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A NOTE ON THE ASYMPTOTIC NORMALITY IN THE COX
REGRESSION MODEL

By E. Arsas aND P. HaArA

University of Oulu

A general version of the Cox regression model is studied as a discrete
time process consisting of the embedded experiments at the jump times.
Simple conditions are given for the consistency and asymptotic normality of
the estimator for the regression parameters.

1. Introduction. The standard reference for asymptotic normality results
for the Cox (1972) regression model is Andersen and Gill (1982), henceforth
abbreviated as AG. It improves in several ways on earlier results (see the
discussion and references in AG), e.g., by allowing for nonidentically distributed
individuals and time dependent random covariates. Prentice and Self (1983)
extend the results of AG to more general relative risk functions. AG provides
(Theorem 3.4) the limiting joint (normal) law of the regression coefficients in the
relative risk function and an expression depending on the estimated cumulative
baseline hazard.

Often, however, the interest is focused directly on the relative risks and the
baseline hazard is viewed as a nuisance parameter of the model. Such an
orientation is reflected in the strong emphasis on the Cox partial likelihood
expression which does not involve the baseline hazard. But then the question
arises whether, for the more restrictive goal of deriving asymptotic normality
results for the regression coefficients (see Theorem 3.2 in AG), their conditions
could perhaps be simplified and relaxed. [Note that the asymptotic normality of
the regression coefficients alone is not sufficient to determine, for example, an
approximate confidence interval for the t-year survival probability; see, e.g.,
Altman and Andersen (1986).]

A simplification can be achieved by directly considering the embedded experi-
ments at failure times (in which the failing individual is picked from the risk set).
Such an approach was used, in fact, by Naes (1982); it corresponds to the
product form of the partial likelihood expression and leads to a simple martingale
argument of a discrete time parameter. Naes, however, made the strong assump-
tion that all individuals (each being represented by failure time, censoring time
and covariates) are sampled from a fixed distribution. While we want to avoid
such assumptions here, we need to postulate directly some of the properties Naes
was able to derive from his special structure.

Compared to AG, we can drop the finite interval condition as well as
assumptions concerning the uniform convergence of certain key quantities over
the considered (unit) time interval. As a result, we need a slightly stronger
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Lindeberg condition and we also assume that the covariates are square-integra-
ble. We are left with very simple conditions [Conditions C and L in Section 3]
which strongly resemble those in Arjas and Haara (1987).

Considering the background, none of our results is in the least surprising;
however, we feel that, because Cox’s model is so widely applied in practice, it is
useful to have these conditions and proofs on record. As in AG, we allow for
repeated events: The counting processes can count more than one event.

2. Preliminaries. Consider a sequence of observations

(N, Y,,,Z

nj’ “nj’ nj)lsjsn),,Z]

and a family of probability measures (IPB)BER,, defined on a measurable space
(2, #). We assume that for each 1 < j < n the counting process N, ; 1s adapted
to a history F, = (%,,), >, and has the (PP, & )-intensity,

xnj(s) = Ynj(s)Ao(s)exp{B’an(s)}, s> 0.

All unexplained notation is as in AG. Let B, € R? be the unknown true value.
We denote P = PPo, E = EPo, etc. Since all random quantities and the history F,
depend on the index n, we drop it until Section 3. We assume N, [(o0) < o0,
P-as., foreachl <j<n, R’

From here on we consider stochastic processes on N = {1,2,...} rather than
on [0, o). Let (7,, X,),-; be the marked point process representation of N :=
(N, Ny,y..., Ny, ie,, Ty < T, < --- are the failure times and X, indexes the
individual failing at T,. If T,(w) = o, then we define X (w) == A & {1,2,..., n}.
Let K := max{v € N|T, < oo} be the total number of observed points. By
assumption K < oo, P-a.s. For v € N we define AN,(v) = AN(T,), Y(v — 1) =
Y(T,), Z;(v — 1) :==Z(T,), using the conventions Yi(c0) = 0 and Z (00) =
Flnally denote Y,-1=%g_, v €N. Now, G = (9, )v20 is the basic h1story to
which the sequence AN;(v), v € N, is adapted for each j € N and with respect
to which our martingale structure is formed. Note that K is a stopping time in
this history, for (K < v} = (T,,, =0} €Fp =9, vEN.,

According to the previous definitions Z y(v — 1) is the covariate vector of the
individual who has failed at T, if T, < oo and 0 otherwise. In order to simplify
the presentation, we assume that all random variables ||Zy(v — 1)|, v > 1, are
square-integrable w.r.t. each P8, B € R?. For each B € R” we define

Y;(v — 1)exp{B'Z,(v — 1)}
ZioY (v — 1)exp{B'Z,(v — 1)}
=PPAN(v)=19,_,), 1<j<n

p(B,v—-1):=

1)

following the convention e 0J,

ps(Bo-1)=1- ¥ p(B,o—1),

Jj=1
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@ EB,o-1)= Y Z(v-1)p(B v~ 1) = EHZy (0 - 1|9, ,),

J=1

V(B,o—1) = ¥ 2850 - )py(v— 1) — BB, 0~ 1)
3)
= COVB(ZXB(D - 1)|9,_,).

Using this notation, the Cox partial likelihood is

(4) L(B,e0) = f[lpxuw,o ~1) = TLps (B0 1).

From (1)—(4) we get, by a simple calculation, expressions for the log-likelihood,
score and observed information (considered as processes on ¢t € N U {o0}):

B, 0)= X log(py, (8,0 1)
- X X tog(n(8, 0~ 1) AN(0)

)
)

v<t

% (v~ DBZ,(v — 1) AN,(o)

Jj<n

—log{ i Yy (v - l)eXP{B'Zk(U - 1)}}1(051(}]

k=1

(defining 0 - o0 = 0);

(B, £) - a%zm, )

6
© =Y XY Y(v-1)Z;(v-1)AM,(B,v),

v<tj<n
where AM (B, v) == AN(v) — p(B, v — 1) and

52

I(B’t) == _2l(B1 t)

(7) o
=Y V(B,v—1).

The process U(B,, -) is a square-integrable (PP, G)-martingale and by (2) and (6),
we have

(8) U(By, t) = Z {va(v -1) - E(ZX,,(U - 1)|gv—1)}

v<t
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and
(U(By, - ))(t) = Z COV(AU(Bm U)|go—1)
) = X Cov(Zx (v - 1)i9,,) [by(8)]
= Z V(By, v — 1) =1(By, t) [by (3) and (7)]

REMARK 1. If Z x(v—1), v>1, are not assumed square-integrable,
E(B,v — 1) and V(B,v — 1) in (2) and (3) cannot be interpreted as conditional
moments. In that case U is a locally square-integrable martingale and the
relationship (9) between (U) and I can be established using localizing stopping
times.

REMARK 2. It is also interesting to compare (8) with the corresponding
expression in AG; the martingale differences in the former take the role of a
predictable integrand in the martingale representation of the latter.

3. Asymptotic results. First we shall prove that for the consistency of the
solution ﬁn of U, (B, 00) = 0 (which is assumed to exist, maximize I(B, o) and be
unique with probability tending to 1), Condition C will suffice.

ConpITION C. There are a sequence ¢, — + o0, a neighbourhood Z of B,
and a bounded continuous matrix valued function =: # — R ?*? such that

(10) c,'L(B, K,) -, 2(B)

uniformly over B € 4. The matrix =, := 2(B,) is positive definite.

It is no restriction to assume that % is an open ball in R 2. Let
(11) Zrtj(v - 1) = an(D - 1) - ‘E(Zn, Xm,(v - 1)|Gn,v—1)
and define

;!=1Ynj(v - 1)exp{B’Z,’:‘j(v - 1)}

(12a) S*(B,t) = Z log Z;LIY,,,-(U — 1)exp{BO'Z,’:‘j(v — 1)} (v<K,}

v<t

] .
(12b) A%(B, ) S (B2),  tEN.

It is easy to see that the quantities defined in (1) and (3)-(7) remain
unchanged if we use the centered covariate processes instead of the original ones.
Then we have

(13a) A;(Bs t) = Z (En(Bs v - 1) - En(BOs b= 1)):

v<t

2

ap?

(13b) L(B,t) = -255.X(B, £).
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LEMMA 1. Suppose Condition C holds. Then there is a twice differentiable
function s: & - R such that

uniformly over B € 8, and

2

d J
(15) 6.—63(3)I|;=¢;0 =0, a—st(B) = 3(B).

Proor. Note that A¥(B,, K,) = 0 by (13a). Thus by Condition C and (13)
the sequence ¢, 'A*(B, K,), n > 1, of mappings from Z X @ to R? satisfies the

n

conditions of Lemma A in Arjas and Haara [(1987), page 17]. This implies the
existence of a differentiable function a: # — R? such that
c,'A%(B, K,) -, a(B) uniformly over p € #

and
a
a_Ba(B) =2(B)-

Similarly, since S*(B,, K,) =0, we can apply Lemma A to the sequence
¢, 'S*(B, K,), n > 1. The claim follows from this. O

LEmMA 2 (Consistency). Under Condition C,
(16) Bn -—)p BO'

ProOF. The proof is analogous to that of Lemma 3.1 in AG. Consider the
average log-likelihood ratio process,

L(B, Bos t) =c, "(1(B, t) — 1,(By, t))
— ' T T V00— 1)(B - B)ZE (0 - 1) ANnj(v)]

v<t|j<n

—C, ISn* ( B , L )
[by (5), (12a) and the remark following (12)]. It has the (P, ¢,)-compensator

ko(B,Bo t) =c;' X [ L Y, (0= 1)(B—B)Z¥(v ~ 1)p,;(By, 0 - 1)]

v<t| j<n
17
17) —e782(B, )

= —c.’SH(B, ¢) [by (11)].
Then for each B the process
ln(By BO) t) - kn(B’ BO? t) = c;l(B - BO)' n(BO’ t) [by (8)’ (11) and (17)]
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is a square-integrable martingale with variance process
(LB, Bo; ) = Ea(B, Bos +))(2)
(18) = ¢, (B — Bo)(Un(Bo, ))(£)(B — By)
= ¢, (B — Bo)c, 'T,(Bo, £)(B — Bo)-
By (17) and Lemma 1 it follows that
19 kB, By 0) >, —s(B), BE,
while by (18) and (10)
(20) ¢{La(B, Bos ) — (B, B;+))(20) =, (B = By) Zo(B — By)-
The inequality of Lenglart, together with (19) and (20), implies that
(21) L(B, Bos ) =, — s(B).

The claim follows from (15) and (21) by the same convex analysis arguments as
were used in the proofs of Lemma 3 in Arjas and Haara (1987) and Lemma 3.1 in
AG. O

For the asymptotic normality of ﬁn we need

ConprITION L.  The family {||Z,, (s)||Y,(s)|1 <j < n, s € [0, )} is bounded
by a random variable Z, such that

(22) e, V2, - ,0.
LEMMA 3. Under Conditions C and L, c;**U(B,, K,) =5 N(0, Z,).

ProOF. The proof is analogous to that of Theorem 4.1 in Naes (1982). By the
Cramér—Wold device [Billingsley (1968), page 49], it suffices to fix a w € R? \
{0} and prove

(23) ¢, ?w'U,(By, K,,) 2o N(O,WwZw).
We apply the CLT of Dvoretzky (1972) for martingale difference arrays, given as
Theorem 2.5(a) in Helland (1982), with §,, = (c,w'=qw)~ 2w’ AU,(B,, v),

n,v € N, being the martingale differences w.r.t. to the sequence (G,),cn of
histories (recall that K, is a G ,-stopping time). Now

K, K,
Z E(£12w|gn,v—l) = (W'EOW)_IC;I E E((W'AUn(BO7 D))2|gn,v—1)

v=1 v=1
Kn
= (WZw) et Y W'Cov(AUn( By, o)|?n,v_1)w

v=1

(24)

= (WEw) ‘W, 'L(By, K, )w =, 1
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by (9) and (10), which leaves us the Lindeberg condition

(25) Z ( no (|§,w|>e}| ) -,0, >0,

to verify.
Fix & > 0. Choose & > 0 such that (w'Zw)~ 1729|lw||8 < e. Then the left side
of (25) is 0 on the event {c;'/?Z, < 8} since, by (2),

(cnw,zow)_l/2lwlzn, j(v - 1) - E(wlzn, X,w(v - l)lgn,v—l)l

< (W2w) ?2|wlc; V%2, (cf. Hy(t)in AG)

for each n,v € N and 1 <j < n such that Y, (v — 1) = 1. But Condition L says
P(c; /%2, < &) > 1, so the probability that the left side of (25) is equal to 0
converges to 1. O

The following theorem is now true.

THEOREM (Asymptotic normality of ﬁn). Suppose that Conditions C and L
are satisfied. Then, as n — oo,

(26) c/*(B. — Bo) =4 N(0,25).
Proor. Condition C implies that
cr:lln(Bn*s Kn) -—)p E0

for any random sequence (B*),cn satisfying B* —, By. The claim (26) now
follows by the well-known Taylor-series argument as given, e.g., in Arjas and
Haara [(1987), pages 12-13]. O

Acknowledgment. We are grateful to a referee for a number of comments
that led to a further simplification of our proofs.
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