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TESTING EXPONENTIALITY VERSUS A TREND CHANGE IN
MEAN RESIDUAL LIFE
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Given that an item is of age ¢, the expected value of the random
remaining life is called the mean residual life (MRL) at age ¢t. We propose two
new nonparametric classes of life distributions for modeling aging based on
MRL. The first class of life distributions consists of those with “increasing
initially, then decreasing mean residual life” (IDMRL). The IDMRL class
models aging that is initially beneficial, then adverse. The second class,
“decreasing, then increasing mean residual life ” (DIMRL), models aging that
is initially adverse, then beneficial. We propose two testing procedures for H:
constant MRL (i.e., exponentiality) versus H;: IDMRL, but not constant
MRL (or H{: DIMRL, but not constant MRL). The first testing procedure
assumes the turning point, 7, from IMRL to DMRL is specified by the user
or is known. The second procedure assumes knowledge of the proportion, p,
of the population that “dies” at or before the turning point (knowledge of 7
itself is not assumed).

1. Introduction and summary. Let F be a life distribution (i.e., F(¢) = 0
for t < 0) with a finite first moment. Let F(¢) = 1 — F(¢). The mean residual
life function is defined as

(1.1) m(t) = E[X — )X > t], for F(t) > 0,

=0, for F(t) = 0,

for ¢t > 0. When F(¢) > 0, m(¢)F(t) = [{°F(x + t)dx = [2F(u) du. Throughout,
F is assumed continuous.

We propose two new nonparametric classes of distributions relating to mean
residual life. The first class of distributions, called “increasing initially then
decreasing mean residual life” (IDMRL) distributions, models aging that is
initially beneficial, then adverse.

DEeFINITION 1.1. A life distribution with a finite first moment is called an
increasing then decreasing mean residual life (IDMRL) distribution if there
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exists a turning point 7 > 0 such that

(12) m(s) <m(t), for0<s<t<r,

m(s) > m(t), fortr<s<t.

The dual class of “decreasing initially, then increasing mean residual life”
(DIMRL) distributions is obtained by reversing the inequalities on the MRL
function in (1.2). It is used to model aging that is initially adverse, then
beneficial.

We consider tests for these two classes. Many situations arise where a model
of IDMRL or DIMRL distribution can be postulated. For example, it is reason-
able to consider an IDMRL model for life lengths of humans. High infant
mortality explains the initial IMRL. Deterioration and aging explain the later
DMRL state. [See Guess, Hollander and Proschan (1983) for additional exam-

ples.]
We develop tests of

H,: F is constant MRL (equivalently, F(x) = 1 — exp(—x/p),

(1.3) -
x>0, p> 0, p unspecified)
versus
(1.4) H,: F is IDMRL (and not constant MRL),
based on a random sample X, ..., X, from F. When the dual model is proposed,
we test H,, versus
(1.5) H/: F is DIMRL (and not constant MRL).

Our test statistics are motivated by the Hollander and Proschan (1975)
[hereafter HP (1975)] test statistic for DMRL alternatives. Its desirable efficiency
properties [cf. HP (1975), Klefsj6 (1983), and Hollander and Proschan (1984)] for
testing exponentiality versus DMRL make it a natural choice for extension to
the IDMRL and DIMRL classes.

In Section 2 we assume that the turning point 7 (say) from IMRL to DMRL
is known. We then derive an IDMRL test statistic for testing constant MRL
versus IDMRL alternatives. By using the differentiable statistical function
approach, we show asymptotic normality of the IDMRL test statistic. Knowl-
edge of 7 would be reasonable if we were working with a biological organism in a
physical model of a disease process (e.g., the first two months form an incubation
period). In a training program for future doctors or a recruiting program for a
military service, the value of 7 could be known by the length of the intensive
stage designed to eliminate the weaker students or recruits.

Section 3 treats the case where we assume knowledge not of 7, but of
p = F(71), the proportion of the population that dies (or leaves the program, etc.)
at or before the turning point 7. L-statistic theory is used to show asymptotic
normality of the test statistic.

Section 4 contains two examples which illustrate the two tests.



1390 F. GUESS, M. HOLLANDER AND F. PROSCHAN

2. The IDMRL test when the turning point t is known. In this section
we assume that the turning point 7 is known or has been specified by the user.
Motivated by HP (1975), we consider the parameter

7(F) = [ ['Fs)F(&) [ m(e) - m(s)] dF(s) dF(2)
+ [ [FF@)mls) - m(e)] dF(s) dF(2).

From (2.1) we see that T(F) is a weighted measure of the degree to which F
satisfies the IDMRL property. If the MRL is constant, then T(F') = 0. Define
D(s,t) = F(s)F(t){m(t) m(s)}. Then

T(F) = E{I(S< T < 7)D(S,T) — I(r < S < T)D(S, T)},

when S, T are independent random variables, each with distribution F. The
weights F(s) and F(¢) represent the proportions of the population still alive at s
and ¢, respectively, and thus furnish comparisons concerning the mean residual
lifelengths from s and ¢, respectively.

Using integration by parts, we can rewrite T(F') as

T(F) = [[{[3 = F(r) + 4F*(7)] F(x)
+[—1 + F(7) - %F2(T)]F2(x) + %F“(x)} dx
+[T{l=4+ 8F(r) = §F(r) + 3F(1)] Flx)

+[4 = F(r) + JF2(7)| F¥(x) — 1F*(x)} dx

a form which we find convenient.

Let F, be the empirical distribution formed by a random sample X,,..., X,
from F. T = 4. T(F,) is a natural statistic for testing H,, versus H,. Integrating,
we find the computationally simpler expression

(2.1)

(2.2)

l‘*

n—1+1 n—i*
Tn= ZBI(T)(Xin—X(iI)n)+BI( n )(T—Xi*n)

=1

n-—zi* n—i+1
+B2( n )(X(i*+1)n - ) + Z B ( n )(Xm - X(z—l)n)’

i=i*+2
where 0 = X, < X, < -+ <X, <7< X sy, < -+ <X,,, and
By(u) = 4o [2 = F(7) + 3FX(1)]u+ [~1 + F(1) - $F2(7)]u? + Ju*,
2(u) T def. [ %Fn(’r - %FnQ(T) + l}FerS(’r)]u )

+ [; ) + LB

[The dependence of B;(u), i = 1,2, on F,(7) is suppressed for convenience.]
Under our continuity assumption on F, with probability one ties will not occur.
However, in industrial, medical, and other settings ties may occur due to
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grouping of the data. For the case of ties, use

- S;_ . . s,
T, = Z Bl(‘;}')(xik - X(i—l)k) + Bl(
i=1

: )(" - Xit)

*
n

S\, - k Si—1\, n .
+Bz(—L)(X(i*+l)k )+ X B2(_)(Xi — Xiooe)»
n i=i*+2 n

where 0 =X, <X, < -+ <Xpup<7 <X < - <X are the dis-
tinct ordered observations from the random sample and

n; = number of observed deaths at time X,

s;=n-— Zn,, fori =0,1,..., k <n.

=0

Note that n; # 0, i = 1,..., &k, while n, = 0 is allowed.

To establish asymptotic normality of 7, we use the differentiable statistical
function (DSF) approach of von Mises (1947) [cf. Boos and Serfling (1980) and
Serfling (1980)]. The approach uses a Taylor expansion for functionals.

The first-order Gateaux differential of a functional T at the point F' in the
direction G is defined as

T(F,) - T(F)
%
where F), = F + AM(G — F), F and G are distributions in the domain of 7(-), and
0 < A < 1. Notice that the differential is a function of two arguments: the
distribution F, and the increment D = ,, G — F. Let w(T, F) = 44
Eg[d\T(F, 8y — F)] and oXT, F) =4 Varg[d,T(F, 8y, — F)l

For the IDMRL functional T, the Gateaux differential is

d,T(F,G — F) = lim
A—-07"

d,T(F, D) = [fo’{—ﬁ(T)ﬂx) + F(r)F*(x)} dx|D(r)
= [{[5 = F(r) + 473(0)]
+2[—1+ F(7) = 1F*(7)| F(x) + 4F3(x)}D(x) dx
+ [ff{[g — F(r) + FX(r)| F(x) - F(r)F*(x)) dx | D(r)

— [P{l= 4+ 3F(r) — §F2(x) + $FY(7)]

+2[4 = F(r) + $F(r)| F(x) — 4F%(x)}D(x) dx.

Set D, = F, — F. Note F, = n™'L}"_ 8y, where dy(x) = 0if x < X; and =11if
x > X,. The differential is linear in the increment argument; and thus,

1 n
(2.3) d,T(F,D,) = - Y. d\T(F,8x — F).
i=1

Our proof of asymptotic normality approximates T(F,) — T(F') by d,T(F, D,)
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and shows the remainder term R, converges in probability to 0. Our proof uses

the fact that T(F') can be represented as

T(F) = T, (F)Tio(F) + Ty(F)Tyn(F) + Ty (F)
+Ty(F)To(F) + Ty (F)Tp(F) + T (F).

The functionals T,,(-), i = 1,2,3, j =1,2,* are defined in the obvious way
from (2.2), e.g.,

Tu(F) = [§ - F(r) + JF3()],
To(F) = [Flx)dr, Tp(F) = ['§F'(x) dx,

(2.4)

etc.
\

THEOREM 2.1. Let F be a life distribution such that 0 < F(1) <1, 0 <
0T, F) < oo, and 0 < 6*(T;;, F) < oo fori=1,2,3, j=1,2,* Then
(2.5) - n'?[T(F,) - T(F)] - 4 N(0,0%(T, F)).

Proor. Note that u(T, F)=0. Applying the classical Lindeberg-Lévy
central limit theorem to (2.3), we have

n2[d,I(F, D,)] =, N(0,oX(T, F)).

Next, we show that R, = n'/?[T(F,) — T(F) — d,T(F, D,)] converges in prob-
ability to zero. Equation (2.4) allows us to express R, as a sum of simpler
products. Rewrite R, as

R,= L (To(F)n'?[Ty(F,) - T,(F) - d\T(F, F, - F)]

i€(1,2,4,5)
+T,(F)n'/?[Ty(F,) — To(F) — d\Ty(F, F, - F)]
+[Tu(F,) = T,(F)|n'?[Ty(F,) — To(F)]}

+ Y n'?[T.(F,) -~ T«(F) - d\T.(F, F, - F)]

i€{3,6)

= def. Z {Riln + Rt2n + Ri3n} + Z Rin'

i€(1,2,4,5) ie(3,6)
Consider the i = 1 terms. R,,, reduces to
Rlln = %T12(F)[Fn(’r) - F(T)]nl/2[Fn(T) - F(T)]’
which converges in probability to 0.
R12n = Tll(F)nl/Q[O] = 0’
Ry, = [Tu(F,) = T\(F)|n'2[Ty(F,) - Ton(F)] = ,0,
since
T,(F,) — T\,(F) _’pO
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and
n'/? [TIZ(Fn) - T12(F)] —d N(O, o*(Ty,, F))

[If 0%(T,,, F) = 0, we follow Serfling’s (1980) convention that N(0,0) is degener-
ate at 0.] Hence, R,,, + Ry, + R,3, — ,0. Similar straightforward arguments
for i = 2,4, and 5 yield R,;,, + R;,, + R;3, = ,0. For the i = 3 term,

Ry, = in' [[[Fi(x) — 4F(x)F(x) + 8F(x)] d
= 02 [[F(x) = Fo)l[Fx) = F(x) + Fx)(Fix) - F¥(x))

+F¥(x)(F(x) - F(x))] dx

We have,

Ronl = 3n'2| sup |F(x) = FCx)l| [[1x) = F(x) + Fx)(FA)
—F*(x)) + F*(x)(F(x) - F(x))|dx

Now,

w7 sup |F(x) - F(x)l] < 0

O<x<r7

sup |F(x) —F(x)l] S

0<x<oo

the Kolmogorov—-Smirnov limiting distribution [cf. Serfling (1980)]. Also,
[1EXx) = F¥(x) + F(x)(F(x) - F(x))
0

+F*(x)(Fy(x) - F(x))|dx > »0.

Thus, |R3,| — ,0. A similar argument holds for the i = 6 term. Thus R, — ,0,
and Slutsky’s theorem yields (2.5). O

If [ x?dF(x) < oo, then all the variance terms in the assumptions of Theo-
rem 2.1 will be finite.

We formally develop the IDMRL( 1) test procedure. Under H,, T(F) = 0; and
thus, n'/?[T(F,) — T(F)] = n'/?[T(F,)], and the appropriate variance condi-
tions hold. [Assume 7 # 0 to avoid F(7) = 0. If 7 = 0, the test reduces to testing
for DMRL (IMRL); see HP (1975).] From (2.5), we have n!'/?[T(F,)] - ,
N(O, 6)(T, F)). Straightforward calculations show

02(T» F) = ."‘2[_LF5(T) + lF4("’) - éF{i(T) + %FZ(T) on( ) + zlo

where p = [°F(x)dx. 2 =, 0T, F,) is a consistent estimator of o7, F);
thus, {n‘/2[T(F ) — T(F)]}/o —->dN(O D).

The IDMRL test procedure rejects H,, in favor of H, at the approximate level
a if T, =, n'?[T(F)/6,> z, where z, is the upper a-quantile of the
standard normal distribution. If Tn < 2, H0 is accepted. The DIMRL test
rejects H, in favor of H; at the approximate « level if T, < —z,. If T, > —z,,
H, is accepted.



1394 F. GUESS, M. HOLLANDER AND F. PROSCHAN

3. The IDMRL test when the proportion p is known. In this section we
do not assume knowledge of 7, the turning point. Instead, we assume knowledge
of the proportion p of the population that “dies” at or before the turning point
(e.g., in a training or recruiting program of students or military personnel,
knowledge of p would be reasonable). Let F~'(p) = inf{x|F(x) > p} for
0 < p < 1. Note that 7 = F~!(p).

Recall that we want to test H, (1.3) versus H, (1.4). In this section we find
form (2.1) of T(F) convenient. A natural statistic to consider first is U, = T(F,).

Let X,, < --- < X, denote the order statistics from a random sample of F.
Let [x] = greatest integer less than or equal to x. Let m,(¢) denote the empirical
mean residual life function [i.e., m,(t) = (Z,, (X — ) /(n—1) for te
[ X Xisin)r 1=0,1,...,n =1, where X,,=0.m,t)=0,for t > X,,] Sim-
plifying U, by integrating, we get

BN
> —F W Xi) F( X)) [ma( Xa) = ma(X,,)]
i=1 j= z+1

(3.1)

n—1 n 1 _
+ Z Z _2 (Xin)Fn(Xjn)[mn(Xin) - mn(Xjn)]’
i=j* j= z+1
where j* = np if np is an integer, = [np] + 1 if np is not an integer. Note that
F=F (p)=X
Now we modify U, to get another statistic V,, which uses information on the
total lifelengths of the items:

(32) Vn = Un + jg ;ll-EFn(Xjn)[mn(Xjn) - mn(X()n)]'

The statistic V,, (U,) as expressed in (3.2) [(3.1)] implicitly uses the fact that F is
continuous. However in actual practice ties may occur due to grouping of the
data, even though the underlying distribution is continuous. To accommodate
ties, use the following computational expression:

At A _ -
Vn = ? Z Z Fn(Xin)Fn(Xjn)[mn(Xjn) - mn(Xin)] ninj
=0 j=i+1
1 k-1 « 5
+ n_ E Z ( ) (X )[mn(Xin) - mn(Xjn)]nin’j’
i=j* j=i+1
where k, n;, and X, i = , k, are defined as in Section 2 and n, =41 +

number of observed deaths at tlme Xok 0. (Note that j* # i* can happen.)

In establishing asymptotic normality, we find it useful to express V, as a
linear combination of order statistics (i.e., as an L-statistic). To represent V,, as
an L-statistic, we reverse the triple summation implicit in (3.2); thus, V, =
n= 4R cpnXpn, Where:

CasE 1. k <j*
Cpp = — k% + 1k? — 1k + 4nk® — 2n’k — 2nkj*
+kj*2 + kj* — nk + n%j* — it — nj*.



MEAN RESIDUAL LIFE 1395

CASE 2. k =j*

— _ 1,3 1,2 1 7%3 T2 _ 1% 120% _ Drk
Cixp = —3N° + 30"+ §J*° + 2 s+ 5n%j S

CASE 3. k> *
Chn= — 3R>+ §n? + 573 4 L2 4 Ly ApS _ 1p2 4 1p  pix?
+3n’k + 2nkj* — 4nk® + Lnj*? — nj* — In%* + ky*.

Note that ¢, depends on p, as well as on & and n.

From cases 1 and 3, we are led to the following weight function:
Ji(x) = —3x° + 42 + (0° — 20 - 2)x + (p — $0°),
if0 <x <p,
J(x) = fa% —4x®+ 3+ 20— p)x + (36" + §0° — 30 — 1),
ifp<x<l.

J(x) =

(This comes from dividing by n? in cases 1 and 3, equating j*/n with p and k/n
with x, and ignoring terms that are not cubic.) Let S, = (1/n)L;_,J(k/n)X,,.
Note that n'/%(V, — S,) converges in probability to zero. To form our IDMRL
test statistic, we modify V,, to get the scale invariant statistic V* = V /X,
where X, = m(0) = (1/n)L" ,X,,.

THEOREM 3.1. Let F be a life distribution such that A,: [Fx?dF(x) < oo,
Ay [F(F(x)F(x))'/?dx < o0, Ay 6% (J* F)>0, and A,;: F has a unique
p-quantile. Then
(33) Vn, = def. n1/2[Vn* - [,L(J, F)/I'L] ] N(O’ OZ(J*, F)/nu‘z)a
where

w(d, F) = [ “xJ(F(x)) dF(x),

0*(J, F) = [ [I(F(x)I(F(3) [ Fmin(x, 3)) - F(x)F(»)] dxdy,

and
J*(x)=J(x) —p(J,F)/pn, for0<x<l.

ProOF. We establish (3.3) using results of Stigler (1974, 1979) and Mason
(1981). With S* = S,/X,, we first note n'/2(V.* — S*) converges in probability
to zero. We will show
(3.4) St =aer. W2[S¥ = p(J, F)/p] = 4 N(0, 0*(J*, F)/p?),
which, along with Slutsky’s theorem, yields (3.3). Note that S, can be rewritten
as S; = n'?[(1/n)Lr \J*i/n)X,,1/X,.

To apply the results of Stigler (1974) and Mason (1981), we observe the
following conditions hold. J* is bounded on [0,1]. By A,, J* is continuous a.e.
F~!. J* also satisfies a Holder condition for a > 1 (e.g., « = 1, which is simply a
Lipschitz condition) except at the one point p. Under A,, however, p is a
continuity point of F~'. Using Theorem 2 of Stigler (1974), then Theorem 1 of
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Stigler (1974) and Theorem 2 of Mason (1981), we have under A, A,, A, and
A, that

(3.5) n'/2[% )_: J*(%)X,.n — u(J*, F)} - 4 N(0,0%(J*, F)).

[See Remark 2 of Stigler (1974) and consider J*(i/(n + 1)) = g J *(z/n) as it
applies to Theorems 1 and 2. The proof of Theorem 2 of Mason (1981) can be
modified in a straightforward fashion to handle our weight function, J*, using
i/n instead of i/(n+ 1)) Since p(J* F)=0, we have from (3. 5) that

n'/2[(1/n)Lr I *(i/n)X;,] = 4 N, 0*(J*, F)). Applying Slutsky’s theorem,
we get (3.4). O

We now formally develop the IDMRL(p) test procedure. Note that
w(J, F) = T(F). From this, we have u(J, F)=0 when H, holds. Also,
0%(J*, F) = 02(J, F) under H,. [Recall J*(x) = J(x) — u(J, F)/p.] Since V. *
is a scale invariant statistic, the calculation of the asymptotic variance under H,,
can be made with scale parameter A taken to be 1. Note that p = 1.

Set Fy(x) =1 — exp(—x), x > 0. Calculations show that

02(/’) =def‘°2(J’ FO) = ——p + 6 (l;pa + ﬁp2 mp zlo

[When p = 0 and p = 1, 0%(p) = 315, which is the asymptotic variance of the HP
(1975) DMRL test statistic.] Since A,-A, are satisfied under H,, we have

V = def. n1/2[V*]/°(P) - 4 N(0, 1).

The IDMRIL(p) test procedure rejects H,, in favor of H, at the approx1mate
a-level if V, > 2,, where z, is the upper o- -quantile of the standard normal
distribution. If V, < z,, H, is accepted. The DIMRL(p) test rejects H,, in favor
of H/ at the approximate a-level if V < -2z, If V,> —z, H, is accepted.

By rewriting V, as a sum of weighted normahzed spacmgs we can use the
approach of Langenberg and Srinivasan (1979) to find the exact distribution of
V* =V, /X, See Guess, Hollander, and Proschan (1983) for details. Table 1
contains critical values of V, for p = 0.25 for the sample sizes n = 2,...,30 in
the lower and upper a = 0. 01 0.05, 0.10 regions. Tables for p = 0(0.1)1, 0 75, o
and 2 are available from Frank Guess on request.

In this section we considered the case where p is known. Section 2 treated the
situation where 7 is known. Open problems suggested by this paper include:
What procedures could be used to test exponentiality against IDMRL(7)
[IDMRL(p)] when 7[p] is unknown? What are the properties of 7, when 7 is
estimated by a value which maximizes the empirical mean residual life function?
What are optimal estimators of F when it is known that F is IDMRL(7)
[DIMRL(7)]? How should these procedures be extended to accommodate
censored data?

4. An example. We illustrate the use of the two tests on a data set from
Bjerkedal (1960). We give a brief description of the data and then the results of
the two sets. Bjerkedal (1960) studies the lifelengths of guinea pigs injected with
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TABLE 1
Exact critical values of the IDMRL(p) test statistic V,,, p = 0.25.

Lower tail Upper tail
n a = 0.01 a = 0.05 a =010 a =010 a = 0.05 a = 0.01

2 -6.74 -6.19 —5.50 5.50 6.19 6.74

3 —4.29 —3.41 —2.76 2.76 3.41 4.29

4 -3.22 —2.67 -2.24 2.26 2.80 3.66

5 —3.34 —2.55 -2.05 2.05 2.55 3.34

6 —2.64 —2.06 —1.68 1.72 2.17 2.89

7 -2.71 -2.03 -1.62 1.65 2.07 2.78

8 —-3.09 -2.16 —1.68 1.68 2.10 2.81

9 -2.33 - 175 —1.40 1.43 1.81 2.47
10 —2.45 -1.78 —-141 1.42 1.80 2.45
11 —2.68 —1.88 —1.46 1.45 1.83 2.49
12 -2.93 -2.01 - 1.54 1.51 1.90 2.57
13 -2.29 —1.65 -1.30 1.30 1.65 2.28
14 —2.46 -1.73 -1.34 1.34 1.69 2.32
15 —2.65 -1.83 -141 1.38 1.75 .2.39
16 -2.83 -1.93 —1.48 1.44 1.81 2.47
17 -2.33 -1.63 -1.27 1.26 1.60 2.21
18 —2.47 -1.71 -1.32 1.30 1.65 2.27
19 ~2.62 -1.80 -1.38 1.35 1.70 2.34
20 -2.76 -1.89 -1.44 1.40 1.76 2.41
21 -2.35 —1.64 -1.26 1.25 1.58 2.19
22 —2.48 -1.71 -1.31 1.29 1.63 2.24
23 —2.60 -1.78 -1.36 1.33 1.68 2.31
24 -2.71 -1.85 —1.42 1.37 1.73 2.38
25 -2.37 -1.64 -1.26 1.24 1.57 2.18
26 -2.48 -1.70 -1.31 1.28 1.62 2.23
27 —2.58 -1.77 -1.35 1.32 1.66 2.29
28 —2.68 —1.83 —1.40 1.36 1.71 2.35
29 —2.38 —1.65 -1.27 1.24 1.57 2.17
30 —2.47 - 1.70 -1.30 1.27 1.61 2.23

different amounts of tubercle bacilli. (Guinea pigs are known to have a high
susceptibility to human tuberculosis, which is one reason for choosing this
species.) We describe the only study (M) in which animals in a single cage are
under the same regimen. The regimen number is the common log of the number
of bacillary units in 0.5 ml of the challenge solution, e.g., regimen 4.3 corresponds
to 2.2 X 10* bacillary units per 0.5 ml (log,,(2.2 X 10*) = 4.342).

Before conducting such an experiment, it is reasonable to conjecture that the
injection of tubercle bacilli causes an adverse stage of aging (DMRL). After the
guinea pigs have survived this adverse stage, the guinea pigs’ natural systems
recoup to yield a beneficial stage (IMRL).

Hall and Wellner (1981) examine regimen 4.3 and fit a parametric distribution
that is in the DIMRL class. They estimate the point at which the MRL changes
trend as 7,, = 91.9 (7 corresponds to “a” in the notation of their parametric
model). We use p,, = F(7,;) = 5 as a natural estimator of p, .
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Using the information gained from regimen 4.3, we apply the DIMRL tests to
regimen 5.5. (The sample sizes for regimen 4.3 and 5.5 are both 72.) For regimen
5.5, we use 755 =919 and p;; = 5. Note that this is a reasonable a priori
assertion concerning these two population parameters under regimen 5.5 since it
is based on data from a closely related population.

For the DIMRL test with 7 known, we get T, = —0.6419, 62 = 7.1072, and
T‘n = —2.04, yielding a P-value of 0.0207 in the normal approximation. For the
DIMRL test with p known, we get V.* = —0.01106, o2(p) = 0.00209, and
V, = —2.05, yielding a P-value of 0.0202 in the normal approximation. Both the
DIMRL(7) and the DIMRL(p) test procedures suggest significant evidence to
reject H, in favor of the alternative H{.
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