The Annals of Statisties
1986, Vol. 14, No. 2, 665-678

THE STATISTICAL INFORMATION CONTAINED IN
ADDITIONAL OBSERVATIONS!

By ENNO MAMMEN

Universitit Heidelberg

Let & be a statistical experiment based on n ii.d. observations. We
compare " with £"*"». The gain of information due to the r, additional
observations is measured by the deficiency distance A(&", &%), i.e., the
maximum diminution of the risk functions. We show that under general
dimensionality conditions A(&", £"*") is of order r,/n. Further the behav-
ior of A is studied and compared for asymptotically Gaussian experiments.
We show that the information gain increases logarithmically. The Gaussian
and the binomial family turn out to be—in some sense—opposite extreme
cases, with the increase of information asymptotically minimal in the
Gaussian case and maximal in the binomial.

1. Introduction. When considering a complicated statistical model it may
be useful to construct another model which is close to the original one but
statistically easier to handle. The analysis of the second model may make the
essential structure of the first model better understandable and help to construct
suitable statistical procedures for a decision problem. The usual way to get such
an approximating model is to imbed the original one into a sequence of models
and to expand the log-likelihood function. Because one is more interested in
approximations than in limit theorems it is necessary to estimate the closeness of
the two models. A natural quantity for comparing two models or—in more
common use of language—two experiments is the deficiency distance of Le Cam
(1964). It is based on the comparison of risk functions available in the two
experiments. We recall its definition.

Let &= (%, &,(Py: 0 € ®)) and F:= (¥, %,(Q,: 0 € ©)) be two experi-
ments with the same parameter set 0, i.e., two families of probability measures
(Py: 6 € ©) and (Q,: 0 € O) defined on measurable spaces (£, &) and (¥, %),
respectively. & is called e-deficient relative to & (e > 0), if for every finite
decision space (7, &), for every bounded loss function L: ® X — R and for
every decision rule o in % there exists a decision rule p in & such that for every
0 € O the following inequality between the risk functions is valid:

[ [£(0, 0p(x, do)Py(dx)
(1.1) 7

sjfL(o,t)a(x,dt)Q,,(dx)+e sup |L(8,1t)|.
YT 00, teT

The deficiency 6(&, %) of & with respect to Z is the smallest ¢ > 0 for which &
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666 E. MAMMEN

is e-deficient with respect to #. The deficiency distance is the symmetrical
quantity A(&, F) = 8(&, F) V 8(F, &). It defines a pseudo-distance between
experiments. We cite two other characterizations of the deficiency. For a detailed
motivation and discussion see Le Cam (1964).

(i) The randomisation criterion.

(1.2) 6((’?’, -7—;) = inf sup||KP, — Ql,
K geco

where the infimum is taken over all transitions which map the band L(&),
generated by (F: 6 € ©), into the band L(%), generated by (Q,: § € ©). A
transition K is a positive norm one linear map [i.e., Ku*™ > 0, ||[Kpt|| = ||u*|,
K(ap + bv) = aKp + bKv for p,v € L(&) and a,b € R]. If (P: 6 €0) is
dominated, % is a Borel subset of a complete separable metric space and % is the
class of Borel subsets of % then it is sufficient to take the infimum in (1.2) over
all Markov kernels from (%, /) to (%, %#).

(ii) The Bayes criterion.
(1.3) 8(&, #) =sup{ps(7, L, D) — ps(m, L, D)},
where the supremum is taken over all prior measures # with finite support, finite

decision spaces D, and loss functions L bounded in absolute value by 1.
ps(m, L, D) resp. pg(m, L, D) is the corresponding Bayes risk in & resp. %.

Unfortunately, the deficiency distance is very difficult to calculate in general.
But for translation experiments it suffices to take the infimum in (1.2) over
invariant kernels. This can be used to calculate the deficiency explicitly in some
cases. For instance, Torgersen (1972) showed that

e MR = [l e
= (2/e)(r/n) + o(1/n) = 0.73(r/n)

if &" is the experiment of taking n ii.d. observations from a rectangular
distribution on [0, #] for § > 0. He also showed that

A(EE, E87T) = IXEsr = X214 ryll

= 2/me(r/n) + o(1/n) = 0.48(r/n)

if & is the experiment of observing n times an exponentially distributed
variable. x2 ,,, /n denotes the distribution of (1 + r/n)X, if X is distributed
according to x2. Another example is

(1'6) A(gn’ gn+r) = ”N(Or Ik/n) - N(07 Ik/(n + r))”

for the Gaussian shift experiment ¢:= (N(,Z): § € R*). I, is the &k X k
identity matrix and I a positive definite £ X & matrix.

(1.5)
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For k& = 1 (1.6) yields
(1.7) A(@",9""") = \/2/mer/n + o(1/n).

The results in Le Cam (1964) and Torgersen (1972) on invariance are also used in
Swensen (1980) to compute deficiencies between linear models.

For one-dimensional exponential families & Helgeland (1982) has calculated
lower and upper asymptotic bounds for A(&", &% "):

n
V/2/me < liminf —A(&", &)
n—wx I,

n
(1.8) < limsup —A(&", £71'n)
’ .

n—aoc n

< 2y2/me,

provided r, < n” for some fixed 8 < 1.

For finite parameter sets the behaviour of the products £” of an experiment &
has been studied by Torgersen (1981). Using the deficiency he compares £" with
the totally informative experiment and the least informative experiment. In the
context of robust statistics the deficiency distance can be used to measure how
much the assumed model differs from the true model. Miiller (1980/81) gives an
estimate of the deficiency distance between two different models, in terms of the
bounded Lipschitz distance between the probability measures. This estimate is of
the correct order as the Lipschitz distance tends to zero.

Some of our examples deal with measuring the distance between an experi-
ment &= (%, &,(P;: 6 € ©®)) and some subexperiment &’ = (&, &', (Py|
0 € ©)) (i.e,, &' C ). A quantity n(&’, &) called insufficiency has been intro-
duced for this situation by Le Cam (1974). The insufficiency seems to be more
tractable than the deficiency. It measures how much the P,’s must be modified in
order for &7’ to be sufficient. Under certain regularity conditions on the experi-
ments &, &’ the insufficiency n(&’, &) can be defined by

n(&’, &) = inf sup || B, — Py,
[X]C)
where the infimum is taken over all families of measures (P;: § € ©) for which
&' is sufficient and Pj and P, agree on &/’. For a general definition see Le Cam
(1974).

The notion of insufficiency can be used to measure the information contained

in additional observations. Le Cam (1974) gives the following general estimate:

(1.9) n(&", ") < /88 r/n

with B = infysupy c gnEyH?( Py, P;). Here the infimum has to be taken over all
randomised estimates 8 of @ in the experiment &, and H(+,*) is the Hellinger
distance, i.e., HX(P, Q) == [(YdP — ,/dQ)? for two probability measures. Using a
dimensionality condition Le Cam has shown that B is bounded [see Birgé (1983)]:

(1.10) B<65D+55
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with a dimensionality constant D defined as follows:

Consider A(8, 7) := H(P,, P,) as a pseudo-distance on . Then D is
(1.11) the smallest number such that, for every 8 > 0, every subset of ©
with diameter § can be covered by 2” sets of diameter 6 /2.

(1.9) and (1.10) yield n(&", £"*') = O(1/ Vn ) for finite dimensional experiments.
For k-dimensional Gaussian experiments ¢ this is the right order [Le Cam
(1974)]. Because of 9(&, #) = 8(&, F) the insufficiency can be used to calculate
upper bounds for the deficiency. For instance one gets 8(&", &"*') = O(1/ Vn)
for finite dimensional &.

As in the most given examples, in this paper we are concerned only with the
calculation of the deficiency for the special case of conmiparing an experiment for a
different number of observations. First we will show that §(&”, €7*') = O(1/n)
for finite dimensional &. This improves the above mentioned result which was
based on the calculation of the insufficiency. In the rest of the paper the increase
of information §(&", £"*') will be studied for asymptotically Gaussian experi-
ments. Then §(&", ") converges for n — o to a constant depending only on a.
Thus the information increases, as it were, logarithmically. For one additional
observation the increase of information turns out to be asymptotically minimal
for Gaussian experiments and—among exponential families—maximal for a
binomial family. Further investigations of §(&", £"*") for exponential families
can be found in Mammen (1983).

The following section formally presents our results and mentions some of the
main elements of their proofs. Detailed proofs of these results are contained in
Section 3.

2. Results. To prove his upper bounds in (1.8) Helgeland (1982) made use of
the randomisation criterion (1.2). He constructed a kernel as follows. First
estimate the parameter 4, then generate a random variable distributed according
to the estimated measure and mix this variable randomly among the observations
drawn first. This idea can also be used in the more general situation when in an
experiment &= (&, «,(P,: 6 € 0)) estimators exist which are Vn -consistent in
the following sense.

There exist positive constants y and B such that for every n there
(2.1) is an estimate 6, in " with (i) Ezexp(ynh®(8,6,)) < B and (ii)
x = P (,(A) measurable for A € .

Here h(0, 7) == H(P,, P,) is the pseudo-distance on © induced by the Hellinger
distance.

THEOREM 1. Let & be an experiment satisfying (2.1). Then there exists a
constant C such that

r
(2.2) A(&m, 8mT) < C—.



ADDITIONAL OBSERVATIONS 669

In particular, if & is an experiment which is finite dimensional in the sense of
(1.11) then (2.1) and therefore Theorem 1 holds. Then the constant C depends
only on the dimension D. This can be seen from results of Birgé, who proves (2.1)
for finite dimensional experiments [see Dacunha-Castelle (1978) and Birgé (1983),
where slightly different dimensionality conditions are used].

As a first step for calculating limit experiments Le Cam (1968) associates
products of experiments &” with Poisson experiments #”. The Poisson experi-
ment is defined according to the following rule: first observe a Poisson variable N
with mean value n. Then carry out the experiment &”~. When applied to this
situation Theorem 1 yields the following estimate:

COROLLARY. For experiments & fulfilling (2.1) one has
(2.3) A(&n, 27) = 0(1/Vn).

Now we discuss the case when the products &" of an experiment &=
(%, o,(Py: 0 € ©)) can be approximated locally by a Gaussian experiment.
More precisely we assume that ® C R* and suppose that there is a 6, € © such
that the following condition holds.

There exists a positive-definite £ X 2 matrix =, such that for all
c>0:

(2.4) A(é’n",c,gn",c;z) -0 forn— oo,

where &, .= (%, o, (Py |10 — 6yl <c/Vn)) and ¢, 5=
(R*, BR*), (N(8, Z): 1|8 — 8|l < ¢/ Vn)).

Here #(R*) denotes the Borel-c-algebra of R*. Sufficient conditions for (2.4) can
be found in Le Cam (1968). For instance the following holds: Assume &:= (P;:
6 € ©) is an experiment with ® c R*. Let 6, be an element of the interior of ©,
such that for 6 in a neighborhood of §,, the measures P, can be dominated by a
finite measure m. Further assume that the function £() := |dP,/dm mapping ©
into L%(m) is Frechet-differentiable at 6, with derivative £(6,) € L%(m)*, and
that the matrix T := [£(8,)£(8,)T dm is positive definite. Then (2.4) holds with
2 := T. For more general conditions for local Gaussian approximation see Le Cam
(1985).

Under further conditions local Gaussian approximations can be pieced to-
gether to a global approximation of " by a heteroscedastic Gaussian experi-
ment. This was discussed in Le Cam (1975). For ® c R* we state such an
approximation.

There exist positive definite & X & rgatrices I'(#) depending con-
(2.5) tinuously on 6, such that A(£",¢")—>0 for n — oo, where
¢ = (R*, B(R*), (N(8,T~'(9)): 6 € ©)).
It can be shown that
A(G", G ) = A(9", 97 + o(1),
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where ¢ is a k-dimensional homoscedastic Gaussian experiment. This proves the
following theorem.

THEOREM 2. Assume &= (Z, «,(Py: § € ©)) is an experiment with ® C R*.
Assume further (2.5). Put 4:= (R*, ZR*),(N(0, I,): 0 € R¥)). Then for every
sequence of integers (r,) the following holds:

(2.6) A(&™, Emtre) = A(Z7, 97 ) + o(1).

The statement of Theorem 2 is interesting only in the case of a large number
of additional observations when r, is of order n. This is because (2.6) holds
trivially if r, = o(n), since then A(&", &"*") = o(1) and A(¥", ¥"*") = o(1) as
can be seen by (1.6) and Theorem 1 using the fact that & is finite-dimensional in
the sense of (1.11).

In the special case where the number of additional observations is proportional
to n [r, = [an] = sup{k € N: k < an} for a constant a] one obtains by (1.6)

A(&n, £land) = A(gn, glan]) + o(1
- (87, 81em) = 4( ) +o(1)
= IIN(O, aIk) - N(O, Ik) “ + 0(1).

Here the increase of information depends asymptotically only on the dimension &
and the constant a. Thus the information increases, as it were, logarithmically in
the number of observations.

Now we show that for a small number of additional observations the gain of
information is asymptotically minimal in the case of Gaussian experiments.

THEOREM 3. Let &= (%, «,(P,: 0 € ©)) be an experiment with ® C R*,
Assume that & can be approximated locally by homoscedastic Gaussian experi-
ments in the sense of (2.4) at a point 6, contained in the interior of ®. Then for
all sequences (r,) with r, = o(n) the following holds.

n n
(2.8) liminf —A(&7, £7%7) 2 lim —A(9", 9" ).
n->w I, n—oo I,

Theorem 3 is a generalization of the lower bound of Helgeland (1.8). The proof
consists of the following simple arguments: First, for r fixed, A(&”, &™)
decreases in n (later observations are less informative). Asymptotically a large
number of additional observations in the experiment & is not less informative
than in a Gaussian experiment. Finally in Gaussian experiments the information
increases almost additively. Combining these arguments one obtains the follow-
ing asymptotic inequalities, where [ has to be chosen suitably depending on n:

n n
— n éDn+r —A gn’ ébn+lr
—A(6m, 6m7) = A )
n
2 A", 9" + o(1)

= 2@, 97 7) + o(1).
r
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The next theorem shows that the upper bound in (1.8) is sharp and is attained by
the binomial family.

THEOREM 4. Assume 0 <a < $<b<1. Let &g:=({0,1},21,(Q,: p €
(a, b)) be a Bernoulli experiment:

Q,({x}) =px+ (1-p)Q-=x) forxe{0,1}.
Then
(2.9) A&, 65%) =20(97, 9™ Y) + o(1/n).

Further investigations of A(&", &"*") for exponential families can be found in
Mammen (1983). There the inequality of Helgeland (1.8) is generalized to arbi-
trary finite dimensional exponential families. As in the one-dimensional case the
increase of information is asymptotically at most twice as much as in the
Gaussian case. Furthermore, it turns out that one has to distinguish two cases. If
the measures of the exponential family are lattice distributions the gain of
information is asymptotically strictly larger than in the Gaussian case. For
strongly nonlattice distributions (i.e., measures fulfilling Cramér’s condition) the
information gain increases exactly as in the Gaussian case, asymptotically as
n — o. The proof of these results is based on Edgeworth expansions of Bayes
risks which old uniformly over all Bayes decision problems with bounded loss
function.

3. Proofs.

PrOOF OoF THEOREM 1. It suffices to prove Theorem 1 for r = 1. We con-
struct a Markov kernel K from (2", &™) to (¥"*!, &/"*1). Let m, < n be a
sequence of natural numbers with

(3.1) m,/(n+1-m,) <y,
(3.2) n/m, = 0(1).

According to (2.1) there exists an estimate §, in &” depending only on the first
n + 1 — m, observations with

(3.3) Egexp(y(n + 1 - m,)h*,4,)) < B.

Using (3.1) one gets

(3.4) Egexp(m,h?(0,8,)) < B.
The kernel K is defined as follows:
(35) K=Q1/m) Y 8 X---X8  XP X8 X X8.

1<ism
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Here the index n of m is dropped. The randomization criterion (1.2) yields
A(&", 6" < sup|| KPR} — P
[X=]¢]

(3.6) _ -
= sup f“l/m Y Pi'x P x Pri— PPl d2(8,1P0).

0O l<i<m

To complete the proof we use the following lemma.

LEMMA 1. For two probability measures the following holds:
2

) “1/m Y Prlx@xpri-pm

l<i<m

(3.7
< exp((m — 2)H*(P, Q))4H?(P,Q)[m ' + H*(P,Q))].

For example it follows from Lemma 1 that given two sequences of measures
(P,) and (Q,) with H(P,Q,)=O(@1/Vn), then |1/n%,_,_,Pi!'X @, X
Pr~* — P is of order 1/n, whereas |P*" ! X @, — P"|| =||P, — @,|| may be
eventually of order 1/ Vn . Thus Lemma 1 underlines the importance of randomly
mixing the generated variable in the construction of K.

APPLICATION OF LEMMA 1. Using Lemma 1 one gets from (3.6)
A( gn’ ent 1)

m ~ - ~

< supEoexp(EhZ(ﬂ,Bn))(4h2(0,0n)/m + 4h%(0,8,))"".
X=1]

An application of the Cauchy-Schwarz inequality, (3.4), and (3.2) finishes the

proof.

PrROOF OoF LEMMA 1. Set M := (P + Q)/2, g(x) = dP/dM(x), and h(x) =
2 — g(x) = dQ/dM(x). The following holds:
2

Nl/m Y Pilx@xpPmi—pn

~[flm % e gt
o (A(x) - g(x))g(xiny) - &) lllmM(dxi))

<f(1/m T gx) - ale ) (h(x) - 8(x))8(x) - 8|

I1<i<sm

x [1 M(dx,)

I<i<m

= 1/m/(h —g)sz(fgsz)m—l

+ mn: . (f(h —g)ng)z(/g2dM)m

-2
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The following estimates yield the lemma:

[(h—g)*dM =2 [(dP - dQ)’/(dP + dQ)

(3.8) = 2[(VaP - /dQ)*(VdP + dQ)’/(dP + dQ)
<4H*(P,Q),

’f(h—g)ng‘ =’f(h—g)ng— g[(h—g)(h+g)dMi

(3.9) =1 [(h-g) aM
< 2H*(P,Q),
Jeram = i [((g—h) + (g + h))" aM
(3.10) = i/(g — R dM + 1
<1+ H*P,Q),

< exp(mH?*(P, Q)).
PROOF OF THE COROLLARY. Assume N is a Poisson variable with EN = n.
The following holds:
A(&ET, P) < 8(&™, P™) + 8(P™, ™)

< Y P(N=rFk)A(&", &F)
k>0

<2P(N<n/2)+ Y. P(N=Fk)AE" EF).
k>n/2

Clearly, the first term is of order o(1/ Vn). To treat the second term we use the
following lemma.

LEMMA 2. For every experiment & and r € N the deficiency A(6™", &™) is
monotonically decreasing in n.
APPLICATION OF LEMMA 2. One gets

Y P(N=k)A(E", EF) < Y P(N=k)|n— kA&, glr/24T)
k=n/2 k>n/2

< E|N - n|O(1/n) = O(1/Vn).
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Proor oF LEMMA 2. Using the randomization criterion (1.2) one gets
A(éﬁnﬂ éan+l+r) — 8((5)”_“ (gm+l+r)

il’lf SupllKP0n+l — P0n+1+r”

K gco

inf sup [|(LP}') X P — P}*" x P|

L ge0

inf sup ||LPj* — Py*7||
L geo0

— A(éan, é¢7n+r)'
Here the infimum is taken over all transitions which map the band L(&"*!) into
L(&" 'y or L(&™) into L(&™""), respectively.

IA

Proor or THEOREM 2. It suffices to show
(3.12) A(@", Gnrr) = A(9", 9™ ) + o(1).
Firstly the following holds:
A(Gn,Gn+mm) = inf sup |&N(6, n-1T-%(8)) — N(8,(n + 1,)'T7Y(8)) |
[X={C] .

(3.13) < sup ||N(F1/2(0)0, n ) - N(F1/2(0)0,(n + rn)ﬂIk)”
[Z2=1¢)

< A(gn, gn+rn).
(The infimum has to been taken over all kernels from (R*, Z(R*)) to (R*, B(R*)).
To prove the other direction we use the fact that asymptotically it suffices to
calculate the deficiencies for local subexperiments of ¢™ and ¢"*"»:

A(gn,gn+r,,)

(314) 2P i‘,‘fsup{"KN(”’ n"L) - N(8,(n +1,)"'L) |:
16 — || < n"‘_l/z} + o(1)

for a > 0. (3.14) can be deduced from the existence of an estimator whose
probability being outside an n*~'/%.neighbourhood of the true parameter de-
creases exponentially in n. For a detailed proof see Theorem 1 in Le Cam (1975).
Using (3.14) one gets

A(g", Gm+m) = in sup{||KN(0, n~,)
- =N(8,(n+1,)7'L) 1611 < n"‘_l/z} +0(1)
= inf sup{ | &N (8, n='TY(0))
(3.15) ~N(8,(n + 1) 'T70) [:IT/2(0)8] < n«—w} +o(1)
= inf sup{|| KN(6, n~'T7(8))
~N(6,(n +1,)"'T7Y(8)) |:IT2(0)0] < n"‘_l/z} + o(1)
< A(@", Gn+m),
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ProOF oF THEOREM 3. Without loss of generality we assume r, = 1. Using
Lemma 2 and the triangle inequality one gets for a constant a > 1

A(&7, Elenl) < A(E7, E7FL) + -+ +A(SLemI71, gland)

(3.16)
<([an] — n)A(&™, €711,
This gives
(3.17) nA(&", &™) > (a — 1) A", £len).
According to the assumptions there exists a sequence (d,),.; in R™ such that
(3.18) d,— o forn— o«andd,/ Vn is monotone decreasing,
(3.19) A&r,, 90 s) >0 asn— .

Setting m = [an] and ¢, == ‘/n/—m d,, one gets from (3.19):
(3.20) Ae&r,,or. s)=Mér, ,9m, s) =0 forn— co.
Further ¢,/ Vn = d,,/ Vm < d,/ Vn implies
(3.21) A( A 2)——>0‘ for n — o0.
With @, = {6 € ©: || — || < ¢,/ Vn } (3.20) and (3.21) entail
A(en, &) 2 M8, E,)
(g =Y, 2) +0(1)
(3.22) - A((N(8,2)* 6€8,),(N6,2)": 0 0,)) +o(1)
— A((N(8, 2): 161l < c,), (N(8, (n/m)): 18] < c,)) + o(1)
= A((N(B, =): 0]l < c,), (N(8, a7'2): 18] < ¢,)) + o(1).
Using the Bayes criterion (1.3) this gives
= A((N(8, 2): 6 € R*),(N(8,a"'S): 6 € R*)) + o(1).
According to Torgersen (1972) [see also (1.6)] this is asymptotically equal to
=||N(0, =) — N(0, " 'Z)|| + o(1)
=[|N(, I) — N(0, al,) || + o(1).
Putting (3.17) and (3.22) together one gets
(3.23)  nA(&™, &™) = (a— 1) 7| N(O, ) — N(0, al) | + o(1).

For a — 1 the last term converges to lim,_, nA(%" ¢"*') as can be seen by
using (1.6). This completes the proof.

PROOF OF THEOREM 4. According to (1.7), (1.8) it suffices to prove:
(3.24) lim nA(&g, &51) = 2y/2/7e .

n-— oo

Put 0 = In(p/(1 — p)), h = Vn8, c(8) = In(2(1 — p)). The Bernoulli distribution
has the following density with respect to the uniform distribution on {0,1}:

exp(6x + ¢(9)).
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One can write
h? h
(0) = o0) = ~ 5= - 5o+ 8 )

where A(h/ Vn) = ¢®(8’)(h/ Vn)?/6 for some 8’ between 0 and 6. For proving
his asymptotic lower bound (1.8) Helgeland (1982) considers the following Bayes
decision problem: Let 0 < a < § and ¢, = n*.

Given a prior distribution having density wrt Lebesgue measure
(3.25) v.exp{ —nA(h/Vn) — h?/2¢*}1_, . \(h),
construct a confidence interval of length 2/ = 2(1/4 + 1/x2)~'/2. The loss func-

tion is —1 or 1 according to the true parameter falls into the confidence interval

or not.
We modify this decision problem slightly. Consider the prior measure A,

having density (3.25) with respect to the measure:
v(A) = #(A N (a,Z +b,)),
n+1 1\ 11
el W

a, =

4n i’
b,= —a,(n+1)/2.

Further suppose that the confidence intervals to be constructed are closed with
length 2/, = [2]/a,]a,.

Arguing as in Helgeland (1982) one can show that for m=nand m=n+1
the a posteriori distribution function H,,,(¢|X™) in &™ fulfills the following

approximation (X™ = (X,,..., X,,) is the vector of the first m observations):
(326)  Epm,(s0p|E,(6X™) = Ho(61X7)]) = 0(1/n),

t
where

1 X = bmn
an(thm) = /_t _¢(T_)Vn(dx)a;nn,

, +oo 1 X~ Mbmn -1
Qmn (/_w Umn¢( o, )Vn(dx)) .
The main idea of the proof is that the constants a,, b, are chosen so that .,
is an element of the support of the prior measure A, (and »,) and the point g,
lies close to the midpoint of two neighbouring points of the support of A, (see
(3.32)). (3.26) can be used to construct confidence intervals C,,C,,, having
asymptotically minimal Bayes risk. For m = n + 1 choose the interval u,,, ,, + /,
and for m = n choose fi,, + [,, where fi,, is the point in a¢,Z + b, closest to
&, According to (3.26) the corresponding Bayes risks differ from the minimal



ADDITIONAL OBSERVATIONS 677

Bayes risk by o(1/n). Using (1.3) one gets an asymptotic lower bound for the
deficiency:

(327) A(gg’ glr}z+l) = Prnn = Prtin + O(I/n)’

where for m = n, m = n + 1, resp.

Pmn = EP_"‘)\,,

L [% = Bun
1-2 r.
ot e
Put A,:= {x™ |L,icn (x;— 1/2)| < n?**'/2}. Then E,X;, - ;= O(n*"'/?)
uniformly for 6 in the support of A, and therefore

(3.28) P\, (AS) = o(1/n).

Uniformly for X"*'e A, x {0,1} one gets o,,,,— 0,, = OQ/n), Pps1n—
Bpn = O(n~'/?). This implies

(3.29) a,,/a, . 1,=1+ 0(n"%%),
(3.30) a,,/a,=1+0(n"1).
Using (3.28)—(3.30) one gets

(3.31) Prn = Pn+in = Lip + I, + 0(1/n),
where

o= o o )+ ool o

L, 1 x A lﬁ'nn ~
et o] o

7, is the following normalised counting measure:
7(A)=a,#(ANa,Z).

As in Helgeland (1982) one shows that

4\711 2 1
(3.32) Iln=(1+F) V= +o(;).
Further, for n large enough, the following holds in A, with § =1or { = —1:
Brnn = Bpn = onznn_l/z Zn: (Xi - %) - 0712+1nn_1/2 i (Xi - é) - g"r?+1nn_l/2/2

) i=1 i=1

—¢a,/2 + O(n?*71).
This can be used to evaluate I,,. Put §,:= (fi,, = #p.)/0,, and o, =
(=1,/0pns 1n/0,,) and vi(+) = 5,((*)s,,). Then

I, =2Ep, /J ¢(x) — ¢(x + 8,)v;(dx)

=2E%Lﬂxuw,+u—xﬂﬁﬂ}

—¢(x + 8,(x)){3(x + 8,(x))
—(x + 8,(x))°}82/6 w;(dx) + 0(1/n),

(3.33)
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where @, is the restriction of P"\, on A, and §,(-) is a function with

18,()| < 18,)-
Evaluating the integrals in (3.33) one gets

L, = Eq,8? [ ¢(x)(1 - x?) dx + o(1/n)
DA

aZ/40.2[yo(y)]L, + o(1/n)

4\711 [ 2
(1+—2) —V— + o(1/n).
K n\ me

Since k% can be chosen arbitrarily large, (3.24) follows from (3.27), (3.31), (3.32),
and (3.34). .

(3.34)
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