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APPROXIMATION OF METHOD OF REGULARIZATION
ESTIMATORS!

By DENNis D. Cox
University of Illinois

The Tikhonov method of regularization (MOR) estimator provides a
general method for estimation of a nonparametric regression parameter in an
abstract linear model with discrete noisy data. An asymptotic analysis is
given in which the discrete estimation problem is approximated by a continu-
ous one. Rates of convergence are calculated in a family of norms natural to
the problem. The general theory is applied to the estimation of functions
from noisy evaluations of the function and one of its derivatives.

0. Introduction. Consider a sequence of statistical experiments with ob-
servation given by an “abstract” linear model

(0.1) ¥, =Tt +e,.

Here, y, nominally lies in a real separable Hilbert space %,, the unknown
regression parameter £ nominally lies in a real separable Hilbert space £° and the
design operator T, belongs to the space of bounded linear operators from % to
%,, denoted #(%,%,). The “noise” or “error” term ¢, in (0.1) is nominally a
%, -valued random vector. (The three appearances of the word “nominally” will
be explained shortly.) In this paper, we investigate a class of widely used linear
estimators for £ called method of regularization (MOR) estimators. Our goal is to
obtain useful approximations to the first and second moments of the norm of the
estimation error. We consider some examples.

ExAMPLE 0.1 (Finite-dimensional parameter). Suppose %, = R, = R?, T,
is represented by an n X p matrix and ¢, is mean 0 with covariance ¢,2I, where I
always denotes an identity operator. The MOR estimator £,, is obtained by
minimization over x € & of

(0.2) Loa(x) = A(x, Wryg+ 13 — Toxll3,,

where W e B(%) = #(%, %) is a positive operator (called the regularization
operator), and A € [0, 0] is the regularization parameter. “W is a positive
operator” means: (i) W is self-adjoint (i.e., represented by a symmetric matrix);
and (ii) (x, Wx)g > 0 for all x € . Put U, = T *T,, G,, = (AW + U,) ", where
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T.*: ¥, - Z is the adjoint of T,: & — %, [18] (i.e., transpose).
Assummg G,,! exists,

(0.3) §n>‘ = n_}\lTn*yn’ 0<A< .

Also, ¢,, = Ty, is the ordinary least-squares estimator of { of minimal norm
[T, is the Moore-Penrose generalized inverse of 7, ([16] and [9])], and £, is
the minimal norm least-squares estimator of § restricted to /(W) = {{ € "
W{ = 0}, the null space of W. With these conventions, £,, is defined continu-
ously in A. One may be led to such an estimator via Bayesian methods under a
mean zero prior on ¢ with covariance (6,2AW)~1. Alternatively, such estimators
arise in ridge regression [10] and as the solution of certain minimax problem [20].
The bias of £,, is given by

(0.4) B¢ = (GoU, - I)¢.
The covariance is ¢2V,,,, where
(0.5) Vor = GRU,G

In the following discussion we indicate a simple approach for obtaining useful
approximations to B,, and V,, as n — oo.

ExAMPLE 0.2 (Smoothing splines). Let m be a positive integer and let 2" be
~ the Sobolev space Wy = W;[0, 1] of functions on [0, 1] with m derivatives in L,
equipped with the inner product

(& hywp = (8™, K™Y, + (g, h)y,

It can be shown [11] that the evaluation functional mapping x — x(f) is
continuous for each ¢ € [0,1]. Thus, there is a g: [0,1] = £ such that
(q(t), x)g=x(t), VzeZ,vtel0,1].
This is the “reproducing kernel Hilbert space” property of Wy™. For each n, let
=1i/n,1 < i < n. Then the operator T, given by T,,{ = ({(¢,,), ..., £(t,,)) is

contlnuous from % to R™ Take %, = R" but with inner product (y,n)qs =

l<y’ T’>R" =n zl-lylnl

Let ¢, = (e,,---¢€,,) have mean 0 and covariance ¢2I, and suppose we
observe y, with components y,; = £(¢,;) + &,;, 1 < i < n, where £ is thought to
lie in &= W™ The smoothing spline estimate of £ is given by minimization over
x € X of

08 Lu@) ~ALLOOF d+ 17 T (= sl

Let W be defined by (x, Wx)g = [|x™)|2 1,5 then with our choice of ( -, + )4, (0.6)
is the same as (0.2) and smoothing sphne is given by (0.3).

One new phenomenon, which arises when dim 2= co, is that £,, may be
consistent for ¢ even if £ & . For instance, if £= W2 but ¢ is only in W, then
we may still have E||¢,, — §||}, = 0 as n — co. This is the reason we say §
“nominally” is in %.
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ExaMPLE 0.3 (Continuous time smoothing spline). Let 2 be as in Example
0.2, and let ¢,(t) be a Gaussian white-noise process of intensity ¢2/n for some
62> 0. This is obtained formally by differentiation of on~1/2B(¢), where
B(t) denotes a standard Wiener process on [0,1]. Technically speaking, ¢,
does not “live” in L,[0,1], but a ‘“stochastic inner product” [12] like
(& €, = JoB(t)e,(t)dt, g € Ly, can be defined as the stochastic integral
on~1%(lg(t) dB(¢). For our purposes, it is sufficient to know that

Esg, £n>L2=Or Vge L,

E<g’ £n>L2<£n7 h‘)L2 = n_102<g7 h>L2’ Vg’ he L2-

In effect, ¢, has mean 0 and covariance o%n~'I, where I is the identity on L,.
Suppose we observe y,(t) = £(¢) + ¢,(2),0 <t < 1. Let %, = %= L,[0,1] for all
n. (This is the “nominal” observation space as ¢, and y, are almost surely not in
%,) Let W be the same as Example 0.2, and let T, = T for all n be the
imbedding of W;® into L, (i.e., Tx = x € L, for all x € W;™). Consider the
objective

(0'7) Ln}‘(x) = )\<x7 Wx>ﬁ”+ IIT‘xllgl,l - 2<yn, Tnx>‘.’¥,,;

which would have the same minimizer as (0.2) in the previous examples. How-
ever, (0.2) is not defined here. '

Estimators obtained by minimization of (0.7) are solutions of certain minimax-
ity problems [13]. One can show that £, is given again by (0.3). The results of
this article show that the first and second moments of the estimation error in
Examples 0.2 and 0.3 behave similarly as n = o0 and A — 0 not too fast.

ExXAMPLE 0.4 (Smoothing splines with derivative data). Let p be a positive
integer and &' = Wy" for some m > p. Let (¢,,,..., t,,) € [0,1]" and suppose we
observe

ynl(i) = g(tnt,) + £nl(i)!

Yna(i) = §PUt,;) + e0(3), 1<is<n,
where ¢,,(1),..., €,,(n), £,5(1),..., &,5(n) are mean zero uncorrelated random
variables with Var e, (i) = 02, Vare,,(i) = b2, 1 < i < n, for some positive b
and o2 See Schwarz [19], page 413, where a higher-dimensional version of this
example arises in a geodetic context. We take %), = R™ X R" equipped with the
inner product {((n;, 15), (£, £2))a, = 7' [{M1, £1)&» + BN, £2)g~]. One can show
that the map Tn given by Tng = (g(tn,l)! ooy g(tnn)’ g(p)(tnl)’ sy g(p)(tnn)) iS in
B(%,%, as m>p. With these specifications of %, %, and 7,, an MOR
estimate of £ can be obtained by minimization of (0.2) as before.

ExaAMPLE 0.5 (Regularized solutions of integral equations). Let %, %, {t,;}
and ¢, be as in Example 0.2. Suppose K(s, t) is continuous on [0,1]? and we
“observe ,; = [¢K(t,: $)é(s)ds + e,;, 1 < i < n. The inversion of the integral
equation (i.e., estimation of £) from such data is known as an “ill-posed”
problem. The terminology “method of regularization” was first coined in this
setting [23].
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We now give an approach to asymptotics for Example 0.1. There are two
fundamental difficulties with the analysis as n — 0. One is specifying the
dependence of A on n. That is avoided here by giving approximations that are
uniform in A. (It is assumed that A is not random.) The second is specifying the
dependence of T, on n. We assume there is a positive sequence {a,} and a fixed
operator U € #(%) such that a,T.*T, - U, where the limit may be taken in
any of the usual senses when dim .9l‘ < 0.

By rescaling the model (0.1), we may assume a, = 1. Assume U is nonsingular
and hence also U, = T, *T, for all n sufficiently large. Then we show B,, and V,,
of (0.4) and (0.5) can be approximabed by

(0.8) =Gy'U-1, V,=G;UG;},

where G, = (AW + U ), Bk and V, are the “contlnuous analogs of the “dis-
crete” operators B,, and V,,.

For this setup (with d1m Z < o0), the continuous operators are easy to
analyze. Put A = U™'W;, then
(0.9) GyWU=(AMW+U)'U=T-2A4+ (A4 + -
Hence, as A = 0, ||B,||ga) = O()), where || - || 44, denotes the usual umform
operator norm on #(%). Also, trace V, = (trace U~ ')(1 + o(1)), since Gy » U~}

as A — 0.
Now define the perturbation operator

(0.10) R,, = GI{(U - U,).
Note that

IGx g <|(1+AA) | g IV Nl ae) < U ey
80 || R |l @a) — 0 as n — oo, uniformly in A € [0, o]. One can show
(0.11) B,, = B, + R,,B,,.

From this it follows that as n — oo, [[(B,\ — B))llg@) = o)l B.\llas)
where the o(1) quantity is independent of )\ It also follows from (0.11)
that ||B,,llge) = O(A\) as n > o and A — co. Similarly, traceV,, =
(trace V,)(1 + o(1)), n = oo, uniformly in A. Combining the preceding results
gives
E||§,, — &llZ= ||B,xEll5 + o7 trace V,,
= O(1 v X)||¢]|% + o2(trace U~*)(1 + o(1)),

as n — oo, uniformly in A and §. Here a V b = max{a, b}.

This sort of analysis becomes more tricky when dim %= oo, “for reasons
discussed at greater length in Section 1. In that section, it is also indicated how
one obtains a continuous analog for the discrete problem of Example 0.4. Just as
in the dim 2 < o case, the continuous problem is analyzed first, in Section 2.
One of the problems when dim 2= oo is the multiplicity of norms (e.g., Wy for
different r). In the abstract setting of Section 2, there is a natural family of
norms for which it is easy to calculate the mean squared error. Unfortunately, it
is rather difficult to make sense of these norms in a concrete setting. Some
techniques for doing this are discussed in Section 3. Section 4 contains the main
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contribution of the paper: The general convergence theory developed for the
continuous case is carried over to the discrete problem. In Section 2—4, the
abstract theory is developed and then specialized to Example 0.4 and its
continuous analog given in Section 1. Application to examples of the type 0.5 will
be given in a subsequent paper [5]. Further applications of the mathematical
techniques will appear in [4] and [6]. Related results appear in [21], [17] and
[14].

1. The limiting continuous problem. Let us now return to the setup of
Example 0.4 and seek a corresponding continuous problem. We look for a
limiting version U of the operators U,. To identify T,*, let x € Z and 5 =
(115 m2) € %, and then

<Tnx’ (1, 712)>@/,. = n_l[ él <x, Q(tm‘)>3r171(i) +b Z: <x, q(p)(tni)>£‘n2(i):|

= <x, {n_l Zn: [Q(tm‘)"h(i) + bq(p)(tni)n2(i)]}>

i=1
= <x’ Tn*n>.2”'
Thus, T,*n is the quantity in braces, and
(1.1) (x U= [[2(£)3(2) + bxP(2)12X(2)] dF,(2),

where F(t) =n"'#{i: t,;<t}. Let us suppose that the F, > F uniformly,
where F' has a smooth density f = 1. (The notation = means the Lh.s. can be
bounded above and below by positive, finite constant multiples of the r.h.s.) Let
#=L,(F)® Ly(bF)and T: & > % themap Tx = (x,x”) € #. ThenU = T*T
is given by

(1.2) Ux = [[x(£)q(t) + bx'®(t)q?(2)] dF(t).

This is an Zvalued integral as q: [0,1] = Z (see Example 0.2). We now relate
this operator to a statistical problem as in equation (0.1).

ExaMpPLE 1.1 (Continuous analog of Example 0.4). Let y, = (¥,1, ¥,2) be
given by
ynl(t) = g(t) + snl(t)’
yn2(t) = g(p)(t) + 8n2(t)’ 0 <t< 1’
where the error vector ¢, = (¢, ¢,,) satisfies
em(t) = on V2TV (t)wy(t),  en(t) = obT 2TV T2 (t)wy(2).
Here, w, and w, are independent unit intensity Gaussian white noises. One may
- check that E(n,¢e,)g=0 and E(n, &,)a{{, &,)a=n"0%n,{)qg, for n,{ € ¥,

i.e., ¢, has mean 0 and covariance ¢,’I on % with 62 = 02n~!. Also, the design
operator T is as given previously.
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The asymptotic analysis for Example 0.1 (dim 2 < o) relied heavily on
boundedness of U~'. .One can show that U in (1.2) has range Z(U) =
{x € Wm"P: Dix(¢)=0at t=0and 1, m <j < 2m — p}, which is a proper
dense subspace of Z.

It follows from the open mapping theorem that U~! is not a bounded
operator. Thus the asymptotics for dim 2 < o do not extend to dim £ = co. The
unboundedness of U~! is the reason for the instability or “ill-posedness” of our
estimation problem. See Engl [8] for further discussion.

2. Spectral analysis of continuous regularization. In this section we
consider the “continuous” case when %, = % and T, = T for all n. Referring
back to Example 0.1, a more thorough analysis of B, and V, can be accomplished
via “simultaneous” diagonalization of the operators U and W. Using the theory
in Rao [16], page 41, there is a basis {¢,} for £= R” such that for all pairs of
indices (», p),

(2’1) <¢v’ U¢n>.9l”= 811;:.’ <¢v’ W¢p>ﬁ”= szvp’

where {y,} are the associated eigenvalues of W w.ur.t. U, and §,, denotes
Kronecker’s delta. It follows that ((AW + U)x, ¢,)e= (1 + Ay, )Xx,Ug,), and
hence that Gy 'Ug, = (1 + Ay,) " '¢,. Thus,

Gy'x = Y (G %, U, )s0,

v

= Z <x’ G;1U¢v>§”¢v

= Z(l + }\Yv)_l<x’ U¢v>§”¢v‘
This implies in particular that
(2’2) B)\g == Z [A‘Yv/(l + A.Yv)]<£’ U¢y>ﬂ"¢v'

In general, calculations involving the continuous operators are much easier when
this eigensystem is used.

In order to accomplish this “simultaneous diagonalization” in general we need
the following postulates.

AssuMPTION 2.1. (a) For each n, the stochastic linear functional n — (¢,, 1)g
is defined for all n € ¥ a.s. and has finite second moment. Furthermore,

(2.3) ‘ Ele,,n)yg=0, Vnedg,
and there is a sequence of positive constants o2 such that
(2.4) Ele,, e, $da=0Xn,¢), VnEX Ve,

(b) T € #(%,%) is a compact operator, and A"°(T') = {0}.
(c) W e (%) is a positive operator with dim 4" (W) < co.

-‘ Assumption (a) holds when ¢, = 0,0 for a mean zero Gaussian process w, and
% is the “reproducing kernel Hilbert space” for w [12], not to be confused with
the concept of the same name mentioned in Example 0.2. The assumptions on T
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hold in many instances. Compactness of 7' in Example 0.3 follows from compact-
ness of the imbedding W — W for k > p ([1], Theorem 6.2, equation (3)).
For Example 1.1, decompose T' into oo X (o ° D?) to see that it is compact.
[Note that o/,, > D? is compact by compactness of </, and the proof of Theorem
4.18(f) of [18].] #(T') = {0} implies Z(T™*) = Z(U) is dense in Z (Theorem 4.12
of [18]).

PROPOSITION 2.2. There are sequences {¢,} C Z and {v,} C [0, o) satisfy-
ing (2.1). Furthermore, for all x € %, x = L (x,U¢,)4¢,, where the series
converges in % .

Proor. Applying the theory in Section 3.3 of Weinberger [25], let {y,} and
{A,} be the eigenvectors and eigenvalues of the Rayleigh quotient
(%, Ux)q/{x,(U + W)x)q, and put v, = A;' — 1 and ¢, = v,/%,. O

For p € R, let £, po be the set of x € & for which the series
llxll? = Z(l +9,)(x, Us, )z

converges and let Z, be the completlop of & p° in the indicated norm. Then %,
is a Hilbert space under the inner product

(%, 8), = LA +7,)(x, U, )¢, U, )

For Examples 0.3 and 1.1 it will be shown in Section 3 that the %, spaces
correspond to Sobolev spaces, possibly with boundary conditions. Increasing p
increases the smoothness and number of boundary conditions that must hold. In
general, (x,, Uxy)s= (%, x,), and T extends to a Hilbert space isomorphism
from %, to %. Thus, %, = L, in Example 0.3, and £, = W{ in 1.1, where
= means equal as sets and with equivalent norms. Since (x;, x,), =
(2, (U + W)xy)g and (U + W) € B(Z), we have & C %, where by convention
the inclusion of Banach spaces means continuous imbedding. In Example 0.3,
ZX=%,, whereas =%, in 1.1. One has =%, more generally whenever
AU + W) =Z. Clearly, Z, C Z, whenever p > 7.

THEOREM 23. Letx €U, p%,, andfix p € R.

(a) Byx = 0 for some A > 0 if and only if x € /" (W), in which case B,x = 0
for ¥V A >0,

(b) x € Z,., if and only if ||B>\x|| = O(X) as A = 0, in which case || Byx||2 =
N1+ 0(1))273(1 + %,)%%, ¢, ).

(¢) Let a €[0,1], then ||B>‘||g(x AR If dim &= o0, then as A0,
IBxll g, ,,., 2, = BA*(1 + 0(1)), where B, = sup{u~*/(1 + u): u > 0}.

Proor. All claims follow straightforwardly from the formula
(25) IByxl|Z = Z[’m/(l + M)+ 7,)"(x, ,)3.

(a) and the “only if” part of (b) are evident. If ||B,x||, = O(A), then oo >
A2 Byx||?2 = T,v 1 + v,)%(x, $,), where the last mequahty follows from
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Fatou’s lemma and shows x € Z,,,,. For (c), the first part follows from Ay, /(1 +
Ay,) < 1, and the second from the fact that lim,y, = oo if dim 2= 00. O

Note that ||B,§||, tends to O faster with A as £ is in %, for a larger 7, until
7= p + 2, in which case no further gain in convergence rate is made unless
B, =0, V A. This exemplifies the saturation phenomenon well known in
approximation theory; see Definition 2.1.1 of [2]. Part (b) of the previous
theorem can also be deduced from Corollary 2.5.6 of [2]. Further results on B,
are given in Theorem 3.3.

We now consider the random part of the estimation error or the “variance.”
Put C(A, p) = 0, %E||¢,, — E¢,\||2. The following result is easily proved by
comparison of sums and integrals (e.g., page 401 of [7]).

THEOREM 2.4. Suppose that for some r > 0,
(2.6) y,=v, v 0.
Then forp <2 —1/r, C(\,p) < o for A € (0,) and as A |0,
C(A,p) =N~ ¥V 4f —1/r<p<2-1/r,

= log(1/A), ifp=-1/r,
=1, ifp<—1/r.

REMARK. The assumption (2.6) forces dim & = o0. Although it is restrictive,
it applies to Examples 0.3 and 1.1, as will be seen. Some such form seems
necessary in order to obtain useable results on C(A, p).

PROPOSITION 2.5. For Example 1.1, we have vy, = vX™~P),

ProoF. We seek the eigenvalues of the Rayleigh quotient %/%/, where
B(x, x) = J{[xP]% + bx%}f and H(x,x) = [[x™]? + B(x, x) Utilizing the
mapping principle of [25], we may replace # by #'(x, x) = ||x||Wp (as Z= %)
and & by &'(x,x) = ||x||wm (where we may use any equivalent norm on W# or
W;™), and the resulting elgenvalu% v, will satisfy y,; = vy,. From the argument
of [3], Section 3, there exist sequences {¢,} of functions and {g,} of non-
negative reals such that {y,} is an orthonormal basis for L2 and |||x|||2
Q1+ p¥/ ’")(x Y, )L gives an equivalent norm on Wy, ¢ = 0,1,..., m. Further-
more, y, = p?™, 50 v, = (1 + p,)/(1 + pP/™) = »2™"P), O

For Example 0.3 one can obtain y, ~ (77)?™ and from this sharper asymp-
totics for C(A, p) as A | 0. See, e.g., Theorem 2.4 of [21].

Theorems 2.3 and 2.4 combine to give convergence rates for E||¢,, — &2 =
| B)§lI2 + 62C(A, p). For instance, if p > —1/2(m — p) = —1/r, £ € %, ,,, for
0<ax<l, and ¢€%, (so T¢ is defined), then E||£,, — &%= O(X") +
O(n“)\“"“/’)) as n — oo and A | 0. This is only “useful” if p =0 and a = 1
since the only identifications we have are £, = Wf and %, = W™

3. Identification of the 2, spaces. We present in this section a tool kit for
identifying the spaces defined in Section 2.
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LEMMA 3.1. (a) Let p€ R and 8 € R. Then V x €%, |xlly4+s =

Sup{(-x,i’)p $€Z, and €|, < 1).
(b) Z,.5 is the range of Gy'U = (I + AA)~! as an operator on %, for any

A > 0 where A = U~'W, Furthermore, ||x||,.5 = (I + A)x]||,.

Proor. (a) By a Cauchy-Schwarz argument using the elgenfunctlon
expansions, (%, §), < |||l +5ll8ll,-5 V %, § € Z,. The 1nequa11ty is valid even
if one of the norms is infinite. If § < 0 then the inequality is an equality for
$o = I, + v,)%x, ¢,)g0,, which is in »» and the supremum is attained at a
suitable multiple of {,. If § > 0, then {0 may not be in Z,, but the partial sums
of its defining series are, and they achieve equality in the limit.

(b) If { €%, then x = Gy'US = (1 + Ay,) )X, 6,009, is in Z,,,, and,
conversely, { = ): A1+ Ay, X%, ¢, )09, is in Z, whenever x €%,,,. Also

I+ A)x]2 = (1 +v,)x, (I+ A)g,)s = Z(l +9,)° (%, 6,08 = |22, 5
O

THEOREM 3.2. In Example 1.1, assume f € WP. Then

det
X,=2= {x € Wtm=P: xU(t) = 0fort=0,1andmsj<2m—p}

equipped with W,™P norm.

Proor. We first show ZC %,.If x € & and { € &, = W™, then
(%, 8)1 = ™4™ + b(x, £,

=(-)"7°? fx‘Z"“P){(P) + b(x,¢)

< =™ i llwg + BlixllollSllo < K ll%l 2l lo-

This shows Zc %, by Lemma 3.1(a).
Now suppose x € &, and S = sup{(x, {);: £ € Xy, [€llo <1} < 00. We will
show x € Z, and hence Z, is a subset of 2, which lmphes Z=%, by the

open mapping theorem. Now S < oo if and only if S = sup{ Jemgm: b e &,

€1l < 1} < 00, as (x, § 3o < ||x[lq for [I§]|o < 1. :
Since [I[$[I1% = I8P)|%, + £225[¢(0)]* defines an equivalent norm on %,

S, < o is equivalent to S, < o0, where

8, = sup{ fxmxm: ¢ < 2, ki1 < 1)
= supf [x™X™: § € ,, £I(0) = 0for 0 < < p and K, < 1)

- sup{ [xmxm=p); ¢ & Wpp and [g-), < 1}.
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The density of Z; in W was used at the last step. We claim S, < co implies
0 = x® & Wz
def
= {h € WmP); RO(0) = K1) =0, m — p <j < 2(m — p)},
which is the desired result.
Letting ¢ = (m — p), our claim is that for all § € W,

S = sup{f()(q){(")i §€ WS, I8l < 1} < ®

implies 8 € WZ%pc. Now 8§ < oo entails S/ = sup{(9, {)Wq ¢ e W4,
I§1lz, < 1} < co. Consider Example 0.3 with Z'= W" %, and then %, = L,,
and then S{ < o if § €%, in the context of that example. Now Gy'U as
an operator on L, =%, maps { to the minimizer over 7 € & of ||n(‘1)|| i,

& — mlI2 1, The minimizer is by Section 2 of [3] the element of W%se satls-
fying [( D?)? + 1]y = ¢, -with the indicated boundary conditions. This
shows G{'U maps %, onto Wy ypc, which proves the claim by Lemma 3.1(b)
with p=0. 0O

We will identify £, for 0 < p < 2 in Example 1.1 using another technique, the
so-called K-method of interpolation, which is regularization in another guise. Let
Z, and Z, be Banach spaces with %, C 2, and take z € 2, and u € (0, ).
Put

. 1/2
( )K [u, 2 (2, 2,)] = K(u, 2) = inf{(llzillg, + u¥lzalla,) 2 20 € 25,
3.1
i= 1,2andz=zl+zz}.

For0 <60 <1,1<q < oo, define
1/q

lelle,g = { [ [u~K (u, 2)] u~ du)

andfor0 <6 <1,
l2lly, o = esssup{u~’K(u, z)}.
Let
(21, 25)0,= {2 € 212 |l2l,q < 0}

Then (Z,,:2,)y,, is a Banach space under the norm ||- "o o and 2, C
(21, 22)9,4 S .i‘?l Also set (25, 1), a= (Z1, £,)1-4, 4 This is not the usual
definition of the K functional, but gives equivalent norms and spaces. We have
for B> 0 that %4 = (Z,, %,.p)s,2» Which follows from the definitions via
direct calculation. See [1], [2], [15] and [24].

Now for 1 < g < oo define £, , = (%,_1, Z,+1)12, o and let || - ||, , denote the
associated norm. Then.@l‘ 2_.92‘ andlfp1 <p<ppl<g<owandl <q’ < oo,
then %,  =(Z, %, 48,4 1f 0 = (p — p)/(pz — p,)- This is the theorem of
reiteration (Section 1.10 of [24] or Section 3.2.4 of [2]). Also, %, ,C %, . if
either p > p’, or p = p’ and q < q’ (Theorem 1.3.3 of [24]).
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THEOREM 3.3. (a) Suppose1 < q< o andp < B <p + 2. Then
”BA”Q(%J,_Q;) <K@Q~A }\)(B‘P)ﬂ.
(b) Forx € Z,, ||B\x||, = O(A*) for some a € (0,1) if andonly if x € %, 3, o-

ProOF. (a) We have (Z,, Z,,2)5,, = %5,, if 0 =(B— p)/2 and
(%,, Z,)s,, =%, The result follows from Theorem 2.3(c) and the fact that
K-method interpolation is “exact” [Section 3.2.5 of [2] or Theorem 1.3.3(g) of
[24]].

(b) One direction follows from (a). We claim that there is a constant M such
that for all x € Z,, MK?(\?, x) + O(N%) < ||B)x||2. Then if||B,x||2 = O(A**),
0 < a <1, this implies x €%, ,,, ,, from the definition. Let m = dim A"(W),
and let

My(x,A) = ¥ R0+ 7)1+ 80 +9,)] (5,68 = 002), ash o,

rv=1

Then if x & /' (W),
IByxl2/[K2(N2, x) = My(x, )] 2 [¥241/(1 + Ysd) )] M),
where ,
M,(\) = in%{[l + X1 +7)7]/0+7)"} and My(A)>1, asA-0. O
Y=

The Besov spaces Bj, on [0, 1] are now defined. For0 < s < coand 1 < g < oo,
let & denote the greatest integer less than s, then for ¢ < oo,

1 1—
Il 55, = llBll, + { [u e [ w4+ w)

- I)kh(t))]2 dt} i du} v
and

1-u 2 1/2
Vellaz, = 1ol + sup {[T[0*h(t+w) - D) at) .
<

u<l
This definition is based on equation (6) of Section 4.4.1 of [24]. We have
B} = W,* for m = 1,2,... . The Holder space C? (Section 4.5 of [24]) satisfies
C’° c B; , for any g, and B;  C C* provided s > t + ;. See Theorem 4.6.1(¢)
and (f) of [24]. This implies the functional 2 — D*h(t) (evaluation of kth
derivative at ¢) is continuous on B _ if s > & + 3.

THEOREM 3.4. In the setting of Example 1.1, assume f € WP and put
r=2(m - p).

(@ If0<p<1+1/r, then %, ,= Bj,, wheres = p + pr/2.
. ) If 1+1/r<p<2 and (pr—1)/2 is not an integer, then %, ,=Z,
where Z= {h € B; : h(0) = h)(1) = 0 form <j < pm — 1}, wheres = p +
pr/2 and Z is equipped with B3, norm.
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(c) If1+1/2m <p <2 and (pr — 1)/2 = k, an integer, then %, , = {h €
y: B0) = hP1) =0, m <j <k, and [} [t(1 = )] Y A®(t))2 dt < o0 }.
(d) If f=1, then ¥_,C B3,, where s =p — p(m — p), provided 0 < p
[p/(m—p) A 2]

PROOF. By definition and the reiteration theorem, %, , = (%, ﬁl’z)ﬂ X B =
p/2, provided 0 < p <2. By Theorem 32, %, =a Besov space B (8 with
boundary conditions as defined in Section 4,3.3 of [24]. Note that B._i‘2 = H2 by
Remark 2.3.3.4 and Definition 4.2.1 of [24]. Also, %, = W§ = (L,, H7, 85 )a,2
w1th a=p/2m — p) [[24], Theorem 4.3.3(a)], so by the reiteration theorem

Z, 4= (Lo Z2) 425 %2)pq = (Lyy £3)g, 4» Where 6 =[p + p(m — p)]/(2m — p).
Parts (a) and (b) follow from [24], Equation 4.3.3(6), and (c) follows from
4.3.3(10).

For part (d), let 2, = {{ € W;2P: {U(0) = ¢U(1) =0, m<j<(@2m—p)A
2p} equipped with the W;2? norm. Let 2, be the closure of %, in the norm

k
x o fallf, + L [x22(0)° + 21y,
Jj=1
where £ = p A (m — p). Note that 2, C L,, so by a straightforward argument
from the definition

def def —
(Zo, Z1)0,2 =2y (Ly, 2))9,2 = Z,.

From Theorem 4.3.3 of [24], Z, = Z,, p=(0-1/2)2p)/(m — p) provided
0<p=<2i<0<1l (Wehaveused f" 1 here.) Let Z* be the dual of %, and
as Z, € %, we define in the usual manner Z* = {g € Z*: sup{{z: z€ Z,,
lzllg;, < 1} < o0} for 0 < @ < 1. Then by the duality theorem (1.11.2 of [24]),

= (&%, Z*),2, for 0 < § < 1. Now we represent 2'* with 2/, by using the
Z, duality pairing. Each x € %, defines a bounded linear functional { € Z'*
through

$z2=(x,2)= f[(—-l)pz(zp) +z]x

+ f_" (—1) 2P+ -D(1)xP-)(1) — 2P+-D(0)x?~(0)].

By Remark 5.4.5.1 of [24],
20 ((—1)72@P) + 2, {2P+-D(1), 2(P*=D(0): 1 < j < m})

defines a bicontinuous linear bijection of &, onto L, X R%™, so ||| or = 1%l 2,
Since Z, is dense in %, all { € Z'* correspond in this manner to an element in
Z,, the closure of 2, under this norm. The representation of 2* obtained in
the usual manner as before is 2. Thus, by the duality theorem 2Z,* is
‘represented by Z,_,. Also, by Lemma 3.1(a) the representation of Z,* under
the %, duahtypamnglsgl” . Now we have % * =Z}rC Iy ,80 Z_, Cﬂ"l 0 C
Z _ 0~B(1 02p for 1 <0<, p= (20—-1)p/(m p),OSpsl
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Numerous results on E|§,, — §||f, for Example 1.1 emanate from Theorems
2.3 and 2.4 and 3.2-3.4. What is most often believed in practice (at least in the
practice of Monte Carlo experiments) is that the unknown function £ is quite
smooth but does not satisfy any of the boundary conditions in Theorem 3.2 or

3.4(b)(c).

PROPOSITION 3.5. Assume ¢ € B*:'/? and f € W in Example 1.1. The
following hold as n — o0 and X — 0:

@ Ifp—-1/2<u<m+ 1/2, then

(3.2) E|¢,, — g||§V2,, = Q(Nm+1/2-8-w)/(m=p) 4 p=1)\~@u-2p=-1)/@m~2p))

for any 6 > 0. .
b)Iff=1and OV (2p+1/2—-m)<u<p-—1/2, then
(3.3) E||&,\ — &l13y = O(ANm+1/2-8-w/(m=p) 4 p-1),

for any 8 > 0. In particular, if for some & > 0,
(3.4) A = O(n~(m-PY/(m+1/2-8-u))

then (3.3) is O(n™1).
©Iff=1and 0<u<@2p+1/2 — m), then

(3.5) Ell§ux — &l = O(N + n71),
which is O(n™Y) if A = O(n=17?).

PRrOOF. (a) and (b) follow from Theorems 2.3(c), 2.4 and 3.4 as B"}'/? c %,
forany p < 1 + 1/r. Part (c) follows likewise, but one should note that W;* 2 Z_,
7> 1/r, so the upper bound on p in Theorem 3.4(d) has no effect. O

4. Approximation of the discrete problem. In this section, we show how
the discrete bias and variance can be approximated by their continuous analogs
under the following postulates.

AssUMPTION 4.1. (a) For each n, 1 = (g,, 1), satisfies the same properties
as in 2.1(a) with % replaced by %,,.

(b) W € #(Z) satisfies 2.1(c).

() T,€ B(%,%,) for all n, and for all n sufficiently large A°(T,) N
H(W) = {0}.

(d) There is a compact U € #(%) with Z(U) dense in Z satisfying (e) and
®.

(e) The eigenvalues {y,} from Proposition 2.2 satisfy y, = »" as » > o for

some r > 1.
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(f) Thereexistss € (0,1 — 1/7),{py, p3,...,0;} € [0, s]withp, <p; < -+ <
p;» and {k,} < [0, c0) with &, — 0 such that for all x,,x, €%,

J
[0, (U = Up)x0) | < by X M1l %2l
i=1
where || - ||, denotes the £, norm generated by U.

The operator U in (d) is typically obtained from a continuous analog of the
discrete problem, which for Example 0.4 is Example 1.1. Part (f) specifies the
manner in which U approximates U,. For Example 0.4, we have

(%0, (U = U,)xp) = f[x1x2 + bx(PxP| d(F - F,).
Applying integration by parts and Holder inequalitie:s gives
(21, (U = U,)x3) | < (suplF = F) (Il 1%allwg + Ileallwllall
+ |2l well %ol wpr + bllxlllwgﬂlllelwg)

< k(l1xlloll2lls + 1124l llxallo),
with s =1/(m — p) and k&, = K sup|F — F,|. Here, j=2, but multivariate
problems require j > 2. See the proof of Lemma 4.2(i) in [3].

LEMMA 4.2. Let R, be given by (0.10). Then for all x € %, and all p € R,

J
IR%lI2 < k22 C(A, p + 5= p)llxl5,.

i=1
Proor. Forall x € &,

IRl = T+ 1) (OW + U) (U - U, Us,)

= X1+ 7)1+ Ay) (U - Up)x, ) e

Applying 4.1(d) and ||¢,||7 = (1 + v,)* gives

" j
IRull? < REX (L +%,)"(1+ &)™ X Il (1 + )"

i=1

The result follows from this and the density of £ in Z,. O

THEOREM 4.3. Let p <2 — s — 1/r and suppose B and q satisfy p < B <
p+2and 1<q<o,orf=p+2 and g=2. Assume p, =0 and p;=sin
4.1(f). Then as n = oo,

1By = Billags, .,z = 0(IBllaa,, . z,)), uniformlyin A € [A,, 0],
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provided X, — 0 and one of the following holds:
@ p> —-1/r,s < B <2 and k2\;*1/D >0,
() 8=2,1<qg<2and k2\;*/D > 0,
(iii) 8 =22 < q < oo and 38 > 0 such that k2\,;+1/7+9 - 0,
(iv) B> 2 and kI +1/7+B-2 5 0,
v) p=—1/r, B> s and k2\,*/Mlog(1/A,) - 0.
(vi) p < =1/r, B = s and RZ\?"% > 0.

Proor. From (1.12), Lemma 4.2 and the triangle inequality we have V
p<2-—s-—1/r,V§e£‘p,

J
(4.1) IBuaéll, < 1BxEll, + &, X CV2(X, p + 5 = p,)lIB,éll,,-

i=1
Put
p(A, 1) =@ AN, ifr<s+1/r,
=1, ifr>s+1/r.
Note that all of the hypotheses on A, imply 22\ ¢*1/") — 0. Thus, by Theorem
2.4 and 4.1(f), |
Vp<2-1/r-sV¥8>0,3N,Yn=N,VA€e[A, ],
kCV* (N, p+5—p;) <8u(A,p;,— p).
Using this with (4.1), one can show
3K,v86>0,AN,Vn2>N,VA€[A,,0],Vke (1,...,j},VEEZ,

(4.2) J
1Baréll,, < K{IIBéll,, + 8 X w(A, p; = p&)lIBréll,, ) -

i=1
i#k

This follows from the next inequality, which can be proved by induction on A:
Vhe {1,...,j},3K,v6>0,3N,
Vvn>N,VAe[A,,o],VEe(1,...,j},VEEZ,

i=1
i*k

h
1Baaéll,, < K{Ileﬁllp,, +8Y n(X, 0~ Pl By,

J
+8 ) M(}"pi_pk)”BAellpi}'

i=h+1
ik

From Lemma 4.2 and (4.2) we have

J J
IBux = Billas,, .2y < Kk, 22 X CV2(A, 0+ 5 - p)
i=1 k=1

X p(X, p = p)lIBrlla(s;, ,. ,,)-

- (4.3)
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The theorem is a straightforward consequence of this, Theorem 2.4 and the
estimates on the norm of B, in Theorems 2.3 and 3.3. For instance, take
condition (iv) and assume p; # B — 2 for all i, or else that 1 < ¢ < 2. Then

(B=pr—(OV(B—pr—2))/2
1Bl ,, 2, < K(1 AN ' .

When this is put into (43) and one notes that C(A, p + s — p;) =
(A AN)~(P+s=pi*tl/1)/2 95 o + § — p; > —1/r for all i, there results

i J
I By = Billaa, .2, < Kk, D)

i=1k=1
X(l A A)_(P+s_pi+l/r)/2+(Pk‘Pi)/2+(B—Pk‘(OV(B_Pk_z»)/Z

< Kkn(l A A)—(s*'l/"'*ﬁ—m‘z)/z(l A }\)(ﬁ—P)/2

=o((1 A A)(ﬂ_p)ﬂ) = O(HBAHQ(%,,,%,))'

The proof under (iv) when p, = B — 2 for some & > 1, and under (i), (ii) or (iii) is
similar. The proof under (iv) and (v) makes use of the different forms of the
estimates on C(A, p + s — p;) in Theorem 2.4 and the assumption that p;=s.
Note in (vi) that it suffices to prove the result for p = —(8 + 1/r) and then it
holds for any p’ < p. O

There are numerous obvious extensions to other values of 8. We assumed
p, = 0 and p; = s merely for convenience. Next we turn to the variance.

LEMMA 44. Let p<2-s—1/r and {A,} € (0,0) with A, - 0. Then
E|(AW + U)~'T*e,|12 = 62C(A, p)1 + o(1)) uniformly in A € [\,, ] pro-
vided one of the following holds:

@ -1/r<p<2-s-1/randk,\,*— 0.
() p <1-1/rand kI\;(*1/ 5,
PROOF. One can show that

|EIOw + 0) " Txe, | - o200, 0)|
(4.4)

= q2
_on

LO+2)Q+2,)7 (4, (U-U)é)e

Now consider éhe various ranges for p. Under (i), apply the triangle inequality
and 4.1(f) to show that the i.h.s. of (4.4) is < K¢2k,C(A, p + s). The conclusion
now follows from Theorem 2.4.
Under (ii), a more complicated argument can be used. We have
'(1 + }‘Yv)_l <¢v’ (U - Un)d’v)fl = |<¢v’ Rn)x¢v>0|

< i lloll B asllo

J
<k, X CV%(A,s - p)(1 +7,)"",

i=1

(4.5)
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whete the last expression results from Lemma 4.2. After some calculation one can
show that the r.h.s. of (4.5) is

<02k, Y. CV2(N\, s — p) L (1 +7,) P51 + \y,)

An argument similar to the one in Theorem 2.4 will show L, (1 + 7,)"(1 + Ay,)™!
obeys the same estimates as C(A,7) for 7 <1 — 1/r. Plug these into the
previous display to obtain the result. O

THEOREM 4.5. Ifp<2-s—1/rand A, — 0, then
E|AW + U,) 'Te, | = 02C(A, p)(1 + 0(1)),
uniformly in \ & [\ ,, 0] provided one of the foowing holds:
G p<1-1/rand RI\;¢*/D - 0.
(i) 1 — 1/r < p and both k2A;¢*Y/" - 0 and k,\,° = 0.

PROOF. Some simple algebra shows
(AW+U)"'— (AW +U,) "' = R(AW+U,) "
Hence, by Lemma 4.2, if p <2 — s — 1/r, then
E|[ow+U)™ - (W + U,) T,
(4.6)

<k? i C(\, p + s — pp) E||(AW + U,,)“T,,*e,,"ik.
k=1

Similar to the proof of (4.2), one can “invert” this linear inequality to obtain
3K,3N,Vn>NVAE[A,, 0], VEE(L,...,Jj},

E|(\w + Un)”‘Tn*enIIi,, <K i (1 AN)PTPOE| (AW + U)“T,,*e,,llf,_,
i=1 '

provided &2\, (**1/") —» Q0 as n - oo.
The theorem follows from this, Lemma 4.4 and (4.6). O

There are numerous possible results one can now obtain regarding Example
0.4. We content ourselves with the following analog of Proposition 3.5.

PROPOSITION 4.6. Assume in Example 0.4 that ¢ € BJ*}.'/? and m > p + 1.
Then the following hold as n = o and A — 0:

@ Ifp—1/2<u<m+1/2 and k A~¥¢m"4P) - 0, then (3.1) holds for
any & > 0.
M IfOVEp+1/2-m)<u<p-1/2and

(4.7) k, Nu—p=D/@m=2p) _;
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then (3.3) holds for any & > 0. If, additionally, (3.4) holds, then

(4.8) E|l§. — &l = O(n7Y).

@ If 0<u<2p+1/2—-m and (4.7) holds, then (3.5) holds, and if
A = O(n~'/2), then (4.8) holds.

Always n~! = O(k,), so the set of A wherein (4.7) and (3.4) hold is nonempty,
and similarly for (3.5) and A = O(n~'/2). In view of [22] it is perhaps surprising
that one can achieve O(n!) rate of convergence for a mean squared norm of
error-type quantity in a nonparametric regression problem. The key here is the
derivative data and the choice of norms (u < p — 1/2s0 p < —1/r). There is an
interesting difference between the discrete and continuous problems. One can put
A = 0 in Proposition 3.6(b) and (c) and obtain O(n~') convergence rate. How-
ever, £, still interpolates the data for the discrete problem and so is not
consistent.
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