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A BAYESIAN METHOD FOR WEIGHTED SAMPLING!

By AuBerT Y. Lo
SUNY, Buffalo

Bayesian statistical inference for sampling from weighted distribution
models is studied. Small-sample Bayesian bootstrap clone (BBC) approxi-
mations to the posterior distribution are discussed. A second-order property
for the BBC in unweighted i.i.d. sampling is given. A consequence is that
BBC approximations to a posterior distribution of the mean and to the
sampling distribution of the sample average, can be made asymptotically
accurate by a proper choice of the random variables that generate the
clones. It also follows from this result that in weighted sampling models,
BBC approximations to a posterior distribution of the reciprocal of the
weighted mean are asymptotically accurate; BBC approximations to a
sampling distribution of the reciprocal of the empirical weighted mean are
also asymptotically accurate.

1. Introduction. The weighted distribution model is one where the prob-
ability of including an observation in the sample is proportional to a weighting
function. This model can be defined by

(1.1) X,,..., X,|G arei.i.d. from a distribution F(-|G),
where
(1.2) F(ds|G) = w(s)G(ds)/fw(s)G(ds),

w(s) is a known weighting function with 0 < w(s) < » on the support of G; G
is the unknown parameter. This model arises naturally in several applied
areas: in sampling fiber length [Palmer (1948) and Cox (1969)] where the X,’s
are univariate, in cell sampling [Takahashi (1966) and Zelen (1974)] where the
X,’s (and the s’s) are bivariate, and in aerial survey in traffic and ecology
problems [Brown (1972) and Cook and Martin (1974)]. Rao (1965) gives a
unified formulation for this model, and Patil and Rao (1977) is an excellent
source of references.

Cox (1969) proposes an estimate for a freely varying G for a length-biased
model which corresponds to w(s) = s; he also discusses statistical inference
about G based on this estimate. Recently, Vardi (1985) and Gill, Vardi and
Wellner (1988) study the k-sample problem of (1.1) using the MLE method.

In this paper, we provide a Bayesian solution to the model (1.1) as an
alternative to Cox’s classical approach. The Bayesian method is important
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since it provides an alternative approach to statistical thinking, and the
posterior mean as an estimate allows user input of prior information and thus
is useful for Bayesians and frequentists alike. Furthermore, it is well known
that a Bayesian solution is of great importance from a decision theorist’s
viewpoint.

Section 2 shows that normalized weighted gamma process priors for G are
conjugate priors. Section 3 develops a large-sample approximation to a poste-
rior distribution of G. It is shown that the posterior distribution of G can be
approximated by a Gaussian process discussed by Cox (1969).

Section 4 discusses Bayesian bootstrap clone approximations [Lo (1991)] in
the weighted sampling models. The accuracy of the BBC approximation for the
reciprocal of the weighted mean is discussed based on techniques developed in
Section 5. Section 5 deals with some accuracy questions of BBC approxima-
tions: a class of BBC, including Rubin’s (1981) Bayesian bootstrap, is found to
provide an asymptotically accurate approximation to the posterior distribution
of the population mean with respect to Dirichlet type priors; another class of
BBC’s is found to provide an asymptotically accurate approximation to the
sampling distribution of the sample average.

2. The prior to posterior analysis. The key to the Bayesian solution
for these types of problems is the choice of a nontrivial, yet manageable, prior;
a conjugate one is even more desirable since it allows for an easy description of
the posterior distribution. For sampling from a weighted distribution, normal-
ized weighted gamma processes are found to be conjugate priors. Such priors
are defined naturally through weighted gamma processes [see Dykstra and
Laud (1981), Lo (1982) and Lo and Weng (1989)] just as Dirichlet processes
[Ferguson (1973)] can be defined in terms of gamma processes. Let y(-) be a
gamma process with shape a(-), [i.e., y(:) is an ‘“independent-increment”
process, and for each ¢, y(¢) is a gamma (a(#); 1) random variable]. For a fixed
B = 0, define v(¢) = fI(s <yB(s)y(ds) [the inequality is coordinate-wise if s is
k-variate]. Then v(-) is called a weighted gamma(a; B) process and the random
distribution function v(-)/v(») a normalized weighted gamma process (with
shape a and weight B), that is, a D(a; 8) process. Note that a D(a; 1) process
is a Dirichlet process with shape measure a. Let X = (X;,..., X,,), and let
x=(xg,...,%,)

THEOREM 2.1. For the model (1.1), - Z{G(*)} = D(a;1/w) implies
AG()X =x) = D(,a + X 5 l/w).

l<i<n

Proor. Note that (1.2) and a routine computation shows that F(-) is a
D(a; 1) process, that is, a Dirichlet process with shape measure a [Ferguson
(1973)]. It follows from (1.1) and a result of Ferguson that the posterior
distribution of F(-) given X =x is a D(a + X, _;.,8,;1) process. Since
G() = [I, _ yo(s)"'F(ds)/ fw(s)~"F(ds) follows from (1. 2), another computa-
tion shows that Z{G()|X = x} = D(a + 21515n3x,’ 1/w). O
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The conclusion of Theorem 2.1 suggests the following construction of a
“posterior random variable;” which simplifies the study of posterior distribu-
tions. Let y be a gamma(a; 1) process, and let {Z,,...,Z,,...} be a sequence
of i.i.d. standard exponential random variables which is also independent of y
and the X;’s. For each X = x, define

Ty cyo(8) " 'y(ds) + Ly o cno(x;) 21, 2y
Jo(s) y(ds) + Iy, cp0(x;) ' Z, '
Note that .AGv,(-)IX = x} = AG(-)IX = x} and hence

d

(23) = (a(=)/la(=) + n])| fo(s) "a(ds) /a(=)|

(22)  Gv(9) =

E[/w(s)G(ds)]_l x} = E[/w(s)Gyn(ds)]_l

+{n/la() + n]}[n-l ;w(x,.)—l].

The posterior mean (2.3) is a weighted average of the prior estimate
Jo(s)™a(ds) /a(=) just as the Cox estimate, n 'L, w(x;) ™, of [ fw(s)G(ds)] ™.
Putting a = 0 in Gv,() results in
z"lsiSn“)(":i)_IZiI(x,-st)
Z’lsisnw(xi)_lzi
and £{G,(-)IX = x} is the posterior distribution with respect to a ““flat” prior.

The Cox estimate of [ /w(s)G(ds)]~! is the posterior mean of [ [w(s)G(ds)] ™!
with respect to the “flat” prior,

(2.4) G,(t) =

(2.5) E{[fw(s)Gn(ds)]_ x} =n! 1 L oo(x)
Cox (1969) also proposes
(2.6) c= % () Tgyzn| T o)

as an estimate of G(¢). The posterior mean of G(¢) with respect to the “flat”
prior does not simplify to C(2).

3. A large-sample theory for posterior distributions. The posterior
distribution .Z{6(G(-))|x} is the Bayesian solution to the problem of estimat-
ing 6(G(-)). Unfortunately, a simple description of this problem is not yet
available. This section provides a large-sample approximation to the posterior
distribution of G(-). Here the approximation is stated in terms of a functional
central limit theorem. Random functions are regarded as elements of the
D[ -, x]* space, which is equipped with the uniform metric and the projection



A BAYESIAN METHOD FOR WEIGHTED SAMPLING 2141

o-field [see Pollard (1984)]; that is, the observations are values in [—, «]*. Let
G, be the “true” parameter G. Define the function w ™ 'G(¢) by

(3.1) w7 lG(t) = fI(SS,)w(s)_lGo(ds) for each ¢ in [ -, »]"
and denote a standard Brownian motion process on [0, ©) by {W(s): 0 < s < o},
THEOREM 3.1. If [w(s)G(ds) and [w(s)™'G(ds) are both finite, then
An 26, () - C()][x)
' 1/2
(1) - [fw(s)GO(ds)] j{W(w‘lGo(-)) - GO(-)W(w‘lGO(OO))}

a.s. F(-1Gy);

(i) if in addition, [w(s) 'a(ds) is finite, (i) remains valid with G(-)
replacing G, ().

Proor. Note that G, (¢) = Y,(¢)/Y, () where
Y ()= ¥ o(x) 'ZI, ., foralltin[—o,]*

l<i<n
Next,
n'/2{Y,(t) /Y, (=) — E[Y,(¢)Ix] /E[Y,(=)Ix]}
= [n/Y,(x)|n"1/2 - x
32 [n/Y,()]n" (¥, () - E[Y,()lx])

—[n/Y ()| (E[Y,()Ix] /E[Y,(=)Ix])
Xn=1/2{Y, () — E[Y,(=)lx]).
It suffices to show that a.s. F(-|G,),
AAn Y, (1) — E[Y,()lx]Ix)

- (W06 [ fo(16as) |

the proof is then completed by applying the continuous mapping theorem.
Assume that G, is continuous. Note that (conditional on X = x) the Y,(-) is an
“independent increment’ process. Hence, the finite dimensional distribution
convergence is equivalent to the following: for each ¢ in [—oo, xo]*,
An~ 2y, (¢t) — E[Y,($)IxDIx} has an appropriate normal limit a.s. F(:|G,).
The last statement follows from arguments similar to that of Theorem 4.1 in
Lo (1987). Next, we turn to tightness. Tightness [a.s. F(-|G,)] follows from a
result in Bickel and Wichura (1971) and the strong law of large numbers. An
argument in Lo (1993) can be applied to extend the limit result to a discontinu-
ous G,.

(3.3)
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To prove (ii), it suffices to note that

1<z<n

(3:4) supn|Gy(t) ~ Gr,(1)] < 2[w(s)‘1y(ds)/ Y o(x) 'z,
implying that, a.s. F(-|G,),

lim sup supn|G,(t) — Gv,(t)] < 2[w(s)‘1y(ds)fw(s)00(ds) a.s. P{-|x}.
O

If the sample is unweighted, that is, w(s) = 1, the limit in Theorem 3.1
reduces to the usual Brownian bridge B(Gy(:)) = W(G(-)) — G,(-)W(1); see
Lo (1987).

Next, we turn to the study of the unknown mean of G. Let .Z{Y} = G, and
define

k2[G,] = [Eo(Y){E[Y?/0(Y)] — 2(EY)E[Y/a(Y)]

(3.5) ,
+(EY)’E[1/0(Y)]}.

PROPOSITION 3.2. Assume that [s*w(s)™'G(ds) is finite for k = 0,1, 2.
(i) _/{nl/z[stn(ds) —[sé(ds)]

(i) if, in addition [s*w(s)~'a(ds) is finite for k = 0,1, (i) holds with G,
replaced by G.

x} - N(0,k*[G,]) a.s. F(-1G,);

Proor. The proof of (i) essentially follows the finite dimensional conver-
gence arguments in Theorem 3.1. To prove (ii), use an inequality similar to
(3.4) to get

limsup n

[sGy.(ds) = [sG.(ds)
(3.6) "

< Ew(Y){[sw(s)_ly(ds) + E(Y)fw(s)‘ly(ds)}. D
A (1 — a) posterior interval estimate for [sG(ds) is then
(3.7) fsé(ds) + 2, o[C]n =12,

where z, ,, is the 1 — a/2 percentile point of a standard normal; x4 C]is an
estimate of x%[G,] obtained by substltutmg G, by C.

In the length-biased model, % G,] reduces to (EY)¥(EY)E(1/Y) — 1},
which is the frequentist asymptotic variance derived by Cox [see (5.4) in Cox
(1969)]. If the sample is unweighted, that is, w(s) = 1, then «*[G,] reduces to
the variance of G,.
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REMARK 3.1. (i) A referee pointed out that (3.3) can also be derived from a
result of Alexander (1987).

(ii) One can also argue as in the proof of Theorem 3.1() to obtain a
frequentist functional central limit theorem for Cox’s estimate C(-) [see Cox
(1969), page 517]. A frequentist analogy to Proposition 3.2 appeared in Cox
[(1969), page 516].

4. BBC approximations for weighted sampling. Rubin’s (1981)
Bayesian bootstrap, adapted to the weighted sampling models, suggests the
following: given the data x, the posterior distribution -Z{6(G — ¢)|x} can be
approximated by -#{6(G, — C)|x}; the latter can in turn be approximated by
simulating i.i.d. exponential Z;’s in the construction of G,. Bayesian bootstrap
clone approximations [Lo (1991)] use i.i.d. positive Z,’s to play the role of the
exponentials: Suppose the data x are given. Let p = p(Z,) = E(Z,)/0(Z)).

Construct a G,,(-) based on simulating i.i.d. random variables
Zl, e ey Z 9

n

(4.1)

thereby producing a realization of 8* = 8(p X (G, — C)). Repeat this simula-
tion B times to obtain G,,(-),...,Gp,(*), and the corresponding 6} 0%, ..., 0%.
The empirical distribution of 6%, 6%, ..., 0% approximates the posterior distri-
bution #{6(G — C)|x} with respect to smooth priors.

Next is a first-order theory for BBC approximations. The proof of this result
is almost identical to that of Theorem 3.1 and is omitted.

THEOREM 4.1. If EZ?, [w(5)G(ds), and [w(s)1G(ds) are finite, then
o ?[G,(+) - €()]ix)

(1) = [Eo(Y)]"? 2{W(071Go(+)) — Go(-)W(w™1Gy(b)))
a.s. F(-1G,);
(1) if fw(s)"'alds) is also finite, (i) remains valid with G(-) replacing
G,().

While Theorem 4.1 states that the BBC is asymptotically correct for both
Bayesians and frequentists, a more interesting question is whether the BBC
are asymptotically accurate. An answer to this question is available if the
parameter of interest is the reciprocal of the weighted mean (Jw(s)G(ds))™ .
According to (1.2),

(4.2) (fw(s)G(ds))_ = [w(x)‘lF(dx),

which is a linear functional of the unknown distribution F. Hence the problem
reduces to that of bootstrapping a linear functional of the population distribu-
tion F, given a sample from F. If the Z’s are exponentials, Weng’s (1989)
result on the accuracy of Bayesian bootstrap mean (extended to the case of a
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linear functional) applies. The next section discusses the accuracy question
when using nonexponential Z,’s.

5. Accurate BBC approximations for the mean of F. This section
discusses the asymptotic accuracy of the BBC approximations in the case of
the mean functional (or a linear functional of F') under i.i.d. unweighted
sampling. A BBC cumulative distribution of the mean is

where ¥ and & are the mean and the standard deviation of the sample
empirical distribution ¥, respectively. (Define F*(y|x) = 0if Z, + -+ +Z, =
0). The BBC suggests the use of F*(y|x) as the basis of approximating the
posterior distribution of the unknown mean and the sampling distribution of
the sample average. The following asymptotic expansion is critical for assess-
ing the asymptotic accuracy of these approximations. Let

(5.1) F*(ylx) = P{pnl/z( Y x2S, — 5)/0 < yx

1<i<n

(5.2) 7(H) = (Y) = E{[Y - E(Y)]/o(Y)}’

be the coefficient of skewness of a random variable Y having a distribution H
and a finite third moment. Let ® and ¢ be the N(0,1) distribution and
density, respectively.

THEOREM 5.1. Assume that the product Z,X, is nonlattice. Then
[1x3[Fy(dx) < o implies, for each y,

F*(ylx) = ©(y) + 67 'n""21(Z,)7(Fo)(1 - y*)$(¥)

(5.3)
+o(n %) a.s.F,.
Proor. Let
(5.4) () = n%y/[n + (/)] 7

Rearrange terms in (5.1) to get
F*(ylx) = P{[ Y.(Z; - EZ))((x; — &) /6 — n"*(y/p))]
(5.5)
172y 1
x(oz[n+ 0/7") <6},
which is the distribution of a sum of independent random variables (in a

triangular array setting.) The Edgeworth expansion for independent random
variables [Petrov (1975)] can be adapted to apply in this case [see Lo (1992) for
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details] yielding, for each y,

F*(ylx) = ®(£,(y)) + 67'7(Z,)(C,/B,)’

(5.6)
X(1 = £0)°)$ (&) + o(n717),
where
Bi= T [(x-5)/6+n7(y/p)]"
1<i<n
= n+ (3/p)°
and
C3= ¥ [(x—-%)/6+n"(y/p)]
1<i<n
=673 Y (x,- %)%+ 302y /p) + n~V%(y/p)°
l1<i<n

=n7(F) + 3n2(y/p)? + n=V%(y/p)°.

Elementary analysis [van Zwet (1979) and Weng (1988)] shows that (uniformly
in y)

P(£.(y)) = @(y) + O(n7h),
(1= £0)*)8(£u(»)) = (1 = ¥*)b(y) + O(n7Y).

The proof is completed by noting that (C,/B,)? = n='/%7(F,) + o(n"1/?) ass.
F, O

(5.7)

The expansion in Theorem 5.1 is a “pointwise”” Edgeworth expansion in the
sense that o(n~'/2) there depends on y. The asymptotic accuracy for boot-
straps will be discussed based on this pointwise expansion. [We conjecture that
the error o(n~'/2) in (5.8) is valid uniformly in y, which is perhaps more in
line with the usual Edgeworth expansion technology in this area; see van Zwet
(1979) and Weng (1989).]

The coefficient of skewness of the BBC variable Z, [i.e., 7(Z,)] appears as a
multiplier in the Edgeworth expansion of F*(y|x). This scale effect provides
the flexibility needed to tailor-make the Z; so that the resulting BBC approxi-
mation is asymptotically accurate for Bayesians or frequentists.

DeriNiTION 5.1. Call a BBC approximation based on p(Z;) and 7(Z,) a
BBC (p; 7) approximation.

Suppose we intend to approximate a posterior distribution of the population
mean [xF(dx). If the prior distribution is the Dirichlet process prior, or a
Dirichlet vector for categorical data models, the posterior distribution of the
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standardized population mean, F, ,(y), admits a one-term Edgeworth expan-

sion (uniformly in y),
o= et o <]

=®(y) + 37 'n" V2% (Fy)(1 - y*)d(y) +o(n"'/?) as. F,,

(5.8)

where fi, is the posterior mean of [sF(ds), and n~'§2 is the posterior variance

of [sF(ds); see Weng (1989). The one-term (pointwise) Edgeworth expansions
for F, (y) and F*(y|x) from a BBC (p; 2) are identical. Hence, for each y,

(5.9) F, (y) = F*(yIx) + o(n"'/?) as. F,.

Comparing (5.8) and (5.9), we conclude that BBC (p;2) (for any p > 0)
approximations to the posterior distribution F, ,(y) are more accurate than
the standard normal approximation (5.8). Rubin’s (1981) classic Bayesian
bootstrap is a BBC (1;2), and hence is accurate; this was previously proved by
Weng (1989).

Next, we turn to BBC approximations to the sampling distribution of the
sample average. If X, is nonlattice (and has a finite third moment), then
uniformly in y,

F,(y|Fy) = P{nl/z(X - mo)/ao < yIFo}

= ®(y) + 670" 27(Fo) (1 - y*)b(y) +o(n™?);
see Feller (1971). A F*(y|x) corresponding to a BBC (p; 1) (for any p > 0) also
has expansion (5.10), implying F,(y|F,) = F*(y|x) + o(n"'/?) a.s. F,. That is,
BBC (p; 1) approximations are more accurate than the standard normal ap-
proximation (5.10).

Efron [(1982), Section 9.3] points out that Hartigan’s (1969) random sub-
sampling (RS) plan is a BBC with Bernoulli (p = 1/2) Z,’s. Hartigan’s RS is a
BBC (1; 1) which provides asymptotically accurate approximation to F,(y|F,)
(for a nonlattice X,). Weng (1988) shows that the use of a gamma (4;1) as Z,
results in an accurate approximation to F,(y|F,); independently, Tu and Zheng
(1987) suggest the use of a gamma (4; 2) as Z,. Both .#{Z,} = gamma(4; 1) and
AZ,} = gamma(4; 2) correspond to a BBC(2; 1).

On the other hand, Efron’s bootstrap suggests approximating F,(y|F,) by

|

Here {X{, X¥,..., X} is an ii.d. resample from the data {x,, ..., x,}. Singh
(1981) shows that, if X; is nonlattice (uniformly in y),

(512) B*(ylx) = ®(3) + 67" *r(Fy)(1 - y°)b(y) +o(n "),

It follows then F,(y|F,) = E*(y|x) + o(n"/?) a.s. F,, and the bootstrap ap-
proximation to F,(y|F,) ties with BBC (p; 1) approximations.

(5.10)

(5.11) E*(ylx) = P{nl/z(n‘1 DI, 6 f)/& <yx

l<i<n
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TABLE 1
Posterior distribution Sampling distribution
N(0, 1) approx. inaccurate inaccurate
Efron’s B inaccurate accurate
BBC (p; 1) inaccurate accurate
Hartigan’s RS inaccurate accurate
BBC (p; 2) accurate inaccurate
Rubin’s BB accurate inaccurate

Table 1 summarizes the asymptotic accuracy of Efron’s B, Rubin’s BB,
Hartigan’s RS and the BBC (p; 7) approximations for linear functionals of F.

Acknowledgments. The author is indebted to V. V. Sazonov, Michael
Woodroofe and a referee for helpful comments and suggestions.
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