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ON THE OPTIMALITY OF FINITE WILLIAMS Ii(a) DESIGNS

By J. KUNERT AND R. J. MARTIN

Universitdt Trier and University of Sheffield

In this paper, we consider the type II(a) designs of Williams. It was
shown, essentially, by Kiefer that the type II(a) designs are asymptotically
universally optimum for a first order autoregression with parameter A > 0.
We concentrate on the stationary first order autoregression with A > 0 and
the extra plot version of the II(a) designs. Our main results are that the
design is D- and A-optimal then, but is not necessarily E-optimal when A is
small.

1. Introduction. In a seminal paper, Williams (1952) considered experimen-
tal design when the plots are contiguous and laid out in a line and when the
errors or plot effects are assumed correlated according to a first or second order
autoregressive process. For a first order autoregression AR(1) with positive
lag-one correlation coefficient A, he looked at II(a) designs in which every
treatment occurs equally often next to every other, but never to itself.

Kiefer (1961) showed that for an AR(1) with 0 < A < 1, the II(a) designs
belong to the class of asymptotically optimum designs as n, the number of plots,
tends to infinity. The optimality criterion he used was a broad one, including
many of the commonly used criteria. Recently, Kiefer and Wynn (1984) have
produced conditions for a design to be asymptotically optimum for the general
pth order autoregression.

There are, however, no known optimality results for finite n. Cox (1952) and
Atkinson (1969) both conjectured A-optimality of II(a) designs for 0 < A < 1.
We restrict our investigation to the type 1I(a) designs with extra plot originally
considered by Williams (1952) and the case of stationary AR(1) errors. We also
restrict attention to the case of more than two treatments. Discussion of results
on II(a) designs for other forms of AR(1) and the case of two treatments is
contained in Kunert and Martin (1987).

In this paper, we show that Cox’s and Atkinson’s conjecture is true for all
0 < A <1 and can be extended to include D-optimality. We also show that an
extension to E-optimality is not in general possible for all 0 < A < 1, but is
possible for A not too small. For a restricted set of designs, we can show a more
general optimality of the II(a) designs for all 0 < A < 1. The results are of

importance in illustrating the problems that arise when autocorrelation is

present and provide an interesting application of results in Cheng (1987).
Note that we do not consider the case A < 0 since the II(a) design is clearly
inefficient then. Further discussion of this case is in Kunert and Martin (1987).
Section 2 contains introductory material and formal statements of our results
on the II(a) designs. In Section 3, we give some general optimality results that
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are needed later. Section 4 contains the rather long proof of D-optimality and
Section 5 gives the remaining proofs.

2. Definitions. Suppose we have ¢ > 3 treatments labelled 1,2,..., ¢t and
that 9;,, i =1,...,¢, is the additive parameter associated with the effect of
treatment i. We consider contrasts of the &; of the form I'9, where [ is a ¢-vector
with I/l = 1and I'1, = 0, 1, is the t-vector of I’'s and & = (9,). Let , = &, — £9,/¢,
t = (7;), and 7 be the BLUE for r. Then I'7 is the BLUE for I'3.

An experimental design prescribes which treatment is to be applied to which
plot. The set of all designs with ¢ treatments and n plots is denoted £, ,. For
data y, and errors ¢;, i = 1,..., n, following a stationary AR(1), we consider the
linear model

Y=T,% +e¢,

where T), is the treatment design matrix. The kth row of T, has a 1 in the ith
column if treatment i is applied to plot k, 1 < k < n. The other entries of the
Eth row are 0. There are no nuisance parameters in the model. Let ¢3S, be the
covariance matrix of e. We define V, as an arbitrary matrix with VYV, = S;*
and we get

where the e; are uncorrelated. Without changing model (1), we can write
VAY = V}\Td'r + Vxlna + e,

where a = L9/t is the overall mean. For every d € Q, ,, define the information
matrix

€, = TyVi(I, - Vil (LY Wil,) "LV )Ty
= TS - (1,871L,) TSy, 1,87 T,

n

[see Kiefer (1975)], where I, is the unit matrix of order n. It is easily shown that
%, has row and column sums zero [see Kunert (1983)] and that 7 is estimable if
and only if %, has rank ¢ — 1. The Moore—Penrose generalized inverse €; of %,
then is the covariance matrix of the BLUE for 7.

To determine an optimal design, we consider the class of g,-criteria [Kiefer
(1975)], where —co <p < oo. Let py > pg> -+ = pgy, ;20 denote the
eigenvalues of €. Then,

o(€) = ((t- )" Tuz?)”,  pe(-w,0,m),

while
9ol €a) = pli,’f‘wq’p((gd) = par,
Po(%y) = gi_rf})tpp(%d) = (Tpg,) V¢V
and

%o(%d) = lim %((gd) = “:l,lt—l'
p—> oo

Then ¢,, ¢, and ¢, are, respectively, the well known D-, A- and E-criteria. A



1606 J. KUNERT AND R. J. MARTIN

design d* € Q, , is said to be ¢,-optimal over a set A C Q, , if d* minimizes
¢p(€,) over A, o
For the stationary AR(1), S, has (i, j)th entry A=//(1 — A2) and

1 -A
-A 1+A = 0
Syt = -
) . -A
0 -A 1+A -
-\ 1

For a II(a) design with extra plot to exist, we must have n = r¢ + 1, where r is
an integer multiple of (¢ — 1)/2 if ¢ is odd or of ¢ — 1 if ¢ is even.

Take a fixed but arbitrary design of d Q, ,. Denote by r,;, 1 <i <t the
number of times treatment i appears in d and by Ny, 1<i#j<t, the
number of times treatment i appears adjacent to j. Let Ny, 1<i<t, be
the number of times treatment i appears next to itself. Further, denote by a;,
1 <i <t the number of times treatment i appears at an end plot. Then
ay4; € {0,1,2}. The ith diagonal element of €, then equals

1-A
Caii = T4(1 + N) — a N — 2N\ — w{'}ﬁ(l -A)+ adi>‘}2,

while the (i, j)th element equals

1-A
Cdij = —Ndij}\ - n— (n — 2)A {rdi(]. - A) + adl}\}{rdj(]. - A) + adj>\}.
A design d* for which
Lrgn=r+1,rp,= - =rp,=r,

2. Nd«U=2r/(t—1),].Si¢jSt,

is called a Williams II(a) design. Note that this generalizes Williams’ (1952)
original definition since we do not insist on there being r complete blocks. Since
for any design d € Q, ,, the @,-criterion does not change when the treatments
are relabelled, we have defined treatment 1 to be the one which appears most
often. Then a ., = 2.

The eigenvalues of the information matrix of a Williams Ii(a) design d* € Q, ,
are [see Kunert and Martin (1987)]

2rh rA - N1 +A)(t-1
pd,1=r(1+>\2)+t + ( ) X )

-1 n—(n-2)A
with multiplicity 1 and
2rA
H‘d*2 = r(l + AZ) + t_—I

with multiplicity ¢ — 2. Note that 4., > p ., forall 0 < A < 1.
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We now state the following results, which will be proved later.

THEOREM 2.1. For all 0 <A <1, a Williams Il(a) design d* € Q, , is
@,-optimal, 0 < p < oo, over all d € Q, , for which Ny, < (t — 1)LNy,;, where
the summation is over all other treatments.

For the D- and A-criteria, we can show optimality over all designs.

THEOREM 2.2. For all 0 <A <1, a Williams 11(a) design d* € Q, ,, is D-
and A-optimal over Q, ,.

In the case of E-optimality (if we allow designs with N,;; > 0), we cannot in
general show optimality for all 0 < A < 1. We only have

THEOREM 23. A Williams 1l(a) design d* € Q, , is E-optimal over Q, ,,
provided
t—1 (1 =2’ 1+A)(n-1)
t n—(n—-2)A

i.e., if A is not too near to 0.

< t(t—-2)A,

We can show that the bound in Theorem 2.3 is sharp (i.e., cannot be improved
upon) by exhibiting designs that are E-better than the Williams II(a) design
when the bound is exceeded. For example, take ¢ = 3. For given n, we consider a
series of designs d(i), i =0,...,r — 1, for which ry;;, =r+ 1, ryp= -+ =
Taiye = Ts @gey = 2 and for which Ny, =r—1, j=2,3, Ny =r+i and
Ny = i- Such designs exist for all n = 3r + 1, r > 1; see Kunert and Martin
(1987). The eigenvalues of %, are easily found to equal

r(1+ M) +rh =3k + 2(1 = AN)*(1 + N)r/{n — (n - 2)A},
r(l+AM)+rA+iA and 0.

[See Kunert and Martin (1987).] When A = 0, these become r + 2r/n and r, so
that there are small values of A > 0 for which the first eigenvalue of d(i) is
bigger than the second. Note that d(0) is the Williams II(a) design. An extension
of the proof of Theorem 2.3 shows that there is a sequence (A 3,,;); with

0=2A3,, <Az 1< o0 <Agyy <Agpp=1

such that the design d(i) is E-optimal for A; , ;,; <A < Ay,;. It immediately
follows that the Williams type II(a) design is not E-optimal for A < A,,,. Note
that A,,; for fixed i does not tend to 0 as n — c. In fact, A,,; increases
(slightly) with n. For instance A;;, = 0.174 and A;,, — 0.212 as n > . Note
also that this result does not contradict the asymptotic optimality of the type
II(a) design shown by Kiefer (1961) since, for fixed i, r™ '€y, — (1 + A + A?)
(I, — 371,1%) as r - co. Taking i = r — 1 gives the following result, which it is
of interest to compare with Kiefer’s (1961) Theorem 3.1.1 and the remark
following it.
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PROPOSITION 2.4. There exists a sequence of designs (d(r)),, where d(r) €
Q3 3,41, such that d(r) is E-optimal over 3,.., for 0 <A <A} and that
]'imr—*ooNd(r)12/r = limr—>ooNd(r)13/r = O’ whlle limr—»ooNd(r)Z?»/r =2.

It should be noted that A% = A, .., ,_, decreases with r and becomes 0 in
the limit.

If the number of treatments is more than three, similar results can be
obtained. For further details see Kunert and Martin (1987). The example also
shows that the condition in Theorem 2.1 is needed, since X N;; = 0, but N,;; > 0
for the designs which perform better under the E-criterion than the Williams
I1(a) designs.

We end this section by noting why the optimality proofs are difficult. First, we
know that d* in general is not E-optimal. Second, %, is not completely
symmetric. Third, although %,. has only two different eigenvalues, it does not
have maximal trace. Any design d with r;; = r;.; and Ng; = 0 for all i, which
has a, < 2, will have tr(%;) > tr(%,;.)—see Kunert and Martin (1987) and the
following example. This means that we cannot use the theorem of Cheng (1978).

ExAMPLE 2.5. Compare the Williams II(a) design
*=[1 213 2 3 1]€Qy,
and the design
d=[2 1312 1 3]eq,,.
Then tr €, > tr €.

For designs with two different nonzero eigenvalues, there are, roughly speak-
ing, two factors which determine their performance under the g -criteria. One
factor is the trace of the information matrix; the other factor is the size of the
smaller of the two eigenvalues. If p is increasing from 0 — oo, the size of the
smaller eigenvalue becomes more and more important, while the trace can be
neglected in the limit.

This is exemplified in the case considered here. The designs which perform
better under the ¢_-criterion than the Williams II(a) designs, all have smaller
trace. On the other hand, it was difficult to show that the designs with larger
trace were not better under the ¢ -criterjion. The g,-criterion is intermediate.

3. General results on g,-criteria. In this section, we give general results
which establish optimality of a design d* over a subset A C 2, ,. These results
concern optimal designs d* for which €,. has at most two different nonzero
eigenvalues. The main theorem, Theorem 3.3, is a corollary to results in the
paper of Cheng (1987). The most interesting point of this result is that it does
not need maximization of tr ;. In what follows, we always assume that ¢,. has
rank ¢ — 1.
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THEOREM 3.1. Assume d* € Q, , has the following properties:

(i) d* maximizes tr €, over A.
(ii) €, has only two different nonzero eigenvalues, the greater of which has
multiplicity 1.
(iii) d* maximizes tr €, — p 4 over A, where p 4, is the maximal eigenvalue of
%, d € A.

Then d* is g,-optimal over A for all p > 0.
PROOF. Assume p > 0. The g,-criterion becomes smaller if one of the eigen-

values is increased and all the others remain fixed. Consequently, a hypothetical
design with eigenvalues

figy=pg ttrEp —tré, and pg,...,0a, 1,0

performs at least as well as d. The convexity of the g,-criterion implies that if
the design also has

figg= " =hg1= (tr €y — par)/(t—2) = (tr G — fin) /(= 2),
then the @,-value must be at least as small Since (tr €3 — pg)/(t — 2) < iy
for all de A and since fig + pgo + +pd 11 =tr%, for all de€ A, the

convexity of ¢, implies the optimality of d*.

The conditions of Theorem 3.1 are fulfilled if (iii) is replaced by
(iii") d* minimizes the maximal eigenvalue p, over A.

This more restrictive version can be found in Whittinghill (1984).
The conditions of Theorem 3.1 are also fulfilled if (ii) and (iii) are kept but (i)
is replaced by

(") d* maximizes p 4, over A.

This version will be used in the proof of Theorem 3.3.
Although conditions (i) and (iii’) appear contradictory, it can easily be seen
that both versions imply that the conditions of Theorem 3.1 hold.

THEOREM 3.2 [Jacroux (1985) and Kunert (1985)]. Assume d* € Q, , has
the following properties:
(1) d* maximizes tr €, over A.
(ii) €« has at most two different nonzero eigenvalues, the greater of which
has multiplicity t — 2.
(iii) d* maximizes p, ,_, over A.

Then d* is ,-optimal over A for all p > 0.
A proof for Theorem 3.2 can be found in Kunert (1985).

These two theorems need maximization of the trace; that is, we cannot show
optimality of a Williams II(a) design over the whole set 2, , with these two
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theorems only. We thus need results for designs with only two different eigenval-
ues, which need not have maximal trace. The following theorem is an immediate
consequence of results in the paper of Cheng (1987).

THEOREM 3.3. Consider a fixed b #+ —1 and a design d € A. Let the two
nonnegative real numbers p,(d) and p,(d), where p,(d) = po(d), be such that
tr €, = p(d) + (t — 2uy(d) and ¢ (€,;) equals the @,-criterion of a hypotheti-
cal design with eigenvalues p,(d), po(d), ..., p(d) and 0. If a design d* exists
with the properties

(i) d* is @,-optimal over A,
(ii) €, has at most two different nonzero eigenvalues, the greater of which
has multiplicity 1,
(iii) d* maximizes p,(d) over A,

then d* is @,-optimal over A for all p > max{b,0}.

ProOF. The case b = —oo was solved in Theorem 3.1 and the remarks
following it. If b = oo, nothing remains to show. Thus assume |b| < oo0. Also
assume p < 0.

First of all, parts (a) and (b) of Lemma 2.2 of Cheng (1987) show that p,(d)
and p,(d) do exist and are unique. Theorem 2.1 of Cheng (1987) directly implies
that for all p > max{0, b} the g -criterion of a hypothetical design with eigen-
values p(d), po(d),..., py(d) and 0 is a lower bound for the g,-criterion of the
design d. To see this, one can apply the arguments in the proof of Corollary 3.3
of Cheng (1987). For this hypothetical design, the ¢,-criterion is a monotone
function of

gy(m(d)) + (t — 2)g,(ny(d)),
where g(x) = —In(x) if s = 0 and g(x) = x~° if s # 0. Similarly, the ¢,-crite-
rion is a monotone function of

gp(m(d)) + (¢ - 2)g,(ns(d)).
Since p > b and p > 0, there is a convex and monotone function A such that

8,(x) = h(gy(x)) for every x. Consequently, the g, -criterion is a monotone
function of

h(gy(ri(d))) + (¢ = 2)h(gy(1o(d)))

and, if the ¢,-criterion remains fixed, it is minimal if g,(u,(d)) and g,(p,(d)) are
as nearly equal as possible, that is, if p,(d) is maximal.

So we have shown that d* is g,-optimal for all p such that max{0, b} < p <
co. The continuity of the g,-criteria in p implies that d* also is ¢, -optimal. O

REMARK. A problem in using Theorem 3.3 is that we appear to need
knowledge of the ¢,-criterion for every d € A to determine p,(d) and uy(d).
However, very often it suffices to know upper bounds for u,(d). In the case
considered here, these bounds will be derived with the help of Theorems 3.1 and
3.2.
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4. D-optimality of Williams II(a) designs. We now apply our general
theorems to the special case of a Williams II(a) design d € Q, . Note that d*
has the structure of eigenvalues needed in Theorem 3.3.

Now consider an arbitrary design d Q . Asn=rt+1, there is at least one
treatment which appears r + 1 + z times in the design, where z € {0,1,...,
r(t — 1)}. Let treatment 1 be one of those that appear most often in d. Define
b € {0,1,2} as the number of end plots of d, where treatment 1 does not appear,
ie, b =2 — a,. Abbreviate the number N,,, of direct adjacencies of treatment
1 to itself by m. These three values determine the first diagonal element of the
information matrix of d, that is,

can=(r+1+2)(1+M)-(2-b)N-2mA
1-A
n—-(n- 2)A {
In this section, we use Theorems 3.1 and 3.2 to construct a lower bound of the
@,-criterion, 0 < p < oo, for every design d € 2, ,. This bound only depends on

the three values m, z and b. Then we prove D-optimality of the II(a) design over
a restricted subset A of Q, ,.

(r+1+2)(1-2)+(2-b)A)%

PrOPOSITION 4.1. Consider any d € Q, , such that treatment 1 appears
r+ 1+ ztimes, Ny, = mand 2 — ay, = b. Then for every 0 < p < o0, we have

(pp(%d) = (_pp(m’ 2, b)’

where @,(m, z, b) is the @p-criterion of a hypothetical design with eigenvalues
""l(m’ 2, b)’ ""2(m) 2, b)’ AR au'2(m’ 2, b) and 0 and where

2rh (1 =N’ +M)r(e—-1)
t—1 * n—(n-2)A

pi(m, z,8) =r(1 + X) +

L — 2 L _ 2 _2_m.ti
+t_1{(t 2)(1+)\)+4}\}+t_1{(t 2)N + 27} P—

Tl 20+ VA -2 - 0) - (b 21 )y

and
2ri

po(m, z, b) = r(1 + A?) + po—

_(—t:—l)ﬁ{(t- 2)(1 + >\2) + 4)\}

b ) 2mA
RCENED) (=2 {(t=2)N + 27} + TR TE) 0(t=2)"

PRrOOF. The greatest eigenvalue of %, equals the maximum of x'Cyx/x'x
over x € R’ The second smallest eigenvalue of %, equals the minimum of
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x'€yx/x'x over R’ where x'1, = 0. Considering the vector x with first entry
t—1 and all other entries —1, we find that p,, is at least tc,,/(t—1) =
p,(m, z, b), while Pd, -1 is at most p,(m, 2, b). An upper bound for tr ¢, is
reached if all c,;;, i > 2, equal

2

_ oz ~ b\
Cas (r t_l)(1+}\) =

1

‘;?lr%z)—x{(" ) —bx_l}

In that case, the sum of all eigenvalues equals
Cany + (8= 1) gy = py(m, 2, b) + (t = 2)py(m, 2, b).

Now assume a hypothetical design d with eigenvalues p,(m, z, b), u,(m, 2, b),
..s ko(m, 2, b) and 0. We distinguish among two cases:

2

@) p(m, 2, b) = py(m, 2, b). Then d has the structure of eigenvalues needed
in Theorem 3.1. It maximizes tr ¥, over all d with fixed m, z and b and it
maximizes tr €, — p 4, over all such d. Consequently, ¢,(%;) is a lower bound for
the ¢,-criterion of all such d, 0 < p < 0.

(11) pi(m, 2, b) < uz(m 2, b). Then d has the structure of eigenvalues needed
in Theorem 3.2. It maximizes tr ¥, over all d with fixed m, z and b and it
maximizes p,,_, over all such d. Consequently, ¢,(%;) is a lower bound for the
@,-criterion of all such d,0 < p < 0. O

Note that for the Williams II(a) design d* and for every 0 < p < o0, we get
@p(€4+) = ,(0,0,0). Thus, every design d € @, , with g,(m, 2, b) > §,(0,0,0)
performs worse under the g,-criterion than the Williams I1(a) design, 0 < p < oo.

We will now use this bound to prove the following theorem.

THEOREM 4.2. For all 0 <A <1, a Williams 1l(a) design d* € Q, , is
D-optimal (i.e., p,-optimal) over all d € Q, ,, for which

Ny < (8= 1)(Nygp + -+ +Ngy,).

The proof of Theorem 4.2 is very long and, therefore, is presented through a
series of propositions. The method of proof is to successively remove from
consideration designs that cannot be D-better than the II(a) design and to show
that finally no other designs are left. Thus, Proposition 4.11 removes all compet-
ing designs that do not have N = 0 for all i and, hence, those with m # 0.
Then, Proposition 4.12 and 4.13 show that we only need consider designs with
m =z = 0 and N;; = 0 for all i. Next, designs with b # 0 are excluded. Proposi-
tions 4.14 and 4.15 exclude designs with b = 2 and, finally, Propositions 4.16-4.18
exclude b = 1.

We will be able to exclude most competing designs by showing that the
bounds @,(m, z, b) derived in Theorem 4.1 are at least g(0, 0, 0). However, for A
close to 1, this is not always possible and we will sometimes use sharper bounds
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than gy(m, z, b). We think that this is of interest in view of Theorem 2.3. If p is
large, we cannot show optimality for small A, while if p is small, there are
difficulties in the proof of optimality for large }\

We begin with some preliminary results in Propositions 4.3-4. 10

ProrosITION 4.3. If a Williams 11(a) design exists in , ,, then
n=rt+1>tt—-1)/2+1>2(t—1) > 4.

PROPOSITION 4.4.
n—(n-2A>2n(1-A)>(n-1)1-A) forall0<A<1.

PROPOSITION 4.5.
£:(0,0,0) > p,(0,0,0) forall 0 <\ <1.

PROPOSITION 4.6. Define 8,(m, z, b) = p,(m, z, b) — 11,(0,0,0). Then

z
8,(m,z,b) < o1 {(t=2)1 +N) + 47}
b 2mt
N — 2 -
+t~1{(t 2)N + 4A} P

Proor. Using Proposition 4.4 and the fact that 1 + A < 2 yields
21 —A)(1 4+ A)bN 4bA
< .
n—(n—-2)A n

Proposition 4.3 then gives the desired result. O

PRrROPOSITION 4.7. For all m, z and b we have
“1(0» O: O) + (t - 2)“’2(07 O’ O)
> p,(m,z2,b) + (t—2)py(m,z,b) —2bA/(t — 1) + 2mA.

Proor.
y’l(m’ 2, b) + (t - 2)""2(m: 2, Il)) - ""1(07070) - (t - 2)“2(0’0,0)

= —-2m\ + m 2(1 + }\){b}\ - 2(1 - }\)}

- t_%{b)\ —2(1-A))?

2bA
—2mA + o1

where the inequality was derived as in Proposition 4.6. O
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PROPOSITION 4.8. If in the designd € Q, ,, a treatment appears at least once
adjacent to itself, then tr €, < tr €., where d* is the Williams 1I(a) design.

ProoF. If one treatment i,1 < i < ¢, appears at least once adj acent to itself,
this decreases the trace by 2\. Thus, for the design d we get

tr %, < p,(0,2,b) + (£ — 2)uy(0, 2, ) — 2A.

Proposition 4.7 now gives the desired result, since 2b/(¢ — 1) < 2. O

PrOPOSITION 4.9. Define 8,(m, z, b) = (¢ — 2){uy0,0,0) — uy(m, 2, b)}.
Then
8,(m, z,b) = 8,(m,0, b) > 8,(m,0,0)
for all m, z, b and all 0 < X\ < 1. Equality holds in the first inequality if and
only if z = 0 and in the second inequality if and only if b = 0.

PROPOSITION 4.10. For all m, z and b, we have

8,(m,z,b) —8,(m,z,b) = —2m\ + —

W 2(1 + A){b?\ - 2(1 - 7\)}

—t—:t—l—{bx -2z(1-21))?.

PROPOSITION 4.11. Assume at least one treatment appears adjacent to itself
in d and N,; < (t — )X!_,Ny;;. Then d performs worse under the D-criterion
than d*.

ProoF. Proposition 4.8 shows that tr ¢, < tr ¢,.. The Williams II(a) design
d* has the structure of the eigenvalues needed in Theorem 3.1. Further,
po(d)(t —2) < tr €y — py(d) < tr 6, — py(m, 2, b)
¢
< (t = 2)py(m, z,b) — 2 3 Ny

i=2
' 2mA ¢
< (t — 2)1,(0,0,0) + -1 2 Y Ny
- i=2

< (t = 2)5(0,0,0).

Here we have used Proposition 4.9 to show that
(t - 2).“'2('"'1 2, b) < (t - 2)”’2(070’0) + 2m}\/(t - 1)'

Now define A = {d, d*}. Then Theorem 3.1 gives the desired result. O
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For the rest of this section, we can restrict attention to designs for which no
treatment ever appears adjacent to itself. It is clear that we only have to
consider such z and b for which @,(m, 2z, b) < co, that is, for which both
p(m, 2, b) and py(m, z, b) are nonzero.

PROPOSITION 4.12. For all z and b, we have (0, z, b) < ¢,(0,0,0) only if

{81(0’ 2, b) - 62(0’ 2, b)}[J.z(0,0,0) > 82(0’ 2, b){”’l(O’O’O) - ”2(0’ 2, b)}

PROOF. (0, 2, b) < (0,0,0) if and only if
1100, 2, b)p,(0, 2, )% = 1,(0,0,0)p,(0,0,0) %
The concavity of the product implies that
Hz(O,O’O)t_z > py(0, 2, b)t_a{ﬂz(o, z,b) +8,(0,2,b)}.
Consequently,
11(0, 2, B)p5(0, 2, b) = p,(0,0,0){n5(0, 2, b) + 8,(0, 2, b)},
8,(0, z, b)uy(0, 2, b) = 8,0, z, b)r,(0,0,0)
and
{8,(0, 2, b) — 85(0, 2, b) }12(0, 2, b) = 85(0, 2, b){1,(0,0,0) — p5(0, 2, )} .

Proposition 4.9 implies that the right-hand side is always nonnegative, and the
inequality can hold only if §,(0, 2, b) > 8,0, 2, b). The fact that p,(0, z, b) <
©4(0,0,0) then gives the desired result. O

The next thing we do is to show, by a step by step consideration of the values
z and b can take, that there is no design that performs better than the Williams
II(a) design and for which no treatment is adjacent to itself.

ProPOSITION 4.13. If z>1, then @0, 2z, b) > 9,0,0,0) for every b e
{0,1,2}.

Proor.

CASE (i), b = 0. The right-hand side of the inequality in Proposition 4.12 is
positive for all z > 0. Consequently, @,(0, 2,0) can be as small as §,(0,0,0) only
if

8,(0, z,0) — 8,(0, z,0) > 0.
According to Proposition 4.10, this would imply

1z(l - }\)> >

2(1 - A){—z(l FA) - t_t

and that can never be true.
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CasE (ii), b = 1. According to Proposition 4.10, we have
8,(0, 2,1) — 8,(0, z,1)

= m[Z(l +M){A-2(1-)N)} - %{}\ - zil - X)}Z].

Assume (0, 2,1) is as small as §,(0,0,0). The inequality in Proposition 4.12
now implies

‘,{:‘(n—_;)x[ﬂl +A){A-2(1-X)} - t—_t—l{x —2(1- x)}z]

27
X{r(l + ) + -i—}
t—1

> [t—f—l{(t —2)(1+ M) + 4} + 711_1{“ - 2)N + 2)\}]

(t=Dr( =21 +A) 20 +M2)+ A
X
n—-(n-2)A t—1
Defining f(z) as the left-hand side minus the right-hand side of the inequality,
we find that the derivative of f with respect to z is negative for z > 1. Thus, the

inequality can hold for some z > 1, only if it holds for z = 1. Proposition 4.4
implies that {n — (n — 2)A}/{r(1 — A)} > t and, consequently,

fa(ar - 1@ +2) - g an- (e 2

> ;—i—l{(t— 2)(1 + 2A%) + 6)\}{(t— 1)1 - N) + (ilz—}‘i)—t}

t—1

Some algebra shows that this cannot be true for ¢ > 3.

CASE (iii), b = 2. According to Proposition 4.10, we have
8,(0, 2,2) — 8,(0, 2,2)

T n-(n-2A\

Assume @y(0, z,2) < ,(0,0,0). The inequality of Proposition 4.12 then implies,
as in Case (ii), that

f(z) =

2(1 + A){2A - 2(1 - )} - t—_t—T{z}\ —2(1 - A)}2].

t 2 2\
201+ M){2X ~2(1 = A)} - =5 {2A -~ 2(1 = M)} ](1 PN+ ﬁ)
- [%{(t— 2)(1 + N?) +4A} + ;—E-T{(t — 2N+ 2}\}]

x{(t -1)(1 =A%) + ;—_t—T(l + 3)@)} > 0.
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We find that the derivative of f(z) with respect to z is negative. That means
that the inequality can hold for some z > 1 only if it holds for z = 1. Inserting
z =1, we get

{2(1 *NEY-1) - tTtl(% - 1)2}(1 TR+ tz__>‘1)

——1 t
2 ;7= +30) + 3>‘}{(t— DI -X) + — 1+ 3)\2)}.
Further manipulation shows that this inequality can never hold. O

Let us summarize what we have shown so far. In every competing design,
treatment 1 is a treatment which appears most often. The competing designs are
restricted to those for which N,;; < (¢ — 1)(Nyge + -+ +Ny,,). Assume in this
subset of @, , there is a design d performing better under the D-criterion than
the Williams II(a) design d* € Q

Then in d, no treatment ever appears adjacent to itself (Proposition 4.11).
Since no treatment appears more often than treatment 1, Proposition 4.13
implies that every treatment appears at most r + 1 times in the design. If
treatment 1 appears at both end plots, then we have m = z = b = 0 for d and
the design d cannot be better than d*, since then ¢y(%,) > $(0,0,0) (Proposi-
tion 4.1).

If treatment 1 does not appear at an end plot, then @y(%;) = 9(0,0,2).
Unfortunately, if ¢>7 and A > (¢ — 2)/t, it can happen that @(0,0,0) >
$0(0,0,2). Similarly, if treatment 1 appears at only one end plot, then ¢(%;) >
$4(0,0,1) and if A > 3, it can happen that §4(0,0,0) > ¢4(0,0,1).

This means that in the remaining cases, where at least one end plot is not
occupied by treatment 1, we have to do a more detailed analysis to show that d
does not perform better than d*.

PROPOSITION 4.14. Assume d € Q, , is such that ry; =r+1 and a4 =0,
i.e., b = 2. Further, assume that N,;; = 0 foralli € {1,..., t} and that there is
a treatment t, say, which appears not more than r — 1 times in the design and
which appears at an end plot. Then d performs worse under the D-criterion than
the Williams 11(a) design d* € Q, . -

ProoF. Consider the ¢th diagonal element of €. Then a, > 1 and

Care = Ta(1L + N) — ag XN’ — gy o {ra@ = X) + @z A}

< (r - 1)(1 + )\2) - m{(r - 1)(1 - }\) + >\}2
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Note that
1
{rl=A)—1+2\)°= a{rt—rih—t+20)°

= %{rt+ 1= (rt— 1A — (¢+1) + (2t — DA)?

\%

1 2
S{n—(n-2))

_t?'_z{n — (n = DA}{(£+ 1) — (26 — 1A}
Hence,
1

;A{n— (n—2)A—2(¢+1) +2(2¢t — 1)A)

Ca < (r—=1)(1 +A%) -

= (r—-1)(1+N) -

P A {rt(1 = X) = (2¢ + 1) + (4¢ — 1)A)

-A
= ((r = 3)e(1 - V).

The eigenvalue p,; ,_, of %, satisfies

1

<(r-1)1+2) -

Bge-1 = %cdtt'
If we use the bound for c,,, derived earlier, we get
rt
t—1
It follows that
12(0,0,0) — 8,(0,0,2) — B, -1
2rA
t—1

oy " oyl b 2) 4 — 2 1 \)2
Ba i1 < (1 +2%) t_1(1 A) t_1(1+)\)+t_1(1 A

>r(1+ M)+ - t—f—l{(t—2)>\2+2}\}

rt r t 3
2 2 2 2
- — —(1 - —(1 + - —(1-A

t—1(1+}\)+t—1(1 }\)+t—1( ) t—l( )

1 .

= t—_T{(t =3) 1 -N)+2(A-A)} >o0.
We, thus, know that
Y pai < 14(0,0,2) + (£ — 2)p5(0,0,2)
= 1,(0,0,2) + (£ — 2)p5(0,0,0) — 8,(0,0,2)
and that
Bar = IJ‘I(O, O, 2)’ I"’d, t—1 < “2(0, 0, 0) - 82(0, O, 2)'
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Since

n—(n—-2)A
and since 8,0,0,2) > 0 (Proposition 4.9), we have p,(0,0,2) > p,(0,0,0) >
15(0,0,0). The concavity of the product then implies that
Bar B e < #1(0,0,2)85(0,0,0)*{15(0,0,0) — 8,(0,0,2))}.
Consequently, d can perform as well as the Williams II(a) design only if
11(0,0,2){5(0,0,0) — 8,(0,0,2)} > 1,(0,0,0)15(0,0,0).
This is equivalent to
(8,(0,0,2) — 8,(0,0,2)}12(0,0,0) > 8,(0,0,2){1,(0,0,2) — 5(0,0,0)}.
Note that this inequality differs from the one in Proposition 4.12. In fact,
11(0,0,2) — 15(0,0,0) = 1,(0,0,0) — p5(0,0,0) + 8,(0,0,2)
> ,(0,0,0) — 1,(0,0,0) + 8,(0,0,2)
> 11,(0,0,0) — 15(0,0,0) + 8,(0,0,2) /(¢ — 2)
= 1,(0,0,0) — p5(0,0,2).
Consequently, we would need
(8,(0,0,2) — 8,(0,0,2)}115(0,0,0)

> 8,(0,0, 2){ (t- ';)(_1 (_’:‘_) ;; M, 82(0,0,2)}.

t
8,(0,0, b) — 8,(0,0, b) = {2(1 +A)BA — -:wa} >0

As in Proposition 4.13, it would then follow that

{4(1 +A)A - :?‘21}( P _2>‘_)

t—1

2t—f;{(t—2)7\2+2>\}{(t—1)(1—?\2)+2t(t_2)>\2 4t}\}

+
t—1 t—1
and, consequently, that
(2(¢ = 1) — 2A}{(@ + A®)(t —'1) + 27}
> {(t—2)A +2)(t — 1)’(1 — A2) + eA{2t(¢ — 2)A2 + 4£A}.

This cannot be fulfilled. O

PROPOSITION 4.15. Assume d € Q, ,, is such that ry; =r + 1, ag = 0 and
N,;;=0 for all 1 < i < t. Further, assume that no treatment appearing at an

end plot appears less than r times in the design. Then d performs worse under
the D-criterion than the Williams 11(a) design d* € Q, ,,.
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ProOOF. We can show that tr %, is smaller than the bound which we
assumed for the construction of u,(m, z, b).

There are at most two treatments ¢ — 1 and ¢, say, appearing at end plots. For
both, we have r,; > r. Thus,

tr €, < n(1 + A?) — 2)\2

- ;l_—l(,:'_}\—z)X[igl {ra =)} + i-g_l{rdi(l —\) + agA)’?
. ) 1-A
< n(l + X ) — 2N — m

X {er?3(L = A)* +2r(1 = A)* + (1 — A)" + 4rA(1 — A) + 222},
The bound used in Proposition 4.1 for b = 2 and z = 0 equals

2\ _ 932 _ R
n(1+ A%) — 2X 5

{tr2(1 A2+ 2r(1=2)+ (1 - A)?

4rA(1 — A v
+4rA(1 — )+t_1}.

Thus, the difference between the bound for the trace and the true trace is at
least

1-2A 2(t-3) ,
n—(n-2A t-1
This implies that p,(d) is at most p,(0,0,2) — p/(¢ — 2) and d can be D-better
than d* only if
11(0,0,2){5(0,0,2) — p/(¢ = 2)}7* = ,(0,0,0)15(0,0,0) ",

With the same reasoning as in Proposition 4.12, we conclude that this can be true
only if

p=

{81(0’ 0, 2) - 82(0’ 0, 2) - P}f"2(0’ 0, 0)

(t- 1)1 -A)’A +N)r  8,0,0,2)
n—(n-2)A (t-2) }

> 82(0,0,2){

and, consequently, if

2A
(2A - x2)(1 PP ——)
t—1

= —{(t— 2)N + 2?\}{(t— - ¥) + 2 4t }

(t— 1)(t-2)

Some algebra shows that this is not true. O
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Propositions 4.14 and 4.15 show that designs for which b = 2 cannot perform
as well as the Williams II(a) design d*. This means that if there is a design d
performing better than d*, it must have b = 1, that is, treatment 1 appearmg at
exactly one end plot.

PROPOSITION 4.16. Assume a designd € Q, , exists withry, =r+1, a4 =1
and Ny; =0 for all 1 <i<t. The design d can perform as well under the
D-criterion as the Williams 11(a) design d* € Q, , only if t > 4 and

1-A t—2

tr €, < p1,(0,0,1) + (£ — 2)p,(0,0,1) — P sy 1}\2.

PROOF. Since a, = 1, it follows that another treatment ¢, say, appears at
an end plot of the design. Assume r,, < r — 1. Then there must be another
treatment 2, say, such that ry, > r + 1 and a4, = 0. Relabelling the treatments
to exchange 1 and 2 leads to the case a; = 0, which was already solved.

So treatment ¢ appears at least r times and

1-A
tré,; = n(l + )\2) — 2N — m
X [{(r +1)(1-A) +A)°+ tz rE(1 =2+ (r(1 - A) + )\}2.
Sn(1+}\2)—2}\2—';l_—1(;'j\—2‘)x

2]
x[{(r+ (1 -A) +A)+(¢— 1){r(1—>\)+ (ti 1)}
1-A t—2 9 -
_n—(n—2)>\ t—1

Thus, tr €, is smaller than we assumed for the determination of (0,0, 1). The
difference is at least

1-A t—2
n—-(n-2)At-1
In the case of three treatments, d can perform better than d* only if
#2(0,0,1){115(0,0,1) = 5} = p(0,0,0)15(0,0,0).
Since ¢t — 2 = 1, it follows that
8,(0,0,1){2(0,0,1) — 5} > p1(0,0,0){8,(0,0,1) + 5}

2

5:

and thus
{81(0’ 0, 1) - 82(0’0, 1) - ﬁ}”z(O’O’O)
(t—1)(1 =21 +N)r
n—(n—-2)A

> 8,(0,0,1) + 8,(0,0,1) ).
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Application of Proposition 4.4 shows that

2A 1+)\2+i ZL (=2)N + 20} {(¢ - 1)(1 — A%) +
t—1 t—l{ .

where ¢ = 3. This cannot be true for 0 <\ < 1.0

tAZ + 2tA
t—-1 |’

ProposITION 4.17. If a design d € Q, , is such that ry =r+1, ry=
=Ty =T, 054 =0ag54=1and Ny; =0 for all 1 <i <, then it performs
worse under the D-criterion than the Williams 11(a) design d* € Q

PROOF. Treatment 1 has exactly 2(r + 1) — 1 neighbors. This implies that
2r +1 of the n — 1= rt possible adjacencies in the design are occupied by
adjacencies with treatment 1. So there are only (¢ — 2)r — 1 adjacencies possible
among treatments 2, ..., ¢, that is, LIZ3¥%_, | N, = (¢ — 2)r — 1. Consequently,
at least one of the (¢ — 1)(t — 2)/2 different N, s must be at most 2r/(¢ — 1) — 1.

The eigenvalue p, ,_, fulfills

1 2ri
Bg -1 < E(Cdii t cqyi— 2cdij) <r+A)+ -1 A
As a consequence of Proposition 4.16, we only have to consider the case ¢ > 4.
We want to show by contradiction that d performs worse than d*. We know
that

Ba 2 14(0,0,1), Ba,e-1 < 12(0,0,0) — A
and from Proposition 4.16 that
Bart oo gy < £4(0,0,1) + (t- 2)p,(0,0,0) - 82(0’0, 1) - 5.
Note that
8,(0,0,1) + 5 — A
t—3

“1(0’ 0, 1) = f"'2(0’ 0, 0) -
and that

8,(0,0,1) + 5 — A
t—3 )
Consequently, the concavity of the product implies that
Bay X o Xpg g

5,(0,0,1) + p — A\ ?
< (0.0, {s(0,0,0) - T IR (10,0,0) - A),

The concavity of the product also implies that

_ 8,(0,0,1) + 5 — A3
#2(0,0,0)° 2z{u2(0,0,0)— o t33 }

X {15(0,0,0) + 8,(0,0,1) + 5 — A}.



FINITE WILLIAMS DESIGNS 1623

If d were to perform better than d*, we would have
11(0,0,1){p4(0,0,0) — A} > 1£,(0,0,0){5(0,0,0) + 8,(0,0,1) + 5 — A}

or, equivalently, :
8,(0,0,1){5(0,0,0) — A} > p,(0,0,0){8,(0,0,1) + §}.

Subtract {8,(0,0,1) + 5}{p2(0,0,0) — A} from both sides. It then easily follows

that

{8,(0,0,1) — 8,(0,0,1) — }1,(0,0, 0) > 8,(0,0,1){p,(0,0,0) — 15(0,0,0) + A}.

Hence, we would need
1-A

n—(n-2)A

2rA
2)\{7’(1 + )\2) + —t——_l}

1 \ (t— 1)1 = A’ +A)r
>—t—_—1{(t—2)}\ +2>\}{ e P Y +>\}.

Multiplication of both sides by {n — (n — 2)A}/{r(1 — A)} > ¢ implies
2A tA
ly—— —2)A2 +2 - AN+ —.
2}\(1+)\+t_1)>{(t 2)N }\}{1 +t_1}
This inequality cannot be true for 0 <A < 1.0

PROPOSITION 4.18. Assume the design d € Q, ,, is such that ry =r+ 1,
ay =1and Ny; = 0,1 < i < t. Assume there is one treatment t, say, such that
ry, < r— 1. Then d performs worse under the D-criterion than the Williams
II(a) design d* € Q, ,,.

PROOF. Since treatment ¢ appears less than r times, it has at most 2r — 2
neighbors. This means that there is at least one treatment i (which appears not
more than r + 1 times in the design) such that N, < 2r/(¢ — 1) — 1. Conse-
quently,

1 1 .
5 (Caii + Can = 2¢a) < 5 (r+1)Q+x°) - Py 5y
1-A

n—(n—-2)

(r+ 121 = A)?

+(r—-1)@1+ ) - (r-1)’@ =2

A ) 2
t_—_]T_z}\+2;l——(f;.————2)K(r —1)(1—}\)}

2rA
Sr(1+}\2)+—t—_—1—}\.

Now, proceed as in Proposition 4.17. O

This excludes the last possible candidate for D-optimality and our proof is
complete.
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5. Further optimality proofs. We are now in a position to give a proof of
the theorems in Section 2. We will make use of the methods in Section 3 to exend
Theorem 4.2 to more general criteria.

ProOF OF THEOREM 2.1. We apply Theorem 3.3. From Theorem 4.2, we
know that d* is ¢ -optimal over the competing designs. Proposition 4.5 shows
that d* has the required structure of the eigenvalues. We have to verify
condition (iii) of Theorem 3.3. As p,(d) is difficult to compute, we use an upper
bound.

For tr ¢, fixed, the g -criterion decreases in p,(d). It is minimal if p,(d) is as
large as possible but not larger than p,(d). Thus for tr ¢, fixed, the minimal
value of ¢, is attained if pu,(d) = py and py(d) = (tr €; — p4)/(t — 2). The
true p,(d) is not greater than that.

We have for every competing design that

(t = 2)pa(d) < tr€;— pa < (¢ - 2)p,(0,0,0).

The details of the derivation of the last inequality can be found in the proof of
Proposition 4.11. O

It is clear from the examples given in Proposition 2.4 that there are designs
which are @,-better than the Williams II(a) designs for large p, especially for
p = co. Thus Theorem 2.1 cannot be extended if p is large and at the same time
A is small. Theorems 2.2 and 2.3 illustrate some possible generalizations. On the
basis of examples, we conjecture g, -optimality of the type Il(a) designs for all
0 < A <1 whenever p < {log(3)/log(9/7)} — 1 = 3.37.

PrOOF OF THEOREM 2.2. The only designs left to compete have N, >
(t — 1)Zt_, Ny, Thus Proposition 4.8 implies that tr €, < tr €. for all these d.
If in addition py(m, 2, b) < py(0,0,0), then Theorem 3.1 implies @,-optimality
of d* for all p > 0. We thus only have to consider designs with m > 0 and
2, b such that p,(m, 2, b) > pny0,0,0). As tr%,. > tr %, it follows that
pi(m, z, b) < py(0,0,0). We know that

t—1
Z p';il = p'l(m’ 2, b)_l + (t - 2)”'2(’"" 2, b)_l;
i=1

see Proposition 4.1. So under the A-criterion d cannot be as good as d* unless
pi(m, 2, )" + (£ = 2py(m, 2,0) 7 < 1,(0,0,0) ™" + (£ - 2)p5(0,0,0) .
This implies
{#1(0,0,0) — p,(m, 2, b) }py(m, 2, b)p,(0,0,0)

< (¢ = 2){ps(m, 2, b) — 15(0,0,0)}u,(m, 2, b)p,(0,0,0).
As po(m, z, b) > py(0,0,0) and p,(m, 2, b) < u,(0,0,0), it follows that

{1,(0,0,0) — p,(m, 2, b) }n5(0,0,0)°

< (£ = 2){ma(m, 2, b) = 13(0,0,0) }1(0,0,0)"
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Note that
1,(0,0,0) (1 =21 +A)r o 27A
oo~ [(t— D /{r(l + %) 4 Z?T}]
<1+ [(t—l)(l_n)\?)/{lﬂ\2+ %}]<1+¥<ﬁ,

where we have used Proposition 4.4. Consequently, d can perform as well as d*
only if

11(0,0,0) — p,(m, z, b) < t(t — 2){pa(m, 2, b) — p5(0,0,0)}.
Proposition 4.7 shows that then
(¢ —2){po(m, 2z, b) — 15(0,0,0)} — 2bA/(t — 1) + 2mA
< t(t - 2){”’2('"" 2, b) - F’2(0’0’0)}

and, consequently,
2mA < (¢t — 1)(t — 2){ps(m, 2, b) — p5(0,0,0)} + 2bA/(¢ - 1)

= —z{(t—2)Q +N)+ 4r} - b{(t — 2)A + 27} + 2bA /(¢ — 1) + 2mA.
This can be true only if

0< —2{(t—2)1+7N)+4\} - b{(t—2)X +2(¢ - 2)A/(¢ — 1)}.

This cannot hold and thus under the A-criterion d cannot perform as well as d*.
Can it under the D-criterion?
We have just seen that

f"l(OaO’O) - p’l(m’ 2, b) = t(t - 2){”’2(’"” 2, b) - "’2(0’ O’O)}

Deﬁning p= HZ(ma 2, b) - "’2(0’ 0,0) > 0, we get
f"'l(m’ 2, b) < ""1(0’0’0) - t(t - 2)P
The design d can perform as well as d* under the D-criterion only if
py(m, 2, B)uy(m, 2, )% = 1,(0,0,0)1,5(0,0,0) .
The left-hand side is at most
— f(p) = {1:(0,0,0) — £t — 2)p}{5(0,0,0) + p} .
The derivative of f(p) with respect to p equals
—t(t — 2){15(0,0,0) + p}* "% + (£ — 2){1,(0,0,0) — £(t — 2)p}
X {p,(0,0,0) + p}*~?

= —(t = 2){85(0,0,0) + p} ~*(#(t — 1)p + t1,(0,0,0) — 1,(0,0,0)}

<0,
since #1,(0,0,0) > V£u,(0,0,0) > p,(0,0,0). This means that for p > 0, we get
f(p) < f(0) = p1(0,0,0)15(0,0,0)* 2. O

We conclude this section with the proof of E-optimality for sufficiently
large A.
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ProOF oF THEOREM 2.3. If we define x € R’ with ith entry ¢ — 1 and all
other entries equal to —1 and y € R’ with the ith entry equal to 1, the jth
entry equal to —1 and all others equal to 0, we can see as in Proposition 4.1 that:

D pg e <t/(t—Decy; foralll <i<t. .

() pg -1 < 3(cqi + g5 — 2¢4) foralll <i<j<t
Now assume there is a design d € @, , which is better under the E-criterion
than the Williams I1(a) design d*, i.e.,

) 2rA
Ba o1 > Bar,er = 7L+ M) + ——.
We will determine the properties of d.

STEP 1. How often does each treatment appear in d? Without loss of
generality, we can assume that treatment ¢ is one which appears the least
frequently. Then

3
(1-=2) sy
n—(n—-2A %
Note that for r,, < r, this bound is increasing in r,;,. Now (i) implies
t

Ba,t-1 = 't__’Tcdtt
<ri,(1+ M)+ 2r, /(- 1)
+ {rdt(l +2%)/(¢ - 1)} {n—ryt— (n—ryt—2)A)
n—(n-2)A ’
Assume r;, < r — 1. Then some algebra shows that
B e <r(1+N)+2r\/(t-1).
Thus we must have min{r,;} = r and, without loss of generality,

rg<r and cg, < ry(1+A%) -

rpa=r+1, Fyg= ++" =Trg=Tr.

STEP 2. How often are treatments i and j adjacent to each other? Assume
that 2 and 3 are those treatments in {2,3,..., ¢t} with the smallest number of
adjacencies between them. Then

—Caz3 = Nyggh + n_-(n——z)}\{r(l = A) + agA} {r(1 = X) + agsA}.

Using (ii), we get
Bg -1 S E(Cdzz + Cazz — 2Ca93)

<r(1 4 A2) + Ny — %(az‘,,2 + agy)\?
1 1-A

2n-(n-2A\

<r(1 4 A2) + Ny,

(ags - ad3)2>‘2
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This means that treatments 2 and 3 must have at least 2r/(¢ — 1) + 1 adjacen-

cies.
Remember that Ny, = min{Ny,;: 2 <i <j < t}. This means that

tg i Ny;z (t=2)r+ (¢ —1)(t - 2)/2.

j=i+1

How often are treatments 2,..., ¢t adjacent to treatment 1? It can be seen that
t t
Z Z Nd,j =n-1
i=1 j=i
and that
Y Nyij+ 2Ny =2ry —ag =2r+2—-aq4 =2r+b.

As

—1 ¢t ¢
D Ny, + ENd1j+Nd11

i=2 j=i+1 =2

(t—2)r+(t—1)(t-2)/2+2r+b— Ny,

%

it follows that
Ny=2rt+b+(t—-1)(t-2)/2-(n—-1)
=(t—1)(t—2)/2 + b.

STEP 3. What else must d satisfy? From (i), we get that
t
Bg 1= :cdu = py(m, 2, b),
where m > (¢ — 1)(t — 2)/2 + b and z = 0. Proposition 4.6 implies that
b 2bt
,ul(m, 2, b) < f-"l(O:OyO) + ‘tTT{(t - 2)}\2 + 4A} - t(t - 2)}\ - :TA
< 1,(0,0,0) — (¢ — 2)A

(t—1)Q =20 +M)r

= 0) + —t(t—2)A
#2(0,0,0) n—(n—-2)A ( )
and d can perform better than d* only if
t—1)r(1 — A1+ A
( ) ) )>t(t—2))\.

n—(n—-2)A
This completes the proof. O



1628 J. KUNERT AND R. J. MARTIN

Acknowledgments. The authors wish to thank the referees for their help-
ful comments. We especially want to thank one referee for pointing out an error
in an earlier draft of this paper and C.-S. Cheng for prior notice of his results, the
use of which produced a simplification in the proof of Theorem 3.3.

REFERENCES

ATKINSON, A. C. (1969). The use of residuals as a concomitant variable. Biometrika 56 33—41.

CHENG, C.-S. (1978). Optimality of certain asymmetrical experimental designs. Ann. Statist. 6
1239-1261.

CHENG, C.-S. (1987). An optimization problem with applications to optimal design theory. Ann.
Statist. 15 712-723.

Cox, D. R. (1952). Some recent work on systematic experimental designs. J. Roy. Statist. Soc. Ser.
B 14 211-229.

JACROUX, M. (1985). Some sufficient conditions for the type 1 optimality of block designs. <J. Statist.
Plann. Inference 11 385-398.

KIEFER, J. (1961). Optimum experimental designs V, with applications to systematic and rotatable
designs. Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1 381-405. Univ. California
Press.

KIEFER, J. (1975). Construction and optimality of generalized Youden designs. In A Survey of
Statistical Design and Linear Models (J. N. Srivastava, ed.) 333-353. North-Holland,
Amsterdam.

KIEFER, J. and WYNN, H. P. (1984). Optimum and minimax exact treatment designs for one-dimen-
sional autoregressive error processes. Ann. Statist. 12 431-450.

KUNERT, J. (1983). Optimal design and refinement of the linear model with applications to repeated
measurements designs. Ann. Statist. 11 247-257.

KUNERT, J. (1985). Optimal repeated measurements designs for correlated observations and analysis
by weighted least squares. Biometrika 72 375-389.

KUNERT, J. and MARTIN, R. J. (1987). Some results on the optimality properties of finite Williams
designs. Comm. Statist. A—Theory Methods. To appear.

WHITTINGHILL, D. C. (1984). Block designs: General optimality results with applications to situa-
tions where balanced designs do not exist. Technical Report 84-21, Dept. Statistics,
Purdue Univ.

WIiLLIAMS, R. M. (1952). Experimental design for serially correlated observations. Biometrika 39

151-167.
FACHBEREICH IV—MATHEMATIK / STATISTIK DEPARTMENT OF PROBABILITY
UNIVERSITAT TRIER AND STATISTICS
PosTFACH 3825 UNIVERSITY OF SHEFFIELD
D-5500 TRIER SHEFFIELD S3 7TRH

WEST GERMANY ENGLAND



