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The problem of minimizing ¥, f(x,) subject to the constraints
zrox, =A, L 8(x;) = B and x; > 0 is solved. The solutions are different
depending upon whether (sgn g”’)f” /g’ is an increasing or decreasing func-
tion. The result is used to show that for certain designs, if they are optimal
with respect to two criteria, then they are also optimal with respect to many
other criteria.

1. Introduction. The main purpose of this paper is to solve and discuss
applications of the following minimization problem to the theory of optimal
design:

n

Minimize Y f(x;) subject to the constraints
i=1

(1.1) . .
Y x,=A, Zg(xi)=B and x;,>0,i=1,2,...,n,
i=1 i=1

where A, B are fixed constants, A > 0 and f, g are real-valued functions. In
fact, one can also consider the more general problem of minimizing X7 ,f(x;)

subject to £ h(x;) = A, £ .8(x;) =B and x,>0, i=1,2,...,n. If hisa
one-to-one function, then a trivial transformation reduces the latter to (1.1).
Problem (1.1) arises from, but is not restricted to, the theory of optimal
experimental design. Special cases of (1.1) with g(x) = x2 and x~! have been
studied in Cheng (1978) and Cheng, Masaro and Wong (1985), respectively, as
tools for solving some problems in block and weighing designs. An application to
graph theory can be found in Cheng (1981). In design applications, x,, x,,..., X,
are usually the eigenvalues of a symmetric nonnegative definite matrix (the
so-called information matrix), which explains the constraint x; > 0 for all i.
The use of problem (1.1) in optimal design will be discussed after the following
review of some preliminaries. Let 2 be the class of all competing designs in a
certain setting; to each design d in 2, there corresponds an n X n information
matrix C,. We are interested in finding a design d* which minimizes ®(C,)
over 2 for some optimality functional ® [see Kiefer (1974)]. Typical examples
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of ® are

() o) = (1) "

1 ” 1/p
(i) o) -(zExe| . po
i=1
and
(lll) - q)oo(Cd) = max A(—iil’
1<i<n
where A, Ay, ..., Ay, are the eigenvalues of C,. A design minimizing (i), (ii) or

(iii) is called, respectively, D-, @, or E-optimal, and a ®,-optimal design is also
known as A-optimal. Since lim,_ @,C,) = ®,(C,) and lim,_®,C,) =
®,(C,), E- and D-optimal designs are often referred to as ®_- and ®;-optimal,
respectively. Notice that one can also define the D-criterion in terms of the
functional ®(C,) = —X%" ,log A ;. In this paper, we shall restrict our discussion
to criteria of the form X , f(A,;), where f is a real-valued function. This covers
D- and @,-criteria by the choices of f(x) = —logx and x 7, respectively, and
the E-criterion is also included as a limiting case.

Usually the direct search for an optimal design is difficult, but some simple
sufficient conditions for optimality are available in the literature. For certain
well-structured designs, it is often possible to show that if they are optimal with
respect to one or two simple criteria, then they are also optimal with respect to
many other criteria. One notable example is Kiefer’s (1975) result on universal
optimality:

ProrosITION 1.1. If a design with A, = Ayy = -+ = A, maximizes trC,,
then it minimizes ®(C,) for all nonincreasing, convex and orthogonally in-
variant ®.

The same paper also contains the following result:

PROPOSITION 1.2. If a design with A ;; = A 4o = -+ = Ay, is ®,-optimal for
some p 2 0, then it is ® -optimal for all ¢ > p.

Proposition 1.2 in fact can be viewed as a corollary of Proposition 1.1,
although it was not proved this way in Kiefer’s paper. To gain some insight, let
us first consider the following problem:

n n
(1.2) Minimize Y. f(x,) subject to Y x;, = A.
i=1 i=1
If f is convex, then the minimum value is nf(A/n), attained at x;, = x, = ---
= x, = A/n. Furthermore, if f is decreasing, then nf(A/n) is also a decreasing
function of A. Therefore, if a design with A, = --- = A, maximizes trC,,
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then it minimizes X" ; f(A,;) for all decreasing and convex f. This proves a
slightly weaker version of Proposition 1.1. Proposition 1.2 can be proven in a
similar fashion. In fact, instead of minimizing ¥ ,x; ¢ subject to X ,x;? = A,
upon the transformation y =x"? (or —logx for p =0) it is sufficient to
consider the minimization of Y ,y?? (or L7 ,e?: for p =0) subject to
X .y, = A, which then reduces to the earlier case. This kind of argument leads
us to the following more general result:

ProrosITION 1.3. If a design with A, = -+ = Ay, minimizes £} ,8(Ay)
over 9 for a certain real-valued function g, then it minimizes ¥.7_, f(g(Ay;)) for
all convex increasing functions f.

Proposition 1.2 becomes a special case of Proposition 1.3 with g(x) = x7?,
f(x)=x9P for ¢ > p > 0 and g(x) = —logx, f(x) = e for ¢ > p = 0. This
proof of Proposition 1.2 is different from Kiefer’s original proof; it links Proposi-
tion 1.2 to Proposition 1.1 and makes clear the key role played by the convexity
and increasing monotonicity of x9/? (when ¢ > p > 0) and e%* (when q > p = 0).

When a design with A, = --- = A, does not exist, one would have to add
another constraint to (1.2) and solve (1.1). Hopefully some designs optimal with
respect to two criteria can be shown to be optimal with respect to many other
criteria. Thus Cheng (1978) solved the simple case g(x) = x% and showed that a
design with two distinct A j;’s, the larger one having multiplicity 1, minimizes
X f(Ay) for a large class of functions f if it maximizes trC, and also
minimizes another function of C,. The case g(x) = x~! was solved by Cheng,
Masaro and Wong (1985) as a tool for establishing that if a design with two
distinct A ,;’s, the smaller one being simple, is A-optimal and maximizes tr C,,
then it is @ -optimal for all 0 < g < 1. These results provided useful tools for
solving some problems in optimal block and weighing designs. In this paper, a
generalization and unification of these optimality tools will be obtained by
working out the general solution of (1.1). It turns out that whether (" /g"")sgn g”
is an increasing or decreasing function plays an important role in determining
the solution, where sgn g”” equals 1 when g’/ > 0 and equals —1 when g”” < 0. It
is interesting to point out that the same kind of conditions on (f” /g’ )sgn g”
also appeared in Galil and Kiefer’s (1983, Theorem 1) work in comparing
the performance of two designs tied at two criteria. When g(x) = x2,
(sgn g”’)f”/g"” = 4f”. This leads to the distinction between type 1 and type 2
criteria according to f 7 < Oor f " > 0, as treated in Cheng (1978).

The results in this paper have been presented at the Kiefer—Wolfowitz
Memorial Statistical Research Conference held in July 1983 at Cornell Univer-
sity. Recently Kunert and Martin (1985) independently proved the same results,
but for functions of the form f(x) = x” and g(x) = x? only. They also applied
the results to study optimal treatment designs for correlated errors.

2. Solution to Problem (1.1). Throughout this section, we shall assume

(i) f and g are twice continuously differentiable on (0, A) and f(0) =
lim, _, o+f(x) = o0;
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(ii) g” is of one sign on (0, A);

(iif) ng(A/n) < B < g(A) + (n — 1)g(0)if g” > 0 on (0, A), and ng(A/n) >
B > g(A) + (n — 1)g(0) if g” < 0 on (0, A), where g(0) = lim, , ,+g(x) and can
be o0 or — co.

Assumption (ii) means that g is either strictly convex or strictly concave on
(0, A). Since f(0) = oo, the minimum of £, f(x,) cannot be attained at a point
with some zero coordinates. Assumption (iii) assures that the set S, =
{(x=(xy,...,x,): X x;=A, Y ,8(x;) = B, x;, > 0} is nonempty (see Lemma
2.2) and that all the points in S, have at least two distinct coordinates, ruling
out the trivial case S,z = ((A/n,..., A/n)}.

Then we have

THEOREM 2.1.  Assume (i), (ii) and (iii). If (sgn g”)f" /g" is strictly decreas-
ing on (0, A), then the point x = (x,,...,%,) € Syp Withx, > x, = -+ =x, is
a solution to Problem (1.1). On the other hand, if (sgng”)f"/g" is strictly
increasing on (0, A), then the minimum of L7, f(x;) over S,y is attained at
X=(Xy...,%,) With x,= -+ =X > Xpu, = -+ =x,, where k* is the
largest positive integer k < n such that kx + (n — k)y = A, kg(x) +
(n—k)g(y) =B, x >y >0, has a solution.

Before proving Theorem 2.1, we first consider the existence and uniqueness of
the kind of x as described in the theorem.

LEmMMA 2.2.  Assume (i), (ii) and (iii). Then

(a) there exists x € S,p such that x, > x, = --- = x,; in particular, S, is
nonempty;

(b) for any real number k (not necessarily an integer) such that1 < k < n —
1, if there is a solution (x, y) to kx + (n — k)y = A, kg(x) + (n — k)g(y) = B
and x >y > 0, then it is unique;

(¢) if the system of equations kx + (n — k)y = A, kg(x) + (n — k)g(y) = B
has a solution x >y >0, where 1 <k <n —1, then for any k'’ such that
1<k'<k, k'x’+(n—k')y’=A and k’g(x’) + (n — k’)g(y’) = B also has
a solution x’ > y’ > 0.

PrOOF. We only have to prove the case g”” > 0 on (0, A). That of g” <0
can be treated similarly. ,

(a) The range of g(x)+ (n — 1)g((A — x)/(n — 1)) over x € (A/n, A) is
(ng(A/n), g(A) + (n — 1)g(0)). Since ng(A/n) < B < g(A) + (n — 1)g(0),
there exists x* € (A/n, A) such that g(x*) + (n — 1)g((A — x*)/(n — 1)) =
B. Obviously, x* > (A — x*)/(n — 1) > 0; then (a) is proven by letting x, = x*
and x,= -+ =x,=(A—x*)/(n—1).

(b) In order that kx + (n — k)y = A and x > y > 0, one must have y =
(A — kx)/(n—k)and A/n < x < A/k. Then we have kg(x) + (n — k)g(y) =
kg(x) + (n — k)g((A — kx)/(n — k)), which, by differentiation, can be seen -
be a strictly increasing function of x on (A/n, A/k).
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(c) By the first sentence in the proof of (b), the range of kg(x) + (n — k)g(y)
over {(x,y): kx +(n—k)y=A, x>y>0} is (ng(A/n), kg(A/k) +
(n — k)g(0)). We may assume g(0) < co; otherwise the result holds trivially.
Then kg(A/k) + (n — k)g(0) can be seen to be a strictly decreasing function of
k, by differentiation and the convexity of g. It follows that if %2’ < k, then
(ng(A/n), kg(A/k) + (n — k)g(0)) is contained in (ng(A/n), k'g(A/k’) +
(n — k’)g(0). O

Now we are ready to prove Theorem 2.1.

ProOF OF THEOREM 2.1. Again, we shall only consider the case g”” > 0 on
(0, A). For g” < 0, one only has to reverse inequalities at several places.
Let the minimum of X? ,f(x;) over S,p be attained at a point a =

1=1

(ay, ay, ..., a,). By Lagrange’s theorem, there exist numbers a and B such that
a;, a,,..., a, satisfy
aJ n n n
a {Zf(xt)+a(zxz_A +B(Zg(xl)_B)}=Oy i=1’2;"'yn’
Xi\i=1 i=1 i=1

ie.,
f/(x;)+a+Bg’(x;)=0, i=1,2,...,n.
We claim that the equation f’(x) + a + Bg’(x) = 0 has at most two distinct

solutions, which implies that a must have only two distinct coordinates. Suppose
x and y are two distinct solutions of the above equation. Then

f(x)+ Bg'(x)=1"(y) + Beg'(y),

and hence

[£(x) = F()]/[g"(x) - &'(y)] = -B.
Let £ = g’(x) and ¥ = g’(y). Then

(2.1) (i"len @] - 1[5} )z -5) = 8.

The derivative of f'[(g’)"' ()] is {"[(8")"(%)]/&"[(&’)~ ()], which, by as-
sumption, is either strictly increasing or strictly decreasing. Therefore, for fixed
X, there is at most one y satisfying (2.1). This proves the claim that a has only
two distinct coordinates.

Now consider the equations

ka+ (n—k)b=A,
(2.2) a>b>0,
kg(a) + (n — k)g(b) = B,
where 1 < 2 < n — 1, but k is not necessarily an integer. By Lemma 2.2, the
solution is unique if it exists. So a and b are uniquely determined by A, B and

k, and can be expressed as a(A, B, k) and b(A, B, k). The theorem is proved if
we can show that for fixed A, B,

F(A, B, k) = kf(a(A, B, k)) + (n — k) f(b(A, B, ))
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is a strictly increasing (respectively, decreasing) function of 2 when f” /g is
strictly decreasing (respectively, increasing) on (0, A).

Now assume f”/g” 1is strictly decreasing. We shall show that
(0F/dk)(A, B, k) > 0. Differentiating ka + (n — k)b = A and kg(a) +
(n — k)g(b) = B with respect to k, we get

ab

b k2% (=t 0
e- ar T (n— kg =0,

da ab
g(a) - g(b) + kg'(a) 5, + (n— R)g'(b) 5 = 0.

Therefore,

da

o5 =k e(a) —g'(6)) " {&(b) — g(a) — g'(b)(b - a))},

z—z = (n—k) '{g'(a) - g'(b)} {g(a) — g(b) + g’(a)(b - a)}.

Then
oF , da ) ab
ﬁ(A,B,k) =f(a) — f(b) + kf (a)ﬁ +(n—k)f (b)ﬁ

= {g'(a) - g'(8)} {[f(a) - £(b)][g'(a) — £"(})]
+f"(a)[g(b) — g(a) — g'(0)(b - a)]
+f'(b)[g(a) — £(b) + g'(a)(b - )]},
which, since_ g’ > 0, has the same sign as

aF
(g'(a) - &(5)) 5 (4, B, })
(23) - (1(a) - (®)}{(&'(a) - £'(b))
+11(a)(8(0) - 8(a) - g/(b)(b - @)
+1'(8){g(a) - 8(6) + g/(a)(b - @)}

For fixed b, denote the right-hand side of (2.3) by G(a). Since G(b) = 0, to show
that G(a) > 0 for a > b, it is enough to prove G’(a) > 0 for a > b, i.e.,

g"(a){f(a) - {(d) - f*(b)(a - b))}
—1"(a){g(a) — g(b) — &'(b)(a - b)} >0,
for a > b. This is equivalent to
f(a) = (0) = (b)(a=b) _ f(a)
g(a) —g(b) —g'(b)(a-bd) = g”(a)’
again due to the convexity of g. Now since f”/g” is decreasing on (0, A),
f(t)/g"(t) > {"(a)/g"(a), forb<t<a.

(2.4) fora > b,
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We have
f"(a)
g"(a)

f7(¢) > g"(¢)

, forb<t<a.

Then

@ amx f"(a)
fbfbf (t)dtdx>fbfbg (t)g”(a) dtdx.

As a consequence,

[505f"(¢) dtdx {"(a)
afXzrr > ” 4
[6/58”(t) dtdx ~ g"'(a)
which yields (2.4) and the proof is completed. O

REMARK 2.3. The condition f(0) = lim, _, ,+f(x) = oo in (i) is to assure that
the minimum of £, f(x;) over {(x,,...,%,): X" x, = A, X" 8(x;) = B, x;, > 0}
does not occur at a point with some coordinates equal to zero. The same goal can
also be achieved, for instance, by requiring |g(0)| = lim, _, ,+|g(x)| = co. Thus in
Theorem 2.1, we can replace “f(0) = lim, _, ,+f(x) = c0” with “|g(0)| =
lim, _, o+|g(x)| = 00.” Another way to remove the above condition on f is to
assume B < (n — 1)g(A/(n — 1)) when g” > 0 and B > (n — 1)g(A/(n — 1))
when g” < 0.

3. Applications. In this section, we shall use Theorem 2.1 to show that for
certain designs, as long as they are optimal with respect to fwo criteria, they are
also optimal with respect to many others. First, we shall see how the minimum
value of X, f(x,) over S, depends on A and B.

Let A* = max ;. gtr C;. Throughout this section, we shall also assume that
g’ is of one sign on (0, A*).

By differentiating ka + (n — k)b = A and kg(a) + (n — k)g(b) = B with
respect to A and B, and then solving for da/dA, db/dA, da/dB and db/dB,
we obtain

e (g ) ~ £ ()

2w g(@)(n— k) g(@) - £(5)
(3.1) A

ok ga) -~ £ (5)

2 (- ) ga) ~£(5))

Then
oF da ab
S5 4B k) = k(@) + (n = B)f"(b) 5
= {f'(a) - f'(b)}/{&'(a) — g'(b)},
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which is positive (negative) if f”g” > 0 (< 0) on (0, A). Thus, for fixed £ and A,
F(A, B, k) is strictly increasing in B if f”g” > 0 on (0, A), and is strictly
decreasing in B if f”g” < 0 on (0, A).

Now we vary A. From (3.1),

F

. , da ’ ﬁ
(3.2) oq (4 Bok) = kf(a) o= + (n— k) f ()

= {g'(a)f"(b) —g'(b)f'(a)}/{g'(a) — &()).

Since g’ is of one sign on (0, A*), (3.2) can be written as

-g(A, B, k) =g'(a)g'(b){f'(b)/8"(b) - f’(a)/g’(a)}/{g’(a) - g'(b)},

which is positive (negative) if (sgn g”")f ’/g’ is strictly decreasing (increasing) on
(0, A*). Thus, for fixed & and B, F(A, B, k) is strictly increasing in A if
(sgn g”")f’/g’ is a strictly decreasing function, and is strictly decreasing in A if
(sgn g”)f'/g’ is a strictly increasing function. Combining the above conclusions,
Theorem 2.1 and Remark 2.3, we have

THEOREM 3.1. Let A* = max ;. gtr C,; and assume

(1) g is twice continuously differentiable on (0, A*),
(ii) g’ is of one sign on (0, A*), and
(iii) g’ is of one sign on (0, A*).

If there is a design d* € 9 such that

(a) C,« has two distinct nonzero eigenvalues X guy > A gug = -+ = Agup,
(b) d* maximizes tr C, over 2, and
(c) d* minimizes L!_,8(A ;) over 2,

then d * minimizes X7, f(Ay;) over @ for all f such that

(a) f is twice continuously differentiable on (0, A*) and lim, _, ,-f(x) =
f(0) = oo,

(B) (sgng”)f”/g" is strictly decreasing on (0, A*),

(v) /78" >0 on (0, A*), and

(8) (sgn g”)f'/g’ is strictly increasing on (0, A*).
In (b), “maximizes” is replaced by “minimizes” if in (8), “increasing” is
changed to “decreasing.” Also, the condition “{(0) = lim, _, +f(x) = 0” in (&)
can be dropped if we assume |g(0)| = lim, _, ,+|8(x)| = oo instead. Furthermore,
all the above results hold if (a) and (B) are replaced, respectively, by

(a’) Cy» has two distinct nonzero eigenvalues Aguy = Ageg = -+ =
Ad*,n—l > >\d*n and
(B’) (sgng’)f"/g" is strictly increasing on (0, A*).
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The same kind of argument that leads Proposition 1.1 to Proposition 1.3 now
yields

THEOREM 3.2. Let A* = max, . 4trC,;, h be a nonnegative-valued function
defined on (0, A*) and A = sup, ¢ o 4+,h(x). Assume

(i) g is twice continuously differentiable on (0, A),
(ii) g’ is of one sign on (0, A), and
(iii) g” is of one sign on (0, A).

If there is a design d* € 9 such that

(a) C,+ has two distinct nonzero eigenvalues \ and w, where \ is simple and
h(A) > h(p),

(b) d* minimizes ¥ _h(\ ;) over 9, and

(c) d* minimizes ¥} ,8(h(\ ;) over 9,

i=1
then d* minimizes ¥, f(h(A 4;)) over D for all f such that

(a) f is twice continuously differentiable on (0, A) and lim, _, o+f(x) =
f(0) = oo, .

(B) (sgng”)f"/g" is strictly decreasing on (0, A),

(vy) f"g” >0 on (0, A), and B

(8) (sgng”)f’/g’ is strictly decreasing on (0, A).

If we also assume that |g(0)| = lim, _, +|g(x)| = o, then the condition “f(0) =
lim, _, o+f(x) = 00” in (a) can be dropped. Furthermore, all the above results
hold if (a) and (B) are replaced, respectively, by

(a’) Cy4« has two distinct nonzero eigenvalues A and p such that \ is simple
and h(\) < h(p), and

(B’) (sgng”)f"/g" is strictly increasing on (0, A).

REMARK. It is assumed in Theorems 3.1 and 3.2 that at least one of f(0) and
|€(0)| is equal to oo. The case where both f(0) and |g(0)| are finite is much more
complicated, but can be treated along the line of Cheng (1978) in which the case
&(x) = x? was dealt with. For simplicity, we shall not pursue it further in this
paper.

Theorems 3.1 and 3.2 are our main results. One can write down numerous
applications of these two theorems by specializing f, g and A to various
functions. For brevity, we shall only list a few applications to the ®,-criteria in
the rest of the paper.

Now choose the g(x) in Theorem 3.1 to be x™? with p > 0; also for
0<g<p,let f(x)=x"7 when ¢ # 0 and f(x) = —logx when g = 0. Then
(1), (ii), (iii), (a) and (y) are easily seen to be satisfied. We also have

p U p+1)'g(g+1)xP"9,  0<gq<p,

(seng”(x))f,"(x) /8" (x) = (" .
p (p+1) x?, q=0,
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and
P lgxP7Y, 0<gq<p,
p'x?, qg=0.

Both of the above two functions are strictly increasing on (0, o). Thus we have

(sgn &7 (x)) 1, (%) /() = {

COROLLARY 3.3. If there is a design d* € 2 such that

(@) C;« has two distinct nonzero eigenvalues A oy = Agsg = +++ =
Ad*,n—l >->\d"‘n’

(b) d* maximizes trC; over 9, and

(c) d* is ®,-optimal for some p > 0,

then d* is @ -optimal for all 0 < q < p.

The extension of Corollary 3.3 to the case where p or ¢ is negative is
straightforward. The result in Corollary 3.3 can also be proved for p = oo; this
has been treated in Kunert (1985) and also in Jacroux (1985).

As an application of Theorem 3.2, let h(x) =x"7, g(x)=p 'logx and
f(x) = x9/P where 0 < g < p. Then conditions (i), (ii), (iii) and (y) in Theorem
3.2 are easily seen to be satisfied. Condition (a) is also satisfied with “f(0) =
lim, _, o+f(x) = 00” replaced by “g(0) = lim, _, ,+8(x) = — q.” It is straightfor-
ward to see that

(sgng”(x))f"(x)/8"(x) = p~'q(q — p)x¥?
and
(seng”(x))f"(x)/g'(x) = —qx?/P.

Both are strictly decreasing functions on (0, «0). Since g(h(x)) = —logx and
f(h(x)) = x79, and h(x) is a decreasing function, we conclude

COROLLARY 34. If there is a design d* € 2 such that

(a) C;+« has two distinct nonzero eigenvalues Aguy = Ageg = ¢+ =
Nax 1> Agen,

(b) d* is D-optimal, and

(c) d* is ®,-optimal for some p > 0,

then d* is @ ,-optimal for all 0 < q < p.

Is there an analogue of Corollary 3.3 for the case where C;« has two distinct
nonzero eigenvalues with the larger one being simple? A simple application of
Theorem 3.1 shows that if there is a design d * € 9 such that C,. has nonzero
eigenvalues A ;.; > Ajup = -+ =Xy, and d* is @,-optimal for some p > 0,
then d* is @ -optimal for all ¢ > p over the designs with trC, > tr C,.. This
result says nothing about the designs with tr C, < tr C,., which, unfortunately,
arise more often in applications. So such a straightforward application of
Theorem 3.1 does not yield a useful result for designs with the above eigenvalue
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structure. We shall conclude our paper, however, with a more useful result which
generalizes part (a) of Theorem 2.2 in Cheng (1978), the main result in that
paper. Now assume (i), (ii), (iii), (a), (b), (a) and (8) in Theorem 3.1. For any
design d € 9, let A;=1trC; and B; = X" ,8(A,), where A,,,..., A, are the
eigenvalues of C,. Then by Theorem 2.1,

(3.3) i f(Ag) = f(}‘(Ad’ Bd)) +(n - l)f(.“(Ad, Bd)),

i=1
and

(34 éf(x.ﬁ) = F(M(Ager By2)) + (n = 1)f(u(Age, Byr)),

where

AMA, By) + (n—1)u(A,, By) = A,
(8.5) g(\(A, By)) + (n - 1)8(."'(Ad, B,)) = By,

A(Ad: Bd) = “'(Ad: Bd) > 0.

By assumption (b), A, < A, .. So if u(A, By) < w(Ag«, Byx), then
(A(Ad*’ Bd*): .U'(Ad*7 Bd*)’ AR nU'(Ad"" Bd"‘)) <w (A(Ad’ Bd)7 “(Ad’ Bd)’ AR
p(A, B,)), where <, is upper weak majorization [see Marshall and Olkin
(1979)]. By Theorem A.8 in Chapter 3 of Marshall and Olkin (1979), if f is also
convex and nonincreasing, then

f(A(Ad’ Bd)) +(n— 1)f(“’(Ad7 Bd))

> f(MAg«, Bg)) + (n = 1) f(p(Ags, Byr))-
Now (3.3), (3.4) and (3.6) together imply that X7, f(A;) = X%, f(A4«;). This
proves

(3.6)

THEOREM 3.5. Assume conditions (i), (ii), (iii), (a) and (b) in Theorem 3.1. If
d* also maximizes u(A,, B,;) over 9, where p(A,, B,) is defined in (3.5), then
d* minimizes L, f(A ;) over @ for all f satisfying (),(B) in Theorem 3.1 and

(¢) f is convex and nonincreasing on (0, A*).

Theorem 2.2 of Cheng (1978) corresponds to the choice of g(x) = x? in
Theorem 3.5, which so far has had many applications in solving various design
problems. Recently Kunert and Martin (1985) proved the same result for
g(x) = x72. They also proved a variant of this result and successfully applied it
to prove the optimality of finite Williams II(a) designs [Williams (1952)] for
first-order autoregressive processes. This adds another item to the list of applica-
tions of problem (1.1). The results in this paper are potentially useful to other
situations and it is hoped that more applications can be reported in the future.
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