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In closing I note that the bootstrap can be an inconsistent procedure when it
is employed to correct potentially large biases of some nonparametric techniques.
See Section 11.7 of Breiman et al. (1984).
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1. General comments. This important paper is a major contribution to
jackknife methodology. A major strength of the proposed weighted jackknife
method is its ready extensibility to nonlinear situations, including the important
generalized linear models with uncorrelated errors briefly discussed in Section 8.

In the case of a linear regression model with uncorrelated errors, the delete-1
Jackknife variance estimator, v, is shown to be exactly unbiased for Var(3)
under Var(e) = ¢%I, and approximately unbiased (as n — o) under Var(e) =
diag(s?). However, v (1) Seems to have no special advantage over the MINQUE
(minimum norm quadratic unbiased estimator) of Var(8) (Rao (1973)) under the
criterion of bias robustness since the latter estimator is exactly unbiased under
Var(e) = diag(s?) unlike v g It may also be noted that the MINQUE of
Var(f) seldom becomes negative definite even though the MINQUE of individ-
ual 62 may assume negative values. If § = g(8), then the linearization technique
can be used to get a MINQUE-based estimator of the variance of § = g(#). This
variance estimator should be satisfactory since Wu’s simulation study shows that
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the “linearization method is a winner.”

Apart from bias robustness, one should also consider efficiency robustness to
arrive at a suitable variance estimator. One of us (Rao (1973)) derived the
variance of MINQUE in the case of linear regression with one independent
variable. It would be useful to compare the efficiencies of alternative variance
estimators relative to the usual variance estimator ¢ = 6%(X7X)™! that is
“best” under Var(e) = o?I.

2. Variance components. We have recently used a weighted jackknife
method to obtain robust confidence intervals on a smooth function 8 = g(o2, 02)
of variance components o2 and o2 in the nested error regression model,

(1) yj=oa+Bx;+uv+e;=a+pfx;+u,
with E(v;) = E(e;;) =0 and Var(v;) = o7, Var(e;;)) =02, j=1,...,n; i=
1,..., ¢t Arvesen (1969) considered a similar problem for the special case of a
one- Way ANOVA model ¥; = r +v; + e;;. Taking the usual Henderson unbi-
ased estimator 62 of o2 and a shghtly modlﬁed unbiased estimator 62 of o2

(similar to Arvesen’s estimator of o2 for the ANOVA model), we expressed 62

and 62 as

t t
(2) 62=(t-1)" La6X-i) and 62=(t—1)" ¥ big2(~i).
i=1 i=1

Here a; and b, are positive constants depending on the sample sizes n; and the
x,;-values, and 62(—1i) and 62(—1') are obtained by omitting the “Henderson
res1duals s and &, (J = L) for the ith group and then constructing
unbiased estlmators of o? and 02, respectively. It may be noted that the
representation (2) 1nvolves two dlfferent weights, a; and b;, unlike the single
weight w, in Wu'’s problem.

A weighted jackknife estimator of the variance of § = g(62, 62), similar to
Wu’s in the regression case, is given by

¢

A A A . ~ ~ . 2
3) o (0) = ¥ [g{62 + 67(i), 67 + 63(i)} — &(o2,07)]",

i=1

where
(4) 67(i) = ai?(62(—1) — 62},  &3(i) = bi*{63(—i) — 67}.
We have shown that v,(9) is cons1stent as t — oo, without normality assump-
tion. Hence, v J(ﬁ) provides robust (1 — a)-level confidence intervals on 8: § +
toso i—1{0 J(ﬁ)}l/ %, where ¢, 5 ,_, is the upper a/2-point of a ¢-distribution with
t — 1 degrees of freedom. In the linear case § = o2, it can be shown that
E[v,(6%)] = K Var(6?2), where K is a function only of the x,;’s and converges to
1 as t increases. This result is similar to Wu’s in the regressmn case with

Var(e) = 02I We are now developing results similar to (3) using Henderson’s
estimator 62 instead of 62
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The jackknife method can also be used to obtain an approximately unbiased
estimator §, of 6 = g(o2,02), ie, E(f,)—0=o0(t"") for large ¢, without
normality assumption. The estimator §, can be used in small area estimation to
get approximately unbiased estimators of the weights in the best predictors. It
may be noted that in the empirical Bayes literature (e.g., Morris (1983)), the
weights are unbiasedly estimated under normality assumption in the balanced
case, n;, = m.

Details of these results will be reported in a separate paper.
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Applications of the jackknife and other resampling methods to regression
analysis have been thoroughly discussed in Professor Wu'’s paper. One interesting
and stimulating aspect of his approach is the use of a weighting scheme that
takes into account the unbalanced nature of regression data. He has provided a
fundamental tool for handling very general non-i.i.d. problems for which the
classical jackknife method may not work well. In Section 8, he considered
extensions of his method to several non-i.i.d. situations. More research is needed
and is being done in this area.

In this discussion, I would like to (A) propose another weighted resampling
scheme that gives an interpretation of Wu’s weighted jackknife and provides an
alternative resampling estimation procedure, (B) discuss the use of Tukey’s
pseudovalue, and (C) obtain the stochastic order of the weighted jackknife bias
estimator.

In the following, all notation will be the same as that of Wu.

(A) Another weighted resampling scheme. In the regression situation,
the information contained in different subsets of data may be quite different.
The idea of my proposed weighted resampling scheme is to take account of the
unbalanced nature of the data in the resampling process. That is, the probability
of selecting a subset of data is not a constant as is usually done, but is
proportional to the determinant of the Fisher information matrix of the corre-
sponding subset model with i.i.d. errors. We will see that the bias and variance



