trend-free orders optimal with respect to the first
design criterion.

DEFINITION 7 (Generalized foldover of U). For U as before, the generalized
foldover of U is the sequence of s levels of a, given by

U*(e) = (U,U(e),U(2e),...,U((s — 1)e)).

THEOREM 2. Suppose a, is k-trend free over U. Let U*(e) be the generalized
foldover of U with respect to e # 0 € GF(s). Then a, is (k + 1)-trend free over
U*.

We will give a scheme that allows k-trend-free run orders of G to be
constructed. We assume that any run order of G begins with the run 1 in which
all factors are at level 0. We employ the notation of expression (2.4) and write
the runs of G as {g,,...,gx} Recall that by g*for t = 0,..., s — 1 we mean the
multiplication of each exponent of a factor name by ¢ according to the operation
of group multiplication in GF(s).

At the beginning of this section, we assumed that design G would be run in a
single block of size s"~?. We now reinstate the block structure. There are s”
blocks of size R =s” where A =n — p — r. Recall that by a within-block
generator we mean a run g that is in the principal block and is used, along with
h — 1 other independent principal block runs, to generate the principal block by
(2.2) whereas a between-block generator is one of the r independent runs from r
distinct blocks, other than the principal block, used to generate the s™ — 1 cosets
of the principal block by (2.3).

Let {g,,...,8,_,} be n — p independent generators of G, the first 4 of which
generate the principal block. Suppose G is generated as follows: set U, = 1. Then
let

(4.2) U, = U*(g,), i=1,....,n—p,

where g; = af' --- aj. Then factor a; is folded over according to Definition 7
with respect to level e;.

Theorem 3 shows how k-trend-free orders may be constructed. We precede
Theorem 3 by a result that exploits the block structure of the design and the
assumption that the trend components in every block of G are identical.

LEMMA 2. Using generalized foldover scheme (4.2), if a factor is at a
nonzero level in at least one between-block generator {g;.,,...,8,_,}, that
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factor is orthogonal to all the polynomial trend components present in linear
model (3.4).

THEOREM 3. For G generated according to system (4.2), G is k-trend free if
each factor appears at least (k + 1) times at nonzero levels in the sequence of
generators or, for any factor appearing fewer than (k + 1) times at a nonzero
level, that factor is at a nonzero level in at least one between-block generator.
Note that these (k + 1) appearances at nonzero levels do not have to be at the
same level.

ExXAMPLE 1. Consider the design G = 237°, a complete 22 factorial in factors
a, b and c¢ run in one block of eight runs. Then G = {1, a, b, ¢, ab, ac, bc, abc}
and if we choose g, = ab, g, = abc, g; = ac each nonzero factor level appears at
least twice and the resulting run order constructed according to the scheme (4.2)
is linear trend free or 1-trend free. This order is G = {1, ab, abc, c, ac, bc, b, a}
and was found by Draper and Stoneman in their exhaustive search of all 8! run
orders.

~ Note that with the generalized foldover scheme (4.2), the last run of the first
struns, i =1,...,n — p, is given by

(4.3) g lgs gl

We turn now to the second design criterion: a cost function given by the
number of factor level changes. Recall the assumption that all factor level
changes are equally expensive. Cheng (1985) gives a method for constructing
minimum cost run orders of two-level fractional factorial designs. We will
present a generalization of Cheng’s arguments to fractional factorial designs at s
levels, where s is a prime power. A method based on the generalized foldover
scheme defined previously is shown to produce minimum cost run orders of
designs G. Among all possible minimum cost run orders generated by the
foldover method, one is sought that meets the trend elimination conditions of
Theorem 3. If such an order exists, it is optimal with respect to both our design
criteria.

For convenience, we employ the same notation as Cheng. The reader is
referred to Cheng (1985) for details. Begin by defining a cost or distance function
between any two subsets A and B of G by

d(A,B) = min Bd(w,v),

wEA,ve

where d(w, v) is the number of factor level changes between runs w and v. In the
notation of (2.4), if w =a -+ a¥» and v =a} -+ al», w;, v; € GF(s), then
d(w,v) = LI(w; # v,), where I(w; # v;) equals 1 if w; # »;, and is 0 otherwise. In
particular, d(1, w) is the number of factors at a nonzero level in run . In what
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follows, assume that the first block of G is the principal block, denoted by B,, a
subgroup of G. Blocks B,, ..., B, are cosets of B, in G.

LEmMA 3. Let (g,,...,8,_,} generate G by the generalized foldover scheme
of Theorem 3. Let

i-1
(4.4) di=d(gi, ngj‘l), i=1,...,n—p.
j=0

Then the cost of the run order so generated is
n—p
(4.5) C= )Y (s—1)s" P74,

i=1

Consider the following group structured decomposition of the principal block,
B,. Beginning with H{® = {1}, we iteratively define a sequence of quotient
groups G; = B,/H{® and subgroups H{*" of B, along with a set of minimum
within-block costs {c;,,}, i =0,1,...,t— 1, by

Civ1 = min  d(H,K) and H{*Y= |J H,
H,KeG, H+K Heg®
1

where S{) is the subgroup of G, generated by {H: d(H{®, H) = c;,,}. Let
m; = |S¢~Y| =s" N,=N,_,/m; and N, = s"P. Note that G, = B,.

Each N, equals s” multiplied by the number of cosets of H{" in B,, where
for convenience we count H{ as a coset of itself, each coset being of size
mm, --- m;, whereas r;_, is the number of independent generators of S{*, the
subgroup of the quotient group G; generated by those elements of G, distance
¢;,; from the current subgroup H{") of B,. The elements of S{" are cosets of H{.
The H{"’s form a nested sequence of subgroups, of strictly increasing size, of B,.

The sequence of costs {¢;, i =1,...,¢t} is strictly increasing. The iterations
terminate when N,=s" for some ¢ at which time H{? = B,. Note that
rn+---+r,=n—p-—r.Ateachstagei=0,...,t — 1, there are arrangements

of the s™+1 elements of S{® that have cost c;,, between any two adjacent
elements in the arrangement. This produces a minimum cost ordering of the
elements of S{". Theorem 4 shows how the generalized foldover scheme may be
used to find such arrangements. When the principal block has been minimally
ordered, we repeat the previous induction, starting with H(¥ = B, and G
replacing B,, until some N,,, =1 and H{!*") = G. The between-block mini-
mum costs {¢,,,..., ¢} found from this second iterative procedure, although
strictly increasing, may be less than the within-block costs found when
ordering B;.

This cost structured decomposition of G may be combined with the gener-
alized foldover scheme to produce minimum cost run orders as follows. At each
stage i = 1,..., ¢t + t/, suppose S{*~ " is generated by {K,,..., K,.} € G,_,. By
definition of S{*~V, there must exist independent runs z;;€ K;;, j=1,...,1,
each distance c; from run 1. Thus, at each stage, z,; has the minimum possible
number of factors at a nonzero level. Setting r, = 1 and z,;, = 1, define a set of
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n — p independent generators of G by

(4.6) 8= (ﬁ )

g

Jj—1
iy _lgi,;‘)(jl:llgfjj‘)zij, J=1, ., i=1,.. t+¢.
=1 = =
Note that g, is z,; multiplied by the product of all previous generators raised to
the power (s — 1). Since the z;; are independent in H{", the collection

(4.7) (8, 7=1,...,r,i=1,...,t+ ¢t}

are n — prindependent generators of G. With the help of Lemma 3, the following
theorem is true.

THEOREM 4. If a run order of G is constructed by the generalized foldover
scheme (4.2) applied to the sequence of generators (4.7), the resulting run order
has minimum cost given by

t+t

(4.8) Cooin = Z (Noy — N)e,.

EXAMPLE 2. Consider the design G = 284, a design for eight factors in two
blocks of size 8, defined by I = ABEGH = ACFG = ABCD = ABEF with
blocking effect ACE. (Note that this design is too small to be of much practical
use and serves only as an example here.) The principal block contains three runs,
abed, acfg and bdfg, each with four factors at a nonzero level. Any two of these
three runs are independent. Thus ¢, = 4, r, = 2, m; = 4 and N, = 4. Choosing
z,, = abed and z,, = bdfg, by (4.6) g,; = abed and g,, = acfg. With these
generators, the subgroup H{V and its coset HS" are

H® = (1, abed, acfg, bdfg},
H{Y = {cdefh, abefh, adegh, bcegh} .

Now G, = B,/H{" consists of H{" and its coset HV. Also, S{V = G, in this
example. Since each run in H{V has five factors at a nonzero level, ¢, = 5, r, = 1
and N, = 2 = s". If we choose g,, = cdefh, then the final minimum cost order-
ing of B, by the foldover method is H® followed by H" with the runs in the
order shown. The second block of the design has three runs with three factors at
a nonzero level. Any one of these may be used as the required between-block
minimum cost run. Thus ¢; = 3. If we set z;, = bde, then, by (4.6), g5, = cdgh
and the resulting minimum cost ordering of B, is

B, = {cdgh, abgh, adfh, befh, efg, abcdefg, ace, bde} .
By (4.8), the overall minimum cost is 61 level changes.
Including the between-block costs {c,,,...,¢,.,} in the cost decomposition

described previously implies that the observations for treatment combinations in
each block are made before the next block’s observations are begun. In reality,



MINIMUM COST TREND-FREE RUN ORDERS 1197

observations for runs in each block may be made concurrently and there will be
no between-block costs. If this is the case, a run order will have minimum cost of
level changes if each block is minimally ordered according to the within-block
costs found previously and any r independent between-block generators may be
used in the generalized foldover scheme (4.2). With this added freedom, mini-
mum cost run orders that satisfy the preceding orthogonality design criterion are
more readily found. An example is provided in Section 5. Note that expression
(4.8) for the minimum cost for design G becomes

t
(4.9) Cpin = 2 (Ni_; = N)c;.
i=1

The previous results provide a sufficient condition under which a run order of
G is optimal with respect to both design criteria: trend elimination and mini-
mum cost of level changes. Assume that the trend is of degree %2 and is
represented by & columns in design matrix X as described in Section 3. Usually,
k will be small: Values of 1 and 2 are most common. Let the cost structure of G
be given by

t+t

{(cl’rl)’(CZ’r2)1""(ct+t” rt+t’)}’ where Z ry,=n-—p.
Jj=1

Let {z,;, j=1,...,1, i=1,...,t + t'} be some choice of n — p independent
minimum distance runs with respect to this cost structure. Let {g;;} be formed
from these as in expression (4.6). All preceding results may be combined to give
the following theorem.

THEOREM 5. If each factor appears at some nonzero level at least (k + 1)
times in the sequence of runs {g,,;} which generate G by the generalized foldover
scheme (4.2), or at least once in a between-block generator, the resulting run
order, having minimum cost (4.8), or (4.9) if the between-block costs are 0, and
being k-trend free by Theorem 3, is optimal with respect to both design criteria.

5. Examples of optimal run orders. In this section, we present some
examples of series of fractional factorial designs with factors at two or three
levels for which optimal orders may be found by the construction techniques of
Section 4. Throughout this section, unless otherwise stated, a run order is
optimal if it is linear trend free, that is 1-trend free, and has minimum cost of
level changes. We add one further result which leads to linear trend-free
two-factor interactions for designs with factors at two levels but requires more
than the minimum number of factor level changes. A

Before presenting specific examples, we make the following observation: When
s is a prime number, group operations in GF(s) are addition and multiplication
modulo s. Thus, if {w,,..., ®,_,} is the ordered series of minimum cost runs, in
one-to-one correspondence with the runs {zij, J=L..,r,i=1...,t+ 1t}

used in (4.6) to find the set of generators that construct an optimal run order of
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G by the generalized foldover scheme, then
(5.1) g, = o’ Y,

since (s — 1) + (s — 1) = 0 (mod s). Only the current and previous members of
{w;} are needed to find the next generator in (4.6). With this simplification of
(4.6), whenever a sequence of generators for a particular design is presented in
the following discussion, only the set of minimum cost runs {w;, i = 1,..., n — p}
is shown.

By Theorem 3, for a two-level factor to be linear trend free it must be at its
high level, level 1, in at least two of the generators in sequence (4.7). An
equivalent form of this requirement is: Following the first appearance of the
factor at its high level in, say, run w,; it must be at its low level, 0, in some
subsequent minimum cost run w;, j > i. It is this condition that is most easily
checked for some choice of {w,}.

Cheng gives an example of a series of fractional factorial designs that have an
optimal order. The series he proves can be optimally ordered is {G = 277",
n > 5}, with defining relation I = A, --- A,. This is the series of 1/2 replicates
of a complete 2" in one block of size 2"~! with the highest-order interaction
confounded. All (n — 1) independent minimum cost runs have cost 2 so a
minimum cost run order requires 2(2"! — 1) level changes, by (4.8). We may
reproduce Cheng’s result by using the sequence of minimum cost runs

a,Qy,0304,...,Q,_3Q, _o,Q, Q,,0,Q3 * -,

if n is even, where the remaining n/2 — 1 minimum cost runs may be any other
independent cost 2 runs, and if n is odd the slight modification

18y, A3Qy;---, Qp_4Qp_3, Ay _2Q,_1, B0y, QoQ3 *

where any (n — 1)/2 — 3 other independent cost 2 runs may be used after a,a;.

We give two other examples of series of designs, each member of which may be
optimally ordered, to illustrate how readily Theorem 5 may be used.

The first example is the series of 1/4 replicates of a complete 2" for n > 7
defined by I = A,A,S = A;A,S where the common stem S=A4; --- A4,. A
minimum cost run sequence that produces optimal run orders is:

.0y, 30, A5, Ay, Q7Qg, ..., A, 10, Q;Q30;5.
The cost structure is {(2, n — 3),(3,1)}, for the (c;, r;), with minimum cost
27~1 — 1 by (4.8). ,

The next example in this section is the series of 1 /8 replicates of a complete 2"
factorial in one block of size 2”73 defined by I =A,A,A,S=A,A,A;S =
A3A;A.S, where the common stem S=A; --- A,. The cost structure is
{2, n —17),(3,4)} so the minimum number of level changes becomes
(22" 3 - 2%) + 3(2* — 1) = 2"~ 2 + 13. For n > 8, an optimal set of minimum
cost runs is )

Ay 1Qpy Qpy_9Qpyeeey GrQ,, G050, G030, @,Q50¢, Q10,0;.

As stated in the Introduction, the construction techniques of Section 4 were
applied to the designs tabled in two National Bureau of Standards publications.
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Of the 125 plans for factors at two levels in Applied Mathematics Series 48
(1957), 96 may be optimally ordered by the generalized foldover scheme. Further-
more, for 63 of these 96 plans, not only a linear but also a quadratic trend-free
run order with minimum cost is obtainable. Similarly, all 41 plans for factors at
three levels in Applied Mathematics Series 54 (1959) may be optimally ordered.
Tables of minimum cost linear trend-free run sequences for all the designs with
optimal orders may be obtained from the authors.

Expression (4.9) gives the minimum cost for a run order under the often
realistic assumption that between-block costs are 0. To illustrate how this
modification may be beneficial, consider the design G = 252 defined by I =
ABEGH = ACFG = ABCD with blocking effects ABEF and ACE. This is plan
8.8.8 in Applied Mathematics Series 48 (1957) and is a modified version of
Example 2 in Section 4. Note also that in Example 2, factors b and e are not
linear trend free. For this design, the generalized foldover scheme does not find a
minimum cost run sequence that has the main effects of all eight factors linear
trend free. However, if between-block costs are 0, the minimum cost runs {z,;}
given by

bdfg acfg adegh bdh abedefg

produce a minimum cost order by (4.9) and all eight factors are both linear and
quadratic trend free. Of the 29 plans in AMS 48 that cannot be optimally
ordered when costs are given by (4.8), there are 12 with an optimal order using
(4.9).

The generalized foldover scheme may be used to find run orders of two-level
fractional factorial designs for which all main effects and two factor interactions
are linear trend free, although the run order is unlikely to have minimum cost.
Without loss of generality, let G = 227? be run in a single block. We have the
following construction theorem.

THEOREM 6. Suppose a run order of G, constructed by the generalized
foldover scheme (4.2) with generator sequence (g,,...,8,_,}, is 1-trend free.
For each pair of factors a, and a,, suppose that there exist generators g,, g,
i+Jj, i, j€(l,...,n— p}, in which a, and a, are at different levels (that is,
one is high and the other low). Then all n(n — 1)/2 two-factor interactions are
linear trend free.

Applying this theorem to complete 2" factorials gives the following corollary.

COROLLARY 1. For n > 4, the generalized foldover scheme (4.2) applied to
sequence {w; i =1,...,n}):

(5.2) Qpy @y qyeeey Ay, O18g, QQ3, gy Ay,

from which generators {g;, i = 1,..., n} may be found by (5.1), produces a run
order that has all main effects and two-factor interactions linear trend free and
requires 2" + 11 level changes, 12 more than the minimum.
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ExaMPLE 3. Consider the case n = 4. The run order
1 ab be ac acd bed abd d bd ad ed abed abe ¢ a b

is generated by ab, be, acd, bd, has all four main effects and six two-factor
interactions linear trend free and 27 level changes.

Daniel and Wilcoxon found a run order of a complete 2* with all main effects
2-trend free. Their run order may be found by folding over with the generator
sequence {abd, acd, bed, abed}. Each factor name appears at least three times
so by Theorem 3 each factor is quadratic trend free. The cost of 37 level changes
is well above the minimum of 15.

6. Discussion. Linear trend-free minimum cost run orders have been found
for a wide variety of two- and three-level fractional factorial designs. The
examples of Section 5 illustrate the construction techniques detailed in Section 4.
It is important to note that as the number of factor levels and /or the number of
blocks increase, by Lemma 2, it becomes easier to find run orders that are
k-trend free for k£ > 1. The assumption of zero between-block costs also aids in
this search.

If the two-factor interactions are not negligible, the double optimization
problem becomes difficult or impossible in small designs as the requirements of
Theorem 6 become harder to satisfy. When faced with this difficulty, the
experimenter must decide how to compromise between the competing criteria of
efficiency and cost. Additionally, if factor level changes for a subset of the factors
are expensive, for example, closing down and cleaning a chemical plant between
runs at different levels, while the remaining factors are essentially free, throwing
a switch to change the operating temperature say, then run orders for which the
first set of factors changes levels least often may be sought by finding generator
sequences in which the expensive factors appear at nonzero levels in the latter
generators only. The cost optimization must be attempted whenever the experi-
menter has a design problem with cost constraints of the type developed here. If
in reality no cost minimization is required, trend elimination is even easier to
achieve as a scalar optimization problem only. Similarly, if trend elimination is
not required but cost minimization is necessary, the generalized foldover method
guarantees an optimal run order when combined with the cost structured group
decomposition described in Section 4.

The general problem of cost minimization for arbitrary, unequal costs for each
factor’s level changes is much more difficult. Indeed, such a minimization
problem is of the travelling-salesman type for which no finite time polynomial
algorithm is known. Only for certain special cost structures, such as that
mentioned previously where some factors have zero cost while all others remain
equally expensive, is an exact solution readily available with the foldover
method. If the allowable cost of the experiment is some amount C > C,_;,, then
trend-free run orders may be sought using the foldover method with generator
sequences that produce any total cost less than C. This added freedom in the
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choice of generator sequences will improve the experimenter’s chances of finding
k-trend-free run orders.

In certain problems it may be necessary to maximize the number of factor
level changes to meet some other optimality condition. For example, for n
factors each at two levels, if there is a correlated error structure represented by a
first-order autoregression with positive correlation, a run order that maximizes
the number of factor level changes may lead to a D-optimal design. Such run
orders may be constructed by applying the same generalized foldover scheme
(4.2) to sequences of maximum length generators.

APPENDIX

Proofs of the results presented in Sections 4 and 5 follow.

Proor oF LEMMA 1. Fix j and N and suppress them in the expressions that
follow. A polynomial of degree at most (s — 1) may be fitted exactly through the
s points {(¢, W(t)), t =0,..., s — 1}. By the remark following Definition 2 and
expression (3.3), we may express this polynomial as a weighted sum of the
orthogonal polynomials P, ;, j, =0,..., s — 1, defined by (3.1) and (3.2), that is,

s—1
W(t) = X w,P,(t).
7=0
For each component ¢ = 1,..., s — 1, expression (4.1) becomes

s {P (0) z ,ls<t>}

t=0

T {1 % Puopto)

Z ( qs(t))21 by Definition 3.

{0

Hence w, =0 for ¢ = 1,...,5 — 1 and W(¢) = w, Py (t) = constant by Defini-
tion 2. O /

Proor or THEOREM 1. By the group properties of addition in GF(s), each
level of factor a, appears equally often in U(e). In particular, level ¢ appears in
run positions i,, — § + §' = i,, + £, say. The time count over U(e) of the gth
main effects component of a, against the jth trend is

(A1) g

||[V]°

qu(t + e)}?jN(itm + gl)'

Now P;y(i,, + §,) is a polynomial of degree j in i,,. By (3.3), this polynomial
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may be written as

J
PjN(itm +§)= E ijleN(itm)’
7=0
where the coefficients w; depend on the constant §, only. Substituting this
expression into (A.l) gives a time count of

T {qu<t+ &) ¥ w,~1P,~1N<im)}
(A2) t=0 m=1 h=0

J s—1
=Y {wjl Y P, (t+e)W(t; j, N)}
Ji=0 ¢=0

By the assumptions of the theorem and Lemma 1, W{(¢; j,, N) = W(j,, N), so
(A.2) becomes

J s—1
£ (w0, 0 T B+ o)} 0.
Ji=0 t=0

The preceding is true for each j=0,..., k and hence a, is k-trend free over
U(e).O

ProoF oF THEOREM 2. Without loss of generality, U is in run positions
1,...,sv of G. By Theorem 1, a, is k-trend free over U*. As ¢ ranges over
GF(s) — {0}, so too does te, ¢, e # 0. As before, assume that a, is at level ¢ in
positions i,,, m = 1,...,v, of U. Then q, is at level (¢ + ge) in these same run
positions of U(qge), ¢ = 1,...,s — 1. Each level of a, is represented by some
(t + ge) as q ranges from 0 to s — 1 for fixed ¢ and similarly as ¢ ranges from 0
to s — 1 for fixed gq.

Let the level of factor a; be fixed at ¢. The contribution to the time count of
the /th main effects component of a, against a trend of degree (k + 1) over the
run positions {i,,} in each U(ge) of U* is

s—1 v
(A3) Y X Py(t+ge)Ps,y n(gsv + iyy,).
q=0m=1
Now
k
Pk+1,N(qsv + itm) = wk+1Pk+l,N(itm) + .Zowjl(Q)I)le(itm)7
h=

where w, ., is a constant not depending on ¢ and w;(q) is a polynomial in g of
degree at most (k + 1). Then (A.3) becomes

.

s—1 v k
Z {Pls(t+ ge) E {wk+1Pk+1,N(itm) + Z wjl(Q)le,N(itm)}

q=0 m=1 7=0
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In the preceding expression, Ywj, P, n(i;,) depends on ¢ but not g and
summing P, (t + ge) over g ranging from 0 to s — 1 yields 0 by the previous
discussion so the first inner term vanishes and (A.3) simplifies to

LT (@Rt + ae) £ By ali)]

71=0¢=0

k s—1
= Y Y wi(q)P(t+qge)W(j,N).

1=0g=0

In this last expression, the terms P, (¢ + ge) sum to 0 over ¢ = 0,...,s — 1, for
each fixed ¢ and j,. So the total time count over U* of the /th component of a,
against P, y is 0 for each I =1,...,s — 1 and a, is (k + 1)-trend free over
U*.0O

ProoF oF LEMMA 2. Suppose that factor a, is at nonzero level e in
between-block generator g, ,,, so0 s™ ! blocks have been generated so far,
m € {1,..., r}. Recall that we assume that each level of a factor appears equally
often in every block. Suppose that a, is at level ¢ in run position i, of an already
existing block, B;, for some j = 1,..., s™~ 1 When generator g, ,, is used with
the generalized foldover scheme (4.2), factor a, will be at level ¢+ ge, g =
1,...,s — 1, in position i, in some s — 1 new blocks B;,..., B; . Again, as q
ranges over the set 0,...,s — 1, so too does ¢ + ge. Hence, by Definitions 2 and
3, the time count with respect to the trend component of degree ! contributed by
this starting run position i, in block B; for the ith main effects component is

s—1 s—1
Y. Pig(io) P(t + ge) = Pg(iy) X Py(t + ge) = 0.
q=0 q=0

So each starting level of factor a, in any starting position in an already existing
block contributes zero to the time count with respect to any trend component in
the model. So factor a, is orthogonal to any trend component in the model. O

ProoF oF THEOREM 3. By Theorem 2, if the run order is constructed by
applying the generalized foldover scheme (4.2) to the sequence of generators
{&1,---,8,_p) a factor a, is k-trend free over G if a nonzero level of this factor
appears in at least (k£ + 1) of the generators. From this and Lemma 2, Theorem 3
follows. O '

ProoF oF LEMMA 3. By (4.3), d; is the number of factor level changes
between the ith generator g; and the last run of the first s'~! runs. Hence, by
the definition of the generalized foldover scheme (4.2), d; is the number of factor
level changes between each adjacent pair of groups of s‘~! runs within each
group of s’ runs. There are s” ¢ groups of s’ runs, and s groups of s*~! runs
within each such group of s’ runs. Thus, the number of factor level changes
between groups of size si~! within groups of size s’ is s” P~ (s — 1)d;. Summing
over i =1,...,n — p gives the result (4.5). O
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PrOOF OF THEOREM 4. Set Ry =0, R,=rj+ --- +r,i=1,...,n—p. By
(4.3), generator g, ; of (4.6) is z,; multiplied by the last run in the first sBati-t
runs. So the number of level changes between these two runs is d(1, z; /) =c¢; by
the definition of the runs {z,;}. Hence, at each stage i =1,. — p, the
number of level changes between each group of s*~! runs within each group of s’
runs is the minimum p0s51b1e Therefore, the resulting run order has minimum
cost. The {d;, i, = 1,...,n — p} of (4.4) are given by

i—1 i
(Ad) - dy=c, b4=XYXr+l,..,Xr i=1,..,t+t.

J=1 Jj=1

Note that s® = N,/N.. From (4.5) and (A.4), the minimum cost of this run order
is
n—p ) t+t )
Y (s-Dsm U= T % fs— e
i=1 i=14=R,_,+1
t+t
= X (s—=Defs" P R(1-5")/(1-5))
i=1
t+t
= 2 &:NyN/Ny(s™ — 1)
i=1
t+t

= Z ci(zvi—l - Ivz):
i=1
which gives (4.8). O

ProoF oF THEOREM 5. Follows directly from Theorems 3 and 4 for the
stated choice of minimum cost generator sequence. O

ProoF OF THEOREM 6. Let x, and x, be the columns of the design matrix
corresponding to the main effect of any two factors a, and a,. All entries in x,
and x, are either +1 or —1. Then the two-factor interaction column x has ith
entry x,; X x,,. We assume that the interaction is estimable when no time trend
is present.

Without loss of generality, both factors are at the same level in g,,...,8,_;;
a, is high, a, low in g,; both are at the same level in g, ,,.. .y 8m-1 and a, is
high, a, low in g,,, m > k. Then the interaction column x contains +1 in the
first 2~ rows and —1 in the next 2*~! rows giving a time count of 22*~V over
the first 2% runs. Note that since the trend is linear, we have shifted the values of
the trend polynomial to 1,..., R rather than Pg(i), i=0,..., R — 1. This
results in a linear rescaling of the time count but does not affect the result stated
here. This same time count is contributed by each of the first 2~ *~1 groups of
2% runs. So the time count after 2™~ ! runs is 2™**~3, When g, is used, the
entries in the interaction column are all multiplied by —1 and the second group
of 2™~ ! runs contributes a time count of exactly —2™**~3 and hence the time



MINIMUM COST TREND-FREE RUN ORDERS 1205

count for the interaction effect becomes 0 after 2™ runs. This time count remains
0 in all future foldovers by Theorem 2. So interaction column x is orthogonal to
a linear trend. By the assumptions of the theorem, this is true for all two-factor
interactions. O

PrROOF OF COROLLARY 1. The n runs in (5.2) are independent and so
generate the complete factorial design. Referring to (4.5), the runs (5.2) have cost
d,=1ifi+n-3,n-2 and d,_;=d,_, = 2. By (4.5), the cost of the run
order is Y7 (1 X 2"7%) + 23 + 22 which gives 2" + 11 as required.

The generator sequence {g,,...,g,} found from runs (5.2) by (4.6) is

Ay G0, 1, .., Ggls, Q10505, Gols, Q1030,, Ayl ,,

namely, the ith generator is the product of runs z; and z,_,, as stated in Section
5. Inspecting this sequence shows that, for any two factors, two generators in
which only one factor name appears may be found. The conditions of Theorem 6
are met so all two-factor interactions are linear trend free. O

REFERENCES

CHENG, C.-S. (1985). Run orders of factorial designs. In Proc. of the Berkeley Conference in Honor
of Jerzy Neyman and Jack Kiefer (L. M. Le Cam and R. A. Olshen, eds.) 2 619-633.
Wadsworth, Monterey, Calif.

Cox, D. R. (1951). Some systematic experimental designs. Biometrika 38 312-323.

DANIEL, C. and WILCOXON, F. (1966). Factorial 27”9 plans robust against linear and quadratic
trends. Technometrics 8 259-278.

DICKINSON, A. W. (1974). Some run orders requiring a minimum number of factor level changes for
the 24 and 25 main effects plans. Technometrics 16 31-37.

DRAPER, N. R. and STONEMAN, D. M. (1968). Factor changes and linear trends in eight-run
two-level factorial designs. Technometrics 10 301-311.

JOINER, B. L. and CaMPBELL, C. (1976). Designing experiments when run order is important.
Technometrics 18 249-259.

NATIONAL BUREAU OF STANDARDS (1957). Fractional Factorial Experiment Designs for Factors at
Two Levels. Applied Mathematics Series 48. U.S. Department of Commerce, Washington.

NATIONAL BUREAU OF STANDARDS (1959). Fractional Factorial Experiment Designs for Factors at
Three Levels. Applied Mathematics Series 54. U.S. Department of Commerce, Washing-

ton.
DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
PURDUE UNIVERSITY UNIVERSITY OF CALIFORNIA

WEST LAFAYETTE, INDIANA 47907 BERKELEY, CALIFORNIA 94720



